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ions are calculated using a Breit–Pauli distorted wave approach with the optional

inclusion of two-body non-fine-structure and fine-structure interactions.

Solution method: General multi-configuration Breit–Pauli atomic structure. A

jK-coupling partial wave expansion of the collision problem. Slater state angular

algebra. Various model potential non-relativistic or kappa-averaged relativistic ra-

dial orbital solutions — the continuum distorted wave orbitals are not required to

be orthogonal to the bound.

Restrictions:

Unusual features:

Additional comments: Documentation is provided in the distribution file along

with the test-case.

Running time: From a few seconds to a few hours

1. Introduction

An accurate description of the electron-impact excitation of atomic ions
continues to challenge state-of-the-art methods such as convergent close-
coupling [1], R-matrix close-coupling [2] and time-dependent close-coupling [3]
on the largest of (parallel) computers. For ‘simple’ systems it may be due
to the requirement of a complete description of all scattering parameters or
just total cross sections in the case of highly-excited states. For ‘complex’
systems the number of scattering channels themselves can be overwhelming.
Spectroscopic diagnostic modelling of astrophysical and laboratory plasmas
has a large appetite for electron-impact excitation rate coefficients since they
largely determine the emitting population distribution within a charge state.
The close-coupling method can in principle provide excitation data between
all target states included in its expansion. The nature of a plasma ion’s pop-
ulation distribution favours an alternative approach — distorted wave (DW)
— which neglects coupling via any intermediate state for a transition between
a given initial and final state. The bulk of an ion’s population resides in a
few low-lying metastable states while the population of the remaining excited
states is small. The population of the diagnostically important excited states
is largely driven by direct electron-impact excitation from these metastables.
Transitions between excited states can be neglected or be described by a sim-
pler method such as plane-wave Born (PWB). The DW method is an efficient
computational reflection of the dominant physics. Such a picture describes
most non-equilibrium astrophysical and magnetic fusion plasmas. This is not
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quite the full picture. Resonances in electron scattering are a manifestation of
coupling and are automatically included within a close-coupling calculation.
They can strongly enhance low temperature rate coefficients for weak tran-
sitions. It is up to the user whether or not they are included independently
(perturbatively) in a DW calculation.

A number of codes have been developed over the years which are gen-
eral both in the sense of the ion that they treat and the electron collision
processes they describe. These include the Hebrew University Lawrence Liv-
ermore Atomic Code (HULLAC) [4], the Flexible Atomic Code (FAC) [5] and
the Los Alamos DW (LADW) code suite of Sampson and co-workers [6]. All
three use fully relativistic wavefunctions but only the last includes the Breit
interaction besides the two-body Coulomb. They all make use of a hierarchi-
cal Racah algebra angular momentum coupling scheme which is factorized for
efficiency. Cowan’s structure code [7] is also in widespread use. It uses kappa-
averaged relativistic wavefunctions while its treatment of electron-impact ex-
citation is restricted to the plane-wave Born approximation — but that does
make it highly efficient. The University College London DW code [8] has
been used extensively in the past for electron-impact excitation but less so
now perhaps. It uses non-relativistic wavefunctions and level-resolved cross
sections are determined1 by term-coupling LS-coupling scattering matrices
using the jajom code [10]. It is notable in that it takes a completely different
approach to the angular momentum problem. It uses the non-hierarchical
uncoupled Slater state representation. It is here we make the connection
with the present approach and the autostructure code [11].

autostructure is a general code [11] for the description of free-bound
electron and photon collision processes [12]. Since it incorporates the super-

structure atomic structure code [13] then it also describes a wide variety of
bound-state problems. It makes use of non-relativistic or kappa-averaged rel-
ativistic wavefunctions and the full Breit interaction in the Pauli approxima-
tion. It is particularly noted-for and efficient in its description of dielectronic
recombination (DR) which takes place through large numbers of highly-
excited states. DR can be viewed as the complement of resonant-excitation.
In this (DR) connection it has been intimately involved in defining standards
for the Atomic Data and Analysis Structure (ADAS) [14] collisional–radiative

1Jones [9] proposed a Breit–Pauli version of the UCL-DW code but it was never im-
plemented.
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modelling of magnetic fusion plasmas. Light elements have historically dom-
inated magnetic fusion devices such as JET [15] and the R-matrix method
has been able to supply the key excitation data. The prospect of the larger
(hotter) ITER device [16] means that extensive studies are now underway
for the diagnostic modelling of heavy species such as Kr, Xe, W etc. which
will be in use. The R-matrix approach will likely be more limited in its
practical application and so we seek to extend autostructure to provide
direct non-resonant DW excitation data efficiently and tailored to the needs
of magnetic fusion. It is also equally applicable to astrophysical data needs
such as the excitation of highly excited states.

The historical emphasis of the DW approach for electron-impact excita-
tion was to mimic the close-coupling method as closely as possible [8, 17]. It
is questionable whether the ultimate result of the most accurate DW calcula-
tion possible — an exact treatment of all (diagonal) distorting potentials and
full unitarization — is worth the cost compared to an R-matrix calculation.
Our philosophy is to seek a CPU time and memory efficient solution at a
judgemental cost of a slightly less accurate final DW result but one for which
other uncertainties and effects such as in atomic structure and of resonances
are likely to be more important.

The focus of this paper is to describe such a Breit–Pauli distorted wave
approach for the electron-impact excitation of atomic ions2 that we have
implemented within autostructure. We also highlight related relevant
aspects of its atomic structure determination and representation. We do not
repeat details of the theory which are common to the superstructure [13]
and/or UCL-DW [8] codes nor do we discuss bound-free processes which were
the basis of the original implementation [12] of autostructure.

2. Target Representation

Eissner et al [13] describe the theory behind the full Breit–Pauli atomic
structure. (The two-body non-fine-structure operators were not actually in-
corporated into superstructure at the time but only into autostruc-

ture some time later [18].) It is instructive to look at aspects of the Slater
state approach to the angular momentum problem. (All quantities are as-
sumed to be for fixed total orbital and spin magnetic quantum numbers

2The code also works for neutral atoms but the accuracy of the DW method is likely
not high then.
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MS ML.) A Slater state |u > is defined by

|u >=

N
∏

q=1

|nqlqµqmq > (1)

where nqlqµqmq represents the one-electron quantum numbers nlmsml for
the q-th electronic state of an N -electron wavefunction and they are subject
to

MS =
N

∑

q=1

µq and ML =
N

∑

q=1

mq . (2)

Antisymmetrization is imposed by permuting the sets (nqlqµqmq). Slater
determinants are never explicitly used.

The interaction of any required operator O is first determined in the
uncoupled representation

< u′|O|u > . (3)

Eissner et al [13] give explicit expressions for all Breit–Pauli operators evalu-
ated in the uncoupled representation. The uncoupled representation is then
transformed to a coupled representation labelled by t = CβSL via

|t >= |u >< u|t > (4)

so as to efficiently sum over all of the one-electron magnetic quantum num-
bers. The final result is independent of the particular choice of MS ML. The
N -electron vector-coupling coefficients < u|t > are defined by Eissner and
Nussbaumer [19]. The t-representation is labelled by (nl) configuration C
and total spin (S) and orbital (L) angular momentum quantum numbers
and a degeneracy label β which reflects the fact that the same total SL-
values can occur many times in a complex configuration. We note that we
have no parentage, grandparentage etc. just a simple configuration and βSL
to fully label each term.

The historic implementation of Slater state algebra within the UCL suite
of codes was an efficient balance of CPU time and memory for the size of
problems that could be tackled on the computers of the day. Three non-trivial
changes produce scalability to modern computers. The first is to note that
β does not occur in equation (3) but only in equation (4) via < u|t >. β was
small historically and additional memory is required to store the uncoupled
interaction. Memory is relatively more plentiful on modern machines and
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β is large for the complex configurations that can now be tackled. Up to
a factor of ∼ 30 speed-up was obtained [20] on re-organizing the angular
algebra to take account of this before it became too tedious to run the old
method. This approach carries-over to the scattering representation.

A second historic issue was the simultaneous diagonalization of the L2

and S2 matrices for each configuration so as to determine the allowed terms
and vector-coupling coefficients < u|t >. Such an approach does not scale
well when there are thousands of terms in a configuration and it is numeri-
cally ill-conditioned due to the large degree of degeneracy (β) of eigenvalues.
Nussbaumer and Storey [21] showed the way to an efficient solution. They
split complex configurations into two groups: one of common (open-shell)
parents and the other the remaining daughters. The parents’ and daugh-
ters’ L2 and S2 matrices were simultaneously diagonalized separately and
their (inequivalent) parts vector-coupled together. We have implemented a
more efficient approach. We treat each configuration separately and within a
configuration diagonalize each equivalent electron subshell (nlq) in turn and
then vector-couple it to the previous one. The worst case scenario for this
new diagonalization procedure is a half-open h-shell and it takes less than
a second to determine its allowed terms and transformation vector-coupling
coefficients.

The third and final scalability improvement concerns the transformation
vector-coupling coefficients themselves. If all possible values are stored then
they can be stored in a way that allows any one to be recovered at ran-
dom without any additional mapping array. This includes zeroes. It turns
out that the ‘matrix’ of coefficients is quite sparse for large scale problems
involving tens of thousands of terms. It is efficient then to store only the non-
zero coefficients and to array-index their location. A significant reduction in
memory is still achieved as well as a corresponding speed-up in their access.
The original indexing then no longer approaches the limit for integer*4

representation.
We now consider the fine-structure operators. Only the total angular

momentum (J) and its associated magnetic (M) quantum numbers are con-
served now. We can still work with the Slater states |u > because we have no
explicit j-dependence in our wavefunctions — we work with nl-configurations
and not nlj-subconfigurations. We do need to consider that more than one
MS ML pair can contribute to our chosen M . This is reflected in the trans-
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formation from the t-representation to an i = CβSLJ representation

|iM >= |tMSML >< tMSML|iM > . (5)

The vector-coupling coefficient is simply

< tMSML|iM >= (−1)L−S−M(2J + 1)1/2

(

S L J
MS ML −M

)

(6)

where (. . .) is a Wigner 3j-symbol [22].
The angular algebra is combined with the associated radial integrals in

exactly the same manner as described by Eissner et al [13] so as to form
the Hamiltonians resolved by SLπ or Jπ where π is the parity label. The t-
and i-representations do not in general give rise to diagonal representations
of the LS-coupling and Breit–Pauli Hamiltonians. They are transformed to
diagonal t- and i-representations via

|t >= |t >< t|t > and |i >= |i >< i|i > (7)

where < | > are eigenvectors of the appropriate Hamiltonian.
The differences between autostructure and superstructure on the

radial side are more about functionality than efficiency. Alternative model
potentials are available in addition to the original Thomas-Fermi-Dirac--
Amaldi [13]. These include the Slater-Type-Orbital potential of Burgess [23]
and the self-consistent configuration average potential of Cowan [7]. These
potentials either deliver an orthogonal set of bound radial orbitals or else
this is imposed via a Schmidt orthogonalization procedure. It is possible to
relax the orthogonality requirement along the lines described by Cowan [7]
and assume all overlaps are still zero or unity. The sensitivity to the neglect
of the overlaps can be assessed by introducing the explicit overlaps which
were originally presumed to be unity.

We have already mentioned the optional use of the κ = −1 average of
j = l ± 1/2 i.e. κ = −l − 1, l relativistic wavefunctions of Cowan and
Griffin [24] which can also include an approximation for the small component.
Sensitivity to higher-order relativistic effects can be assessed by the use of
a non-zero energy for the transverse photon in the two-body integrals either
in the Generalized Breit or Møller forms. The QED vacuum polarization
and electron self-energy contributions have also been incorporated along the
lines of the grasp0 code of Norrington [25]. A precise description of these
effects requires a fully-relativistic approach but the present implementation
is sufficient to assess their importance.
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3. Scattering Representation

We assume an antisymmetric total wavefunction Ψ for an atom described
by an N -electron wavefunction ψ plus a colliding free electron described by
a wavefunction φ of the form

Ψ = Aψφ . (8)

Several important assumptions are represented by equation (8). We do not

assume the free-electron wavefunction to be orthogonal to those of the one-
electron bound orbitals. This means that we do not require a compensating
bound (N + 1)-electron expansion. This means that in general we have one-
body exchange operator overlap contributions present [26] when we come to
evaluate the scattering interaction

< Ψ|H − E|Ψ′ > . (9)

This does not lead to great complexity since we assume that the bound and
continuum orbitals themselves each form an orthogonal set. (We neglect the
spin-orbit contribution to the overlap and only include the mass-velocity plus
Darwin contributions when using kappa-averaged wave functions i.e. when
they are likely non-negligible.) The UCL-DW code [8] does assume complete
orthogonality and so low angular momentum scattering symmetries can have
large bound (N + 1)-electron expansions to compensate. The simplest strat-
egy is to force the continuum orbitals to be orthogonal to the bound ones and
to make no compensation. This is the approach taken in the HULLAC [4],
FAC [5] and LADW [6] codes. It is not incompatible with ours.

Equation (8) does not couple atomic states. It represents elastic scatter-
ing. If we introduce an atomic state label ν and consider scattering from an
initial state ν to a final state ν ′ by an electron with corresponding wavenum-
bers and angular momenta kl and k′l′ then the use of equation (8) represents
the distorted wave approximation. The total energy of the system E satisfies

Eν + k2 = E = Eν′ + k′2 (10)

where Eν is the energy of the atomic state. The transmission matrix Tii′ for
i = νkl satisfies [8]

|Tii′ | = 2|Kii′| = | < Ψi|H − E|Ψi′ > | (11)
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for inelastic scattering (ν 6= ν ′) in the non-unitarized approximation for the
Kohn-corrected [9] reactance matrix Kii′. (In practice we implement a uni-
tarization of the 2 × 2 reactance matrix of the the initial and final state.)

The above scattering description is in the uncoupled Slater state repre-
sentation with labelling of the magnetic quantum numbers suppressed. The
whole machinery of the structure problem carries-over into the collision one.
We summarize the LS-coupling problem discussed in detail by Eissner [8]
and then look at its extension to the Breit–Pauli one. We assume that the
total angular momentum quantum numbers for the atomic target are now
labelled by La Ma

L etc. Slater states for the scattering problem are a simple
product of the target |u > and a Slater state for the continuum electron
q = N + 1 — see equation (1). We now only require interactions involving
the continuum electron pair with a pair of target states. The non-hierarchical
nature of the uncoupled Slater state representation means that they are read-
ily determined. Expressions for < u′q′|O|uq > are identical to those for an
(N+1)-electron structure — compare those of Eissner et al [13] with those of
Eissner [8] for LS-coupling and Jones [9] for Breit–Pauli — with the trivial
replacement of a bound radial orbital pair by a continuum one. The inter-
actions are mostly two-body since the one-body only contribute to elastic
scattering and/or any exchange overlap. We sum over magnetic quantum
numbers by utilizing the target transformation to the t-representation and
the conserved (N + 1)-electron quantum numbers S LMS ML via

|tklSLMSML >= |tMa
SM

a
Lklmµ >< Sa1/2Ma

Sµ|SMS >< LalMa
Lm|LML >

(12)
where < | > are the vector-coupling coefficients. We note the implied sum
over all Ma

S M
a
L µm which satisfy the usual triangle relations. The final result

is again independent of the particular choice of MSML The angular algebra
is then combined with the associated Slater and two-body non-fine-structure
integrals to form the complete interaction matrix (9). If LS-coupling cross
sections are required then a further transformation from the t- to t represen-
tation is made at this stage.

Two-body fine-structure interactions may be present in the Breit–Pauli
case and SL etc. are not conserved then. They are determined in the uncou-
pled representation in an analogous fashion to the target fine-structure and
with the additional continuum Slater state as for the LS-coupling scattering
just detailed above. The uncoupled interactions are then transformed to an
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LSJ-representation via

|tklSLMSMLJM > = |tklSLMSML >

× < tklSLMSML|tklSLMSMLJM > (13)

where we make use of equation (12) as an intermediate step and the vector-
coupling coefficient < | > is given by the RHS of equation (6) with all angular
momenta being the total. We note now the implied sum over MS ML. The
result is independent of M . We note that we are still in the t = CβSaLa

representation for the target.
The total Breit–Pauli DW interaction matrix is then the sum of the fine-

structure and non-fine-structure contributions. The latter are first trans-
formed by (13) but subject to SL = S ′L′. The final step is to transform to
a target level-resolved jK-coupling representation via [7]

|tJalKLSJ >= (−1)(J+1/2+l+Ja) [(2Ja + 1)(2K + 1)(2L+ 1)(2S + 1)]
1

2

×

{

Sa La Ja

l K L

} {

S L J
K 1/2 Sa

}

(14)

and then to the diagonal Breit–Pauli target representation i using the second
of equations (7) since i = tJa. ({. . .} denotes the Wigner 6j-symbol [22].)

We make some observations. The mixing coefficients are the eigenvectors
of the Breit–Pauli target Hamiltonians and they both LS-configuration and
fine-structure mix the interaction Hamiltonian. They do not correspond to
the term coupling coefficients used by the UCL-DW and jajom codes [8, 10]
to fine-structure mix the (open-open part of) the LS-mixed reactance matrix.
We always have the full expansion of the open channels at our disposal since
we work with the interaction Hamiltonian. (We only construct and hold a
single JaJ ′a π sub-block in memory at any one time.) This is in contrast
to working with the (physical) reactance matrix where only the open-open
components are to hand. (Working with the unphysical reactance matrix
is an alternative solution which was developed by Griffin et al [27].) Our
approach to re-coupling and mixing is essentially the same as that employed
to set-up the (N + 1)-electron inner-region Hamiltonian in the Breit–Pauli
R-matrix method [28].

4. Radial Details

The continuum distorted waves satisfy the same basic radial equation as
the bound orbitals but utilize an (N + 1)-electron model potential of the
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same functional form as that specified by the user for the target. They need
not be orthogonal to bound orbitals of the same angular momentum.

It is convenient to calculate the collision strengths at the same set of
final scattered energies for all transitions. Then zero gives every threshold
collision strength for example. Only a small set is required since they vary
slowly with energy. The conservation of energy equation (10) in principle
still gives an impractical and unnecessary number of initial energy contin-
uum distorted waves for all but the smallest of problems. We supplement the
final state energies by a small number of additional energies so as to form
a continuum interpolation basis. All of the scattering integrals are calcu-
lated at all interpolation energies. For each final scattered energy it is then
straightforward to interpolate them at the appropriate initial energy for each
transition. The order of the (Lagrange) interpolation formula and the distri-
bution of interpolation energies can be controlled by the user or left to the
program’s default. The default is to use final scattered energies at: 0, Ex/3,
Ex, 3Ex and possibly 8Ex where Ex is the maximum of the highest target
excitation energy and the (estimated) ionization potential. Additional inter-
polation energies are given by equation (10) on assuming two logarithmically
spaced representative values for the excitation energies in addition to zero.
A two-point interpolation formula is used due to the coarse energy spacing.

It is well known that (direct) Slater integrands have a long-range na-
ture viz. ∼ 1/rλ+1 where λ = 1 for dipole transitions etc3. We use the
JWKB approach of Burgess and Sheorey [29] for their efficient computation.
(Use of this method for the special case of k′2 = 0 has long been a part
of autostructure due to its approximation of high Rydberg states by a
zero-energy continuum orbital.)

All continuum distorted waves and associated radial integrals are calcu-
lated on-the-fly as they are needed and they can currently be held in memory
without resort to disc storage.

5. Collision Strengths

The fully-resolved partial collision strength is related to its corresponding
T -matrix element by

Ωνγ,ν′γ′ = ωγ|Tνγ,ν′γ′ |2 (15)

3This behaviour is modified to ∼ 1/rλ+1/2 for k2 = 0 = k′2.
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where ν is a target state label, γ is the set of all other quantum numbers
which define the scattering and ωγ(= ωγ′) is the total statistical weight of
the scattering symmetry viz. (2J + 1) for Breit-Pauli jK-coupling or (2S +
1)(2L+ 1) for LS-coupling.

Partial collision strengths are calculated for each total J (or L) by default.
This is not necessary. The user can specify a factor by which the preceding J
(or L) is multiplied so as to determine the next one. (Subject to safeguards
implemented by the code.) The sum over J (or L) is then converted to an
integral and evaluated by quadrature using Simpson’s rule. This option is
available only in the serial version of the code.

The contribution from electron exchange is dropped for sufficiently high
J (or L) and the problem simplifies because the sum over S in the recoupling
can be carried-out analytically. The direct Slater and non-fine-structure an-
gular algebra also satisfy simple recurrence relations for L [8] and these are
used for sufficiently high J (or L).

It is well known that the sum of partial collision strengths over the contin-
uum orbital angular momentum is slow to converge for allowed transitions.
This is especially true for the dipole case. We use the same methods and
code that we implemented in the R-matrix outer-region code stgf. ‘Top-up’
for dipole transitions makes use of the Burgess sum rule [30] while that for
higher multipoles assumes a geometric series in energy in combination with
the degenerate energy limit following Burgess et al [31]. Top-up is applied
by default. The user can specify the maximum total angular momentum. It
defaults to 304 and is likely consistent with the default maximum scattered
energy of 3Ex. If the user increases this maximum total angular momentum
then the default maximum scattered energy is 8Ex.

The total (sum over γ, γ ′) collision strengths for each transition as a
function of final scattered energy are written to a (type-5) adf04 file as defined
by ADAS [14]. This file also contains energy levels, Ek and Mk radiative
rates, and infinite energy PWB collision strengths which are passed-through
from the structure run which initiates the scattering calculation. It can be
converted to the more familiar Maxwell-averaged effective collision strength
(type-3) adf04 file using the program adf04 om2ups.f which is a standalone
version of the ADAS809 code.

459/2 etc. for half-integer.

12



6. Metastables

We emphasized in the introduction the importance of metastables for di-
agnostic modelling and its corresponding requirements for electron-impact
excitation data. If there are N target levels then the time to calculate ex-
citation data between all possible levels scales as N 3. We identify a subset
of M metastable levels. This subset can be specified by the user. The code
defaults to all levels of the ground term elsewise. We have attempted to
ensure that the time scales as MN 2 and especially as N 2 for M � N . This
is not such a straightforward problem since the metastable eigenstates are
a mixture of the full set of N target levels which are of the same J aπ. It
is facilitated by the user specifying target levels or indeed whole configura-
tions as ‘correlation’. No excitation data is computed then to such levels
and mixing between such levels is neglected. (We note that the UCL-DW [8]
and jajom [10] codes both implement exclusion parameters of one kind or
another.)

7. Parallelization

A simple parallel strategy has been implemented which distributes the
Jπ symmetries over the available processors. If there are more symmetries
than processors then the Jπ are grouped for efficient re-use of the angular
algebra and radial integrals. Each processor calculates all of the data that
it needs. This does mean that the same data is being computed by several
different processors. The communication and handshake overhead does not
make it seem worthwhile to eliminate this duplication of effort at this point
in time.

8. Testing

The collision angular algebra is implemented completely separately from
the target angular algebra. The collision algebra has been verified against its
corresponding determination from an (N + 1)-electron structure calculation
utilizing inequivalent bound orbitals of the same angular momentum.

Selected reactance matrix elements and partial collision strengths for the
excitation of He+ have been reproduced from the tables of Burgess et al [31].
(The structure is exactly the same for hydrogenic ions.)
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Consistency of the high energy collision strengths with their infinite en-
ergy limit has been studied for many varied cases. This tests the veracity of
the implementation of the various recoupling and mixing transformations.

We have started as a matter of course to make comparisons with R-matrix
background collision strengths as new R-matrix calculations are undertaken.

9. Fortran Code

The autostructure code has a Fortran77 heritage. Fortran95 con-
structs have been implemented in key places for memory efficiency but a
complete implementation of the standard is still a work in progress and
subject to funding. In this sense the code would be viewed as incom-
plete and/or still under development from the computer science perspec-
tive. It is complete and finished from the computational physics perspec-
tive. The most up-to-date version of the code can be downloaded from
http://amdpp.phys.strath.ac.uk/autos/ and there is information on in-
stallation, ‘recent’ updates, a reasonably comprehensive write-up so as to get
the user started, and a comprehensive test-suite covering all atomic processes
described by autostructure. There are also supporting utility codes such
as adf04 om2ups.f (standalone ADAS809). The CPC snapshot distribution
contains the files on installation, write-up and the (following) test-case.

10. Test-case

A simple test-case is provided in the distribution viz. excitation within
and from the ground and first excited level to the rest of the levels of the
n = 2 complex in Be-like Fe22+. The (user) input is:

A.S. Be-like Fe DW (BP)

&SALGEB RUN=’DE’ CUP=’IC’ NMETAJ=2

MXVORB=2 MXCONF=3 KCOR1=1 KCOR2=1 &END

2 0 2 1

2 0

1 1

0 2

&SMINIM NZION=26 MAXE=500 &END

&SRADCON &END
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It is all free-formatted and namelisted except for the first four characters
of the first line which would normally always be A.S. (Other values support
historic input formats.) The rest of the first line is for user comments. The
write-up within the distribution details all of the above input variables plus
many additional optional ones. (All of the ‘usual’ atomic structure options
can be used in conjunction with a DW calculation.) The test-case is an exam-
ple of almost minimal input. The RUN variable specifies the atomic process —
here it is Direct Excitation ’DE’. (‘DW’ is too generic — all continuum pro-
cesses described by autostructure use distorted waves viz. autoionization
and photoionization.) The coupling scheme is specified as (target) interme-
diate coupling (’IC’). NMETAJ=2 metastable levels (including the ground) are
specified (the default is levels of the ground configuration.) The MXCONF=3

configurations are then specified in terms of MXVORB=2 nl-orbital occupation
numbers (see the distribution write-up) and a 1s2 closed-shell range (KCOR1,
KCOR2) based-on ‘standard order’ (1s, 2s, 2p . . . correspond to orbital num-
bers 1, 2, 3 . . . ) Next follow the NZION=26 nuclear charge and the (optional)
maximum scattering energy (MAXE=500 Rydbergs) which is used to ensure
a satisfactory radial mesh for continuum orbital tabulation. The namelist

&SRADCON can be used to specify non-default final scattered energies as well
as additional interpolation energies. This operation is described in detail
in the distribution write-up. The defaults are quite ‘coarse’ and intended
for Maxwell-averaged effective collision strength final deliverables. The user
should satisfy themselves that the ordinary collision strengths are of adequate
accuracy.

This input gives the following results for the type-5 adf04 output file:

FE+22 26 23 0.0000(0Y)

1 2s2 (1)0( 0.0) 0.0000

2 2s1 2p1 (3)1( 0.0) 346591.8865

3 2s1 2p1 (3)1( 1.0) 377594.2160

4 2s1 2p1 (3)1( 2.0) 465094.6993

5 2s1 2p1 (1)1( 1.0) 753288.0279

6 2p2 (3)1( 0.0) 949317.4436

7 2p2 (3)1( 1.0) 1015719.5816

8 2p2 (3)1( 2.0) 1063669.8032

9 2p2 (1)2( 2.0) 1195220.0707

10 2p2 (1)0( 0.0) 1412609.9561

-1

23.00 5 0.00+00 4.65+01 1.40+02 4.19+02
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2 1 1.00-30 1.43-03 9.03-04 3.94-04 6.29-05 0.00+00

3 1 4.70+07 1.06-02 1.14-02 1.16-02 1.38-02-1.72-03

3 2 5.24+02 1.58-02 8.96-03 3.82-03 7.53-04 0.00+00

4 1 1.00-30 6.86-03 4.33-03 1.90-03 3.07-04 0.00+00

4 2 6.06-01 1.06-02 8.98-03 8.26-03 8.33-03 8.14-03

5 1 2.02+10 2.95-01 3.80-01 4.56-01 6.11-01-9.33-02

5 2 2.74+04 3.81-03 2.25-03 1.04-03 2.45-04 0.00+00

6 1 1.00-30 1.24-04 9.45-05 6.99-05 5.10-05 4.44-05

6 2 1.00-30 9.66-04 6.17-04 2.81-04 4.93-05 0.00+00

7 1 1.04+04 1.97-04 1.16-04 5.50-05 1.37-05 0.00+00

7 2 6.50+09 1.40-01 1.81-01 2.16-01 2.90-01-4.28-02

8 1 1.72+03 4.65-04 4.19-04 4.00-04 4.06-04 3.96-04

8 2 1.00-30 2.51-03 1.59-03 7.13-04 1.21-04 0.00+00

9 1 7.67+03 6.52-04 7.45-04 8.57-04 9.79-04 9.87-04

9 2 1.00-30 5.76-04 3.66-04 1.64-04 2.79-05 0.00+00

10 1 1.00-30 4.08-04 3.91-04 3.64-04 3.32-04 3.18-04

10 2 1.00-30 9.19-05 6.15-05 3.23-05 7.25-06 0.00+00

-1

-1 -1

...

plus comment lines. The file contains energy level information, transition
radiative rates and collision strengths as a function of final scattered energy
(and infinite energy collision strength information.) This is fully-detailed
in the distribution write-up. It can be converted to a Maxwell-averaged
effective collision strength (type-3)adf04 file using the (ADAS809) program5

adf04 om2ups.f . The user may prefer to convolute and format according to
their own requirements instead.

11. Summary

We have described the Breit–Pauli distorted wave method for the electron-
impact excitation of atomic ions that we have implemented within the au-

tostructure code. This has been done with a view to describe problems
that are impractical or impossible for more sophisticated methods. Heavy
species for magnetic fusion and highly excited states for astrophysics are such
examples.

5Available from http://amdpp.phys.strath.ac.uk/autos/ver/misc .
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