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1 Background

We discuss diagonalization of large Hamiltonian (i.e. real symmetric) matrices within autostruc-
ture (AS), where we require all of the e-vectors as well as all the e-values, not just those associated
with a ‘few’ low-lying states. Such a situation arises with its application to large photoabsorption cal-
culations for Solar opacity (Delahaye et al 2021). Currently, AS has no explicit capability for parallel
diagonalization (e.g. via scaLAPACK). The parallel version of autostructure (PAS) is parallel in
the angular momentum of a collision process, only.

Serial diagonalization should still make use of the BLAS/LAPACK library, it being an N3 problem.

The key routines are DSYEVD and DSYEVR.

However, unless there is really no alternative. . . , you do not want to compile the libraries yourself.
Proprietary optimized libraries are much faster, typically by a factor 3 or 4. And, they are also (likely)
parallelized using OpenMP, which can bring another factor of 3 or 4 speed-up.

I have investigated the use of the optimized libraries of Intel, Oracle and Nvidia/PGI.
(For gfortran, the Intel Math Kernel Library (MKL) is readily usable and recommended. All comments
pertaining to the Intel MKL also apply to its use by gfortran.)

This covers all free broad-based Fortran compilers (IBM only works on its hardware and LLVM flang
is still immature.)

The NAG compiler suite is not free for personal use, but in any case recommends use of the Intel
MKL again for BLAS/LAPACK. Thus, we do not consider it further.

2 Details

2.1 OMP NUM THREADS

It is important to know if ‘multi-threading’ is switched-on by default, or not, for any given li-
brary. Note, the literature refers to threads but in reality the usual BIOS setting is one thread
per core. So we are really talking about cores, but the relevant OpenMP parallelization parameter is
OMP NUM THREADS.

If the OMP NUM THREADS environment variable is *not* set then Oracle defaults the number of
threads to 1, but Intel & Nvidia/PGI default to the number of threads=cores available, 20 in my case,
which may not be advisable.
I have used (csh)
setenv OMP NUM THREADS 12
which pretty much saturates the problem being considered, and compiled my test program, test dsyev.f,
with -O3.

Note, multi-threading can also be switched-on via compiler directives. Needless to say, such directives
are compiler dependent. Specifying OMP NUM THREADS is compiler independent.

Multi-threading also affects the time usage reported. The Fortran intrinsic subroutine cpu time reports
the processor time (in seconds) with repeated calls defining time intervals.
Intel actually reports a sum of processor times over the threads. Effectively, an interval is the sum of
all intervals. The usual time is roughly the cpu time divided by the number of threads.

The OpenMP library function omp get wtime reports the wallclock time, which is a more meaningful
quantity for a general code like AS. Its use has been implemented in AS v29.18 via a new utility time
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module. It is used by default in the LAPACK version.
Both Oracle & Nvidia/PGI report identical times from cpu time and omp get wtime. As such, no
change to the default use of cpu time by utility time is needed.

Finally, OpenMP directives (in proprietary optimized libraries) should automatically be disabled when
an MPI parallel environment is detected. But it might be safer to explicitly set OMP NUM THREADS
to 1 when running PAS (with pasdeck lap.f95).

2.2 DSYEVD

DSYEVD uses a real vector workspace of dimension LWORK=2*N*N (+6*N+1). Thus N=32766
gives LWORK .lt. 231 while N=32767 gives LWORK .gt. 231 So, compile your source code ‘-i8’ and all
is well since these libraries are all 64-bit integer? No! They come with 32-bit interfaces. The Oracle
and Nvidia/PGI libraries cannot handle a user input integer .ge. 231. . . Only Intel works as expected,
with ‘-i8’ (changing your source code INTEGER assignment alone is not enough.)
With Oracle, I can directly access the underlying 64-bit top-level routine DSYEVD 64. This moves
the failure lower down the calling chain, where I cannot access the 64-bit routines directly.
So, we have a hard limit of N=32766 for using DSYEVD with Oracle and Nvidia/PGI optimized
libraries, unless there is a way to bypass the 32-bit interface (if that is indeed the source of the
problem.)
Compiling DSYEVD and all its dependencies from source with ‘-i8’ is easy and works ‘fine’, but it is
not recommended timewise — see the opening remark — and is the last resort, better to install the
Intel MKL and use ifort or gfortran.

WARNING: if you compile autostructure with ‘-i8’ it will break the link with the post-
processors. You will need to compile them ‘-i8’ as well since (unformatted) passing files
use the machine default precision for integers. This enables you to set the standard
integer precision to 8 (via SP in module PRECSN) for large cases without the need to
maintain two versions of the post-processors. No passing integer ever needs such (SP=8).
Instead, compile AS with -c but without -i8 and then link the resulting object file with
-i8 to the MKL (ifort -qmkl).

2.3 DSYEVR

DSYEVR only uses a real matrix workspace of dimension NxN (compared to 2*N*N of DSYEVD)
and is just as fast. All arguments of DSYEVR are explicitly 32-bit safe. Of course, Fortran stores the
matrix effectively as a vector, of length N*N. Again, N=46340 gives N*N .lt. 231 and N=46341 gives
N*N .gt. 231. AS will have already required you to compile with SP=8 by the time N .ge. 46341.
There may still be related ‘i8’ issues with DSYEVR, as there were with DSYEVD, but none have been
seen with the Intel MKL to-date.

But. . . , the numerical algorithm used by DSYEVR generates NaNs and infinities as part of its oper-
ation. It thus requires that the compiled code handles such floating point exceptions ‘gracefully’, by
which we mean it conforms to the IEEE standard default which is that floating point exceptions are
not ‘trapped’ (in the jargon) and execution continues. As one might expect, each compiler has its own
default set of traps. Nvidia/PGI and Oracle both trap NaNs and infinities. However, Intel (MKL)
conforms to the IEEE standard. As such, Intel works fine for DSYEVR but Nvidia/PGI and Oracle
need workarounds.

3 Usage & Timings

So, now is a good time to learn the flags to use for your compiler to switch-off trapping:

Intel: None needed ( -fpe3 is the default)

gfortran: None needed ( -ffpe-trap=list, where list is empty by default)

Nvidia/PGI: -Kieee
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(there is also -Ktrap=none, but the former is both necessary and sufficient for our purposes.)

Oracle: -ftrap=%none

DSYEVR calls function ILAENV which is just a wrapper to call function IEEECK (amongst others).
If ILAENV finds that NaNs/infinities cannot be handled gracefully (IEEECK=0) then it returns
ILAENV=0, and DSYEVR *silently* takes a much slower approach (than DSYEVD) since it only
has N*N workspace. Thus, AS (and test dsyev) also checks ILAENV and explicitly warns the user
and recommends use of DSYEVD instead. . . .

Both Oracle and Nvidia/PGI LAPACK libraries route DSYEVR down the slow road. This would
appear to be the end of the matter since there is likely no way to change the mind of the pre-compiled
library — we don’t know the compiler flags used or what might have been ‘hard-wired’.

However, having all the source code, I investigated how these two compilers interacted with IEEECK
and ILAENV, as well as Intel & gfortran for timing comparisons:

3.1 Intel

(Plus any usual flags e.g. -m64 -mcmodel=medium -O3 )

ifort test dsyev.f -o test dsyev.xi -qmkl

i.e. nothing special, just the link to the MKL.
Note, use -Tf asdeck.f95 when compiling, e.g. AS, since ifort does not recognize the .f95 extension.

E.g. I ran N=32,000 with DSYEVR in 22.4 mins with 12 threads (19.5 mins with 20 threads) and got
the same (test case) e-values as DSYEVD found in 19.6 mins (13.0 mins with 20 threads).

I also ran N=50,000 with DSYEVR in 81 mins with 12 threads (73 mins with 20 threads) and got the
same (test case) e-values whether I compiled with ‘-i8’, or not, the former being a tad slower (5%)

3.1.1 gfortran+MKL

(Plus any usual flags e.g. -m64 -mcmodel=medium -O3 )

gfortran test dsyev.f -o test dsyev.xg -lmkl gf lp64 -lmkl gnu thread -lmkl core -lgomp

i.e. nothing special, when linking to the MKL (which is more verbose than for the native Intel ifort.)

E.g. I ran N=32,000 with DSYEVR in 22.9 mins with 12 threads (20.8 mins with 20 threads) and got
the same (test case) e-values as DSYEVD found in 19.7 mins (13.0 mins with 20 threads).

Not surprisingly, the timings are close to those of Intel ifort — it’s all about the MKL.

3.2 Nvidia/PGI

(Plus any usual flags e.g. -m64 -mcmodel=medium -O3 )

pgf95 -Kieee test dsyev.f ilaenv.f ieeeck.f -o test dsyev.xpg -lblas -llapack

enables DSYEVR to take the fast route, and the results agree with DSYEVD.

E.g. I ran N=32,000 with DSYEVR in 24.3 mins with 12 threads (21.1 mins with 20 threads) and got
the same (test case) e-values as DSYEVD found in 20.8 mins (17.2 with 20 threads).

3.3 Oracle

(Plus any usual flags e.g. -m64 -xmodel=medium -O3 )

f95 -ftrap=%none test dsyev.f ilaenv.f dsyevr.f -o test dsyev.x -library=sunperf

does not need ieeeck.f but adding write statements to ilaenv.f shows that the library DSYEVR does
*not* call ILAENV, which is the first executable statement in the dsyevr.f source code! Including its
source enables DSYEVR to take the fast route, and the results agree with DSYEVD.
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E.g. I ran N=32,000 with DSYEVR in 44.6 mins with 12 threads (41 mins with 20 threads) and got
the same (test case) e-values as DSYEVD found in 31.1 mins (27.5 mins with 20 threads).

The ∼ 30% speed-up between using Nvidia/PGI and Oracle is also typical of non-threaded large-scale
AS calculations. Note that the timings for DSYEVD vs DSYEVR are close for Nvidia/PGI (especially
for 12 threads) but DSYEVR is somewhat slower than DSYEVD with Oracle.

4 Summary

For matrices of rank N .le. 32766 use DSYEVD, ideally from a Proprietary optimized library. This
works straight out-of-the-box and is the default for the BLAS/LAPACK enabled version of AS.

For matrices of rank N .ge. 32767 use DSYEVR, ideally from a Proprietary optimized library. Cur-
rently, only the Intel MKL works straight out-of-the-box (‘-i8’ is not necessarily required), of those
that I have tested so-far. For others (Oracle & Nvidia/PGI), error trapping may (will) need to be
disabled. And ilaenv.f & ieeeck.f (and dsyevr.f, Oracle) may (will) need to be compiled from source
still when linking to a Proprietary optimized library. This is to avoid DSYEVR taking a slow path
using DSTEBZ/DSTEIN. AS warns the user (to screen) if this is happening. If it does still, even with
the above, new workarounds are needed.

The BLAS/LAPACK version of AS v29.17 onwards now allows the user to select the diagonalization
routine to be used at runtime via e.g. DDIAG=‘DSYEVR’ in SMINIM. (Previously it required
un/commenting/out the appropriate source code.) The default is DDIAG=’DSYEVD’, i.e. unchanged.

We repeat: multi-threading with a Proprietary optimized library will be a factor 10 or
more faster than a single-thread ‘serial’ code compiled from source.

5 Outstanding Issues

Is there a way to use DSYEVD for N .ge. 32767 with Oracle & Nvidia/PGI optimized libraries?

To Do (mid term)

For large-scale problems for which only a ‘small’ subset of e-energies and possibly e-vectors are needed
for a few rates, the Davidson (1975) algorithm should be implemented.

To Do (long term)?

Currently, there is no apparent need to implement (MPI) parallel diagonalization with scaLAPACK,
which is non-trivial. If Davidson is not applicable then the calculation of the large number of rates
almost certainly dominates the problem. Note also the increased memory requirement associated with
MPI. Diagonalization is just one part of a much larger AS memory requirement.

Work Arounds (Physics)

If the diagonalization in AS cannot be achieved/is taking too long, with current resources, switch-off
mixing between configurations (KUTLS= −1 in SALGEB). Mixing within each Condon & Shortley
nl-configuration is retained still. This (KUTLS= −1) repartitions the problem in terms of config.Jp
(instead of just Jp). Thus, the Hamiltonians to be diagonalized are much smaller. Note, KUTLS
.ge. 0 is possible but this does *not* repartition. It just zeroes-out interactions between configu-
rations .gt. KUTLS, as such mixing maybe unphysical for high-n configurations. The size of the
Hamiltonian is unchanged. Combining the two partitioning schemes is non-trivial.
Alternatively, if you want to retain mixing between configurations, then the number of configurations
must be reduced.
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6 Observations on Rate Calculations

The calculation of autoionization and radiative rates (and photoionization cross sections) is another
N3 problem: viz. multiplication of the unmixed interaction matrix by the initial- and final-state
mixing matrices — the e-vectors just obtained by Hamiltonian diagonalization. For argument, we
assume that all vectors are of length N and so we consider NxN matrices.

The relevant BLAS routines are DGEMM, DGEMV and DDOT. Again, those from optimized libraries
contain OpenMP directives and they scale well (linearly) with the number of threads, provided that
the problem is large enough.

On the face of it, one simply applies the matrix multiplication routine DGEMM twice (leaving aside
the fact that the final rate is symmetric in the initial and final states. . . ) However, on an organisa-
tional level, to handle large problems AS stores this information in long vectors and not necessarily
contiguously as subsequently accessed, although ideally it should. Currently, all rate calculations (we
include photoionization in this) make use of DDOT which simply multiplies two vectors together.

If we use DDOT N times then we are mimicking a single usage of DGEMV (symmetry aside) —
matrix-vector multiplication — but the CPU time overhead/inefficiency of using DDOT repeatedly,
as opposed to DGEMV once, means that the latter is faster but even by N = 30000 it is ‘only’ a
factor of 3. Also, if it is the final matrix multiplaction then DDOT can take advantage of symmetry
and reduce the time difference by a factor of 2 by being applied only N2/2 times.

Similarly, if we use DGEMV N times then we are mimicking a single usage of DGEMM — matrix-
matrix multiplication — and again the overhead/efficiency means that the latter is faster, significantly
so now, typically by a factor of ∼ 10.

Since autoionization rates are contained within a single symmetry group (but partitioned in B-B, B-C
and C-C blocks, for multiple C), it may be possible to implement DGEMM and so obtain a significant
speed-up. However, calculation of the radiative rates likely dominates.

Radiative rates are a little more problematic — not only do they connect different symmetry groups,
it is highly advantageous to compute transitions to all lower states from a given upper state. It may
be possible to implement DGEMV for the lower mixing transformation of the (already) upper mixed
interaction vector. However, the speed-up of DGEMV usage over DDOT looks likely to be modest.
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Appendix

Weblinks to the compilers discussed:

Intel (Linux, Mac OS, Windows) Recommended (Free for personal use)
https://software.intel.com/en-us/fortran-compilers

gfortran (Linux, Mac OS, Windows) Recommended (Free)
http://gcc.gnu.org/wiki/GFortranBinaries

Nvidia/PGI (Linux, Mac OS, Windows) (Free for personal use)
https://developer.nvidia.com/nvidia-hpc-sdk-downloads

Oracle (Linux) (Free for personal and commercial use)
https://www.oracle.com/tools/developerstudio/downloads/developer-studio-jsp.html
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