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ABSTRACT
Precise spectral diagnostic modelling of H I and He II recombination spectra can constrain theoretical models that describe many
astrophysical environments. Simple analytic expressions are of interest for collisional l-changing rate coefficients that are used
by large-scale population modelling codes. We review, clarify, and improve upon the modified Pengelly & Seaton formulae
of Guzmán et al. We show that the recent poor results for it shown by Vrinceanu et al. are due to their misinterpretation of
its usage. We also detail efficient numerical algorithms which should enable the full quantum mechanical expression for such
rate coefficients to be used much more routinely by modelling codes. We illustrate with some collisional-radiative population
modelling for hydrogen.
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1 IN T RO D U C T I O N

Theoretical modelling of the observed recombination spectra of H I

and He II (and some metals) is an important tool for predicting
temperatures, densities, abundances (and more) of the local emit-
ting/absorbing environment and thereby the testing of large-scale
models of said environments. These range through gaseous nebulae
(Osterbrock & Ferland 2006), H II regions (Morabito et al. 2014;
Anderson et al. 2018), active galactic nuclei (Scotville & Murchikova
2013), the interstellar medium (Oonk et al. 2017) as well as the early
universe (Izotov, Thuan & Stasifińska 2007; Izotov, Thuan & Guseva
2014).

There has been an upsurge in interest in l-changing angular
momentum collisions in recent years as ever greater precision is being
demanded of spectral diagnostics. The capture-cascade problem is
relatively straightforward to model. But heavy-particle collisions
are efficient at changing the l-distribution of Rydberg atomic states
during the cascade process and thus the intensity of lower-lying
spectral diagnostic lines.

The seminal paper by Pengelly & Seaton (1964) used impact
parameter theory to describe l-changing collisions. They provided
simple analytic expressions for cross-sections and rate coefficients
for modelling use. All was quiet for half a century. Then, Vrinceanu &
Flannery (2001) analytically solved the time-dependent Schrödinger
equation for a colliding heavy particle, creating a weak electric field
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that lifts the Stark degeneracy in Rydberg atomic states. Comparison
with quantum mechanical (QM) rate coefficients from this method
showed that the simple expression of Pengelly & Seaton (1964) was
not sufficiently accurate in extreme cases such as low temperatures
(Guzmán et al. 2016) and/or for non-degenerate transitions (Guzmán
et al. 2017). The competing effect of n-changing collisions was
studied by Guzmán et al (2019).

Evaluation of the analytic QM rate coefficients is rather demanding
for modelling codes to carry-out routinely. Improved simple analytic
expressions were sought. Guzmán et al. (2017) introduced a modified
version of the Pengelly & Seaton (1964) approach that improved the
description of close encounters (small impact parameters). Simple
analytic expressions were resultant still which described both dense
plasmas and non-degenerate transitions separately cf. Pengelly &
Seaton (1964). This is necessary because the dipole l-changing
collision rate coefficients are logarithmically divergent unless an
environmental cut-off is applied to the contribution from distant
encounters (large impact parameters). The dense plasma (Debye)
cut-off is independent of the collider energy but cut-offs due to non-
degeneracy of a Rydberg transition or finite lifetime of the Rydberg
state depend on the collider energy alone (Pengelly & Seaton 1964;
Guzmán et al. 2017).

Vrinceanu, Onofrio & Sadeghpour (2017) and Vrinceanu et al.
(2019) introduced a semi-classical (SC) approximation that gave
an improved description at small impact parameters. The price to
pay was in obtaining an analytic expression for the rate coefficient.
Vrinceanu et al. (2019) provided one for the case of Debye cut-off. To
do so requires that the description of the collision problem does not
depend independently on the impact parameter and collider energy.
This enables a single (combined impact parameter/energy) analytic
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integration of the probability to be carried-out so as to deliver a
rate coefficient. The combined dependency is true in principle but
the introduction of an energy-dependent cut-off nullifies it. Energy-
dependent cut-offs are important for non-hydrogenic targets and low-
lying atomic p-states. The analytic modified Pengelly & Seaton rate
coefficients of Guzmán et al. (2017) are required here. It is a concern
then that Vrinceanu et al. (2019) appeared to obtain very poor results
from the modified Pengelly & Seaton rate coefficients of Guzmán
et al. (2017) for proton collisions with hydrogen.

In Section 2, we review, clarify, and improve-upon the mod-
ified Pengelly & Seaton (PSM) method introduced by Guzmán
et al. (2017). We show good accord between correctly interpreted
PSM, semi-classical, and QM results in Section 3. We summa-
rize our findings in Section 4. In Appendix A to this paper, we
detail the efficient numerical algorithms that we use to evaluate
the QM probabilities first formulated by Vrinceanu & Flannery
(2001).

2 ME T H O D O L O G Y

Impact parameter theory (Alder et al. 1956) can be used to write the
cross-section σ ji for an atomic transition i → j as

σji = 2π
∫ ∞

0
Pji(R)RdR (1)

in terms of the transition probability Pji(R) and impact parameter R.
The Bethe approximation can be used to write the probability for

dipole transitions (l → l
′ = l ± 1) as

Pji(R) = a2
0μIH

2ωlE

Dji

R2
, (2)

where E is the energy of the collider in units IH, μ is the dimensionless
reduced mass of the target–collider system, ωl = 2l + 1, and a0 is
the Bohr radius.

The dipole factor Dji for l-changing collisions (which is closely
related to the atomic line strength) is given by

Dji = Z2

z2
6n2l>(n2 − l2

>), (3)

where Z is the charge of the collider, z is the charge of the target as
seen by the Rydberg electron nl, and l> = max(l, l

′
).

Energy-degenerate dipole transitions give rise to a logarithmic
divergence in the cross-section due to the contribution from distant
encounters. The standard approach (Pengelly & Seaton 1964) is to
introduce a large impact parameter cut-off at Rc. The cut-off due to
a finite-density plasma neutralizing a Debye sphere is independent
of the energy of the colliding particle. Finite lifetimes of the excited
target-states and non-degenerate target energies for the transition
clearly lead to a (collider) energy-dependent cut-off. The QM
(Vrinceanu & Flannery 2001) and semi-classical approximations of
Vrinceanu et al. (2017, 2019) require such a cut-off as well.

Use of equation (2) also gives rise to a divergent probability as R
→ 0. Pengelly & Seaton (1964) introduced a critical small impact
parameter R1 below which the probability was bounded: Pji(R <

R1) = P1 say. This completes the definition of the final-state resolved
Pengelly & Seaton (1964) approximation. We denote it PS64.

It is well known that the PS64 approximation gives poor results and
eventually breaks down for problems dominated by the contribution
from small impact parameters such as low temperatures and/or high
densities and/or severely non-degenerate transition energies.

Guzmán et al. (2017) introduced a modification of PS64 to
overcome this limitation. It is based upon the behaviour of the QM

probability (Vrinceanu & Flannery 2001; Vrinceanu et al. 2012) at
small impact parameters. They chose

Pji(R < R1) = P1
R

R1
. (4)

Combining (4) with equation (2) leads to the matching condition
which defines R1:

P1R
2
1 = a2

0μIH

2ωlE
Dji . (5)

The cross-section is then given by

σji(E) = πP1R
2
1

[
2

3
+ 2 ln

(
Rc

R1

)]
when Rc ≥ R1 (6)

and by

σji(E) = πP1R
2
1

(
Rc

R1

)3 2

3
when Rc < R1 . (7)

The cross-sections for Rc < R1 (equation 7) correspond with the
scattering energies E < Emin:

Emin = a2
0μIH

2P1ωlR2
c

Dji (8)

which is defined by setting R1 = Rc in equation (5). Cross-sections at
these energies are neglected by PS64. We denote this approximation
PSM.

The corresponding rate coefficient qji at an electron temperature
Te is obtained by convoluting the cross-section with a Maxwellian
distribution over all collider energies. It takes on two forms.

(1) If the cut-off Rc is independent of the collider energy (e.g.
Debye) then

qji = a3
0

τ0

(
πμIH

kBTe

) 1
2

×Dji

ωl

[√
π

2
U

− 3
2

m erf(U
1
2

m ) − e−Um/Um + E1(Um)

]
, (9)

where erf() denotes the error function, E1() the first exponential
integral, Um = Emin/kBTe, kB the Boltzmann constant, and τ 0 the
Bohr time.

Guzmán et al. (2017) did not give this complete Debye form of the
PSM rate coefficient since they were studying helium and so required
the use of an energy-dependent cut-off.

(2) The energy-dependent lifetime/splitting cut-off Rc(E) ∝ √
E

will always be larger than the Debye one at sufficiently large collider
energies. Guzmán et al. (2017) discuss how to split the convolution
into two energy ranges [0, Ec] and [Ec, ∞) where the energy Ec is
defined by Rc(E) = Rc(Debye). Thus,

R2
c (Ec) = Ect

2

IHμ
= kBTe

8πa0IHNe
= R2

c (Debye), (10)

and so

Ec = μkBTe

8πa0t2Ne
. (11)

Here, Ne is the electron density (which defines the Debye sphere) and
t is written in terms of the lifetime of the upper state (τ nl) or in terms
of the energy splitting (�Eji) for the transition, namely t = 0.72τ nl

or t = 1.12�/�E (see Pengelly & Seaton 1964; Guzmán et al. 2017).
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Figure 1. Ratio of PSM Debye-to-lifetime cut-off H–p rate coefficients qnp

at Te = 101, 102, 103, 104 K and Ne = 100 cm−3.

The rate coefficient in this case is

qji = a3
0

τ0

(
πμIH

kBTe

) 1
2 Dji

ωl

[
4
{

1 − e−Um

(
1 + Um + 1

2 U
2
m

)}

× U
−3
m + 2E1(Um) − E1(Uc)

]
, (12)

where U
2
m = UmUc and Uc = Ec/kBTe. E1(Uc → ∞) → 0 applies the

energy-dependent cut-off at all energies. Note that this formula (12)
assumes that Uc ≥ Um. A more tedious expression results otherwise.
We have yet to encounter its need.

Fig. 1 shows the importance of applying a lifetime cut-off rather
than a Debye cut-off for low-lying np states in H–p collisions.

Neither equation (12) nor equation (9) correspond quite with those
discussed by Guzmán et al. (2017). The reason for this is that Guzmán
et al. (2017) switched to using

Pji(R) = P1
R

Rc
(13)

for R ≤ Rc ≤ R1. This leads to

σji(E → 0) ∼ E0 or E1 (14)

for Rc(Debye) or Rc(E), respectively.
Use of equation (4) still for R ≤ Rc ≤ R1 leads to [see equa-

tions (5) and (7)]

σji(E → 0) ∼ E1/2 or E2 (15)

for Rc(Debye) or Rc(E), respectively.
Study of the QM cross-sections at low energies does not yield

an obvious verdict as to which to use. The asymptotic form does
not appear to be reached until such low energies as to be irrelevant
for temperatures >1 K. The behaviour of the cross-section at higher
non-asymptotic energies likely dominates the practical application.
There is some evidence from He–p collisions that the use of
equation (4) is preferable still. In Table 1, we re-visit the He–p
problem, whose results were shown in table 1 of Guzmán et al.
(2017). The PSM results shown by Guzmán et al. (2017) broke
down in the extreme case of a highly non-degenerate transition at
low temperature. (We denote them PSM17.) The present results
(which we denote PSM20) are of comparable accuracy to those we
have obtained using the semi-classical approximation of Vrinceanu
et al. (2017) and which were not available to Guzmán et al.
(2017).

We return now to P1 which bounds the probability for close
encounters. We define generally

P1 = 1

2
Bji, (16)

where the branching ratio Bji is given

Bji = Dji

ωlDnl

(17)

and Dnl is the unresolved dipole quantity used by PS64

Dnl =
∑

l′=l±1

1

ωl

Dji = Z2

z2
6n2(n2 − l2 − l − 1) . (18)

Guzmán et al. (2017) compared their PSM probabilities with the
results that they obtained from the QM approach of Vrinceanu &
Flannery (2001) and detailed by Vrinceanu et al. (2012). Guzmán
et al. (2017) chose

P1 = 1

4
. (19)

This is in contrast to Summers (1977) and Hummer & Storey
(1987) who retained equation (16) to define their constant bound.
The improvement on using equation (19) is marginal. We note that
summing-over both final states leads in both cases to

P1 = 1

2
, (20)

which is in agreement with Pengelly & Seaton (1964).
Comparison of the total collisional rate (Neqnl) out of a state (nl)

with the total radiative rate out (Anl) is of interest in population
modelling: Neqnlτ nl = 1 defines the critical density above which nl
→ nl

′
collisions are faster than radiative ones (τ nl = 1/Anl).

We have formulated l-changing collisions in a final-state resolved
picture. One can simply sum over the final-state resolved rate
coefficients

qnl =
∑

l′=l±1

qnl→nl′ (21)

to obtain a total unresolved rate coefficient. This is the only procedure
available in the QM case.

The problem was formulated historically in an unresolved picture
– recall the original Pengelly & Seaton formula. Vrinceanu et al.
(2019) consider an unresolved picture. By unresolved picture, we
mean that the matching point (e.g. R1) in Pengelly & Seaton (±
modified) and the semiclassical approach of Vrinceanu et al. (2019)
is defined in terms of the total probability out of nl. The modified
Pengelly & Seaton Pnl → nl − 1 and Pnl → nl + 1 have different matching
points in the resolved picture since we take Bij = 1/2.

At this point, it is worth recalling that the modified Pengelly &
Seaton method was optimized for nl → nl − 1 transitions and data
for nl → nl + 1 transitions should be determined from nl ← nl + 1
via reciprocity e.g.

qnl = qnl→nl−1 + (2l + 3)

(2l + 1)
qnl+1→nl . (22)

This (application of reciprocity) is the normal procedure for eval-
uating all rates and rate coefficients when carrying-out population
modelling so as to ensure one attains the LTE limit at high
density.

The unresolved and resolved modified Pengelly & Seaton ap-
proaches should give similar results and increasingly so as the contri-
bution from small impact parameters lessens. The contribution from
small impact parameters becomes important at low temperatures
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Table 1. Comparison of He–p rate coefficients qnl→nl′ (cm3s−1) from the different theoretical PS, SC, and QM methods
for n = 30 and low- and high-l for different temperatures (TH) at a hydrogen density NH of 100 cm−3. QM-VOS12
denotes our use of the QM formula given in Vrinceanu, Onofrio & Sadeghpour (2012); PS64 is the ‘standard’ Pengelly &
Seaton (1964); PSM17 uses the original P ∝ R/Rc of Guzmán et al. (2017) when R ≤ Rc ≤ R1 while PSM20 uses the
present P ∝ R/R1 instead; SC-VOS17 denotes the semi-classical method of Vrinceanu et al. (2017) and the results from
which were not available to Guzmán et al. (2017).

NH = 100 cm−3

TH = 102 K TH = 104 K TH = 106 K

l = 4 → l
′ = 3 QM-VOS12 1.66[ −3]a 5.61[ +0] 3.51[ +0]

PS64 – 4.18[ +0] 3.65[ +0]
PSM17 2.00[ −2] 5.77[ +0] 3.57[ +0]
PSM20 1.24[ −3] 5.70[ +0] 3.57[ +0]

SC-VOS17 1.91[ −3] 6.25[ +0] 3.94[ +0]

l = 29 → l
′ = 28 QM-VOS12 3.80[ +1] 6.18[ +0] 8.55[ −1]

PS64 4.06[ +1] 6.44[ +0] 8.81[ −1]
PSM17 3.80[ +1] 6.18[ +0] 8.54[ −1]
PSM20 3.80[ +1] 6.18[ +0] 8.54[ −1]

SC-VOS17 3.84[ +1] 6.26[ +0] 8.67[ −1]

a1.66[−3] denotes 1.66 × 10−3.

and/or high densities. The original Pengelly & Seaton approach starts
to fail here. The flexibility of using different resolved matching points
may offer some improvement over the unresolved approach.

It is simple to deduce the modified Pengelly & Seaton formulae for
the unresolved picture from the ones already given for the resolved
picture:

(1) Replace Bij by unity: thus P1 = 1/2 here e.g. in equation (8).
(2) Replace Dji/ωl by Dnl.

We note that simply summing over the final states in the resolved
picture will yield (somewhat) different results to those obtained from
using the explicit unresolved formulae of the modified Pengelly &
Seaton approach. Both approaches require the evaluation of ∼n
expressions of similar complexity and so are similar in terms of
computational effort.

3 R ESULTS

All results shown in this section are calculated using the appropriate
Debye cut-off unless stated otherwise.

Fig. 2 compares total l-changing rate coefficients out of np states in
hydrogen at an electron temperature of 10 K and density 100 cm−3.
A similar comparison was shown by Vrinceanu et al. (2019). They
highlighted the poor agreement of the modified Pengelly & Seaton
results (which we denote PSM-VOS19) with all other methods. This
is due to the incorrect use by Vrinceanu et al. (2019) of P1 = 1/4
for an unresolved transition. The correct results obtained using P1 =
1/2 (which we denote PSM20-tot) are in much better accord. We
note that we have not attempted to re-optimize the PSM R1 matching
point for this problem. Vrinceanu et al. (2019) re-optimized their
matching point compared to Vrinceanu et al. (2017). Rather better
agreement is found for PSM for n-values where the rate coefficient
is largest if we sum-over the resolved rate coefficients (which we
denote PSM20-sum). Fig. 3 makes a similar comparison as Fig. 2
but now for n, l = n − 2. The results of all methods are in close
accord except for the starkly different PSM-VOS19 ones.

Vrinceanu et al. (2019) present QM rate coefficients calculated at
15 n-values in their figs 2(a) and (b). These correspond to our Figs 2
and 3. Vrinceanu et al. (2019) state that those QM rate coefficients for
np took several hours of CPU time while those for n, l = n − 2 took
2 d. We calculated our corresponding QM results at 800 n-values in
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Figure 2. Total H–p rate coefficients qnl for n, l = 1 at Te = 10 K and Ne =
100 cm−3. PS64 denotes the ‘standard’ Pengelly & Seaton (1964) method;
SC-VOS19 denotes the semiclassical method of Vrinceanu et al. (2019);
PSM-VOS19 denotes the modified Pengelly & Seaton method (P1 = 1/4)
of Vrinceanu et al. (2019); PSM20 denotes the present modified Pengelly &
Seaton method (P1 = 1/2); ‘tot’ denotes unresolved; ‘sum’ denotes resolved-
sum (see text); QM-VOS12 denotes our use of the QM expressions given by
Vrinceanu et al. (2012).

less than 10s and 30s, respectively. We detail in the Appendix the
fast and efficient numerical algorithms that we have implemented,
and which only require standard 64-bit floating point arithmetic.
The algorithms used by Vrinceanu et al. (2019) required 400 digits
of precision. The five orders of magnitude speed-up that we obtain
with our algorithms means that their efficient implementation within
modelling codes should make calculations, using the QM method
much more routine.

Fig. 4 shows the percentage difference between our PSM20-tot
results and the QM results (which we denote QM-VOS12) that
we have computed using the expressions given by Vrinceanu et al.
(2012). The comparison is again made for np states in hydrogen at
an electron temperature of 10 K and density 100 cm−3. We see that
PSM20-tot is accurate to 1 per cent or better over a wide range of the
Debye temperature–density parameter space. This is in contrast to the
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100 cm−3. PS64 denotes the ‘standard’ Pengelly & Seaton (1964) method;
SC-VOS19 denotes the semiclassical method of Vrinceanu et al. (2019);
PSM-VOS19 denotes the modified Pengelly & Seaton method (P1 = 1/4)
of Vrinceanu et al. (2019); PSM20 denotes the present modified Pengelly &
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sum (see the text); QM-VOS12 denotes our use of the QM expressions given
by Vrinceanu et al. (2012).
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denotes the present unresolved modified Pengelly & Seaton method; QM-
VOS12 denotes our use of the QM expressions given by Vrinceanu et al.
(2012).

few per cent difference illustrated by Vrinceanu et al. (2019) for the
original Pengelly & Seaton results (PS64). Vrinceanu et al. (2019)
showed that their semiclassical results were also accurate to better
than 1 per cent over a similar range of parameter space – typically a
factor of 2 more accurate for a given temperature–density. All simple
methods breakdown rapidly at a critical and similar temperature–
density diagonal (T 2

e /(Nen
4)) as seen in Fig. 4. The PSM results are

well behaved for all T 2
e /(Nen

4). They dip down and underestimate
by up to 40 per cent but ultimately end-up as a large overestimate
compared to the QM rate coefficients. But the QM rate coefficients
themselves are very large by then. Both sets of rates have already
established a statistical l-population. Their magnitude is no longer
relevant. Guzmán et al. (2016, 2017, 2019) provide illustrative figures
for the H I and He I recombination spectra. All methods agree at low
and high densities (excluding the original PS64).
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Figure 5. Hydrogen population modelling at Te = 100 K & Ne = 0.1 cm−3

and Te = 10 K & Ne = 100 cm−3. Upper: Departure coefficients bn. The results
for the present unresolved modified Pengelly & Seaton method (PSM20-
tot), the original Pengelly & Seaton (1964) method (PS64) and our use of
the QM expressions given by Vrinceanu et al. (2012) (QM-VOS12) are
indistinguishable. Lower: Fractional differences between PS64 and QM-
VOS12 departure coefficients (bPS64

n /b
QM
n − 1). The differences between

PSM20-tot and QM-VOS12 are not distinguishable from zero in this figure.

We note that the results and timings for Fig. 2 correspond to single
vertical line in Fig. 4. We have created and examined contour plots
similar to those of Fig. 4 but for l = n/2 and l = n − 2. They all show
a similar pattern. The results shown in Fig. 4 are thus representative
of the l-space as well.

We have carried-out population modelling with the spectral
simulation code CLOUDY (Ferland et al. 2017). We used revision
r13930M on the PSM20 development branch of CLOUDY in which
we have implemented the new equations given in Section 2. We
again used the hydrogen-only-cloud model described by Guzmán
et al. (2016). Fig. 5 (upper) shows the thermal departure coefficients
(bn) at Te = 100 K & Ne = 0.1 cm−3 and Te = 10 K & Ne = 100 cm−3.
The bn calculated using the PSM20-tot, PS64, and QM-VOS12
methods are indistinguishable in this figure. Fig. 5 (lower) shows
the corresponding fractional differences between PS64 and QM-
VOS12 (bPS64

n /bQM
n − 1). The largest difference is ∼ 0.5 per cent and

∼ 1.2 per cent, respectively, for the two (Te, Ne) cases. Vrinceanu
et al. (2019) carried out a similar comparison of their semiclassical
results with the results of the original Pengelly & Seaton (1964)
formula (PS64). The maximal differences were ∼ 0.8 per cent and
∼ 3.2 per cent for the same two cases. It should be noted that the two
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hydrogen models differ in their large-scale description [see Guzmán
et al. (2016) and Vrinceanu et al. (2019) for details]. The PSM20-tot
fractional differences with QM-VOS12 are very small (∼10−6), as
are those for the original PSM17 approximation of Guzmán et al.
(2017).

4 C O N C L U S I O N S

We have reviewed, clarified and improved-upon the modified Pen-
gelly & Seaton PSM method introduced by Guzmán et al. (2017)
that describes atomic l-changing collisions:

(i) We have shown that an alternative treatment of small impact
parameters leads to much improved results from PSM in extreme
cases such as highly non-degenerate transitions in He. We have
provided complete expressions for rate coefficients for both an
energy independent (Debye) cut-off at large impact parameters (see
equation 9) as well as for (collider) energy-dependent cut-offs due
to non-degenerate transitions and/or finite atomic lifetimes (see
equation 12). The latter is not available for the semiclassical approach
of Vrinceanu et al. (2017, 2019).

(ii) We have pointed-out the mis-interpretation made by
Vrinceanu et al. (2019) when they adapted the final-state resolved
PSM approach of Guzmán et al. (2017) to the unresolved case.
Correct interpretation leads to good accord between PSM results
and those we have obtained using their semi-classical (Vrinceanu
et al. 2019) and QM (Vrinceanu & Flannery 2001) methods.

(iii) We have described the numerical algorithms that we use to
evaluate the QM probabilities (see Appendix A). They are many
orders of magnitude faster than those described by Vrinceanu et al.
(2019) and they only require the use of standard 64-bit floating point
arithmetic. Their efficient implementation within modelling codes
should make such calculations much more routine.
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Results shown in the figures will be shared on reasonable request to
the corresponding author.

The Fortran codes that implement the algorithms described in
Appendix A are available from the UK APAP Network website: apap-
network.org. This includes a library of Wigner 3n-j programs (at
apap-network.org/3n-j) and a test-driver/wrapper-plus-subprogram
to calculate the QM and PSM20 Maxwellian rate coefficients (at
apap-network.org/lchng). The programs are interactive and should
be self-explanatory.
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A P P E N D I X A : N U M E R I C A L A L G O R I T H M S F O R
THE Q M A PPROACH

The QM impact parameter probability of Vrinceanu & Flannery
(2001) can be written (Vrinceanu et al. 2012)

Pji(R) = (2l′ + 1)
n−1∑

L=|l−l′ |
(2L + 1)

{
l′ l L

j j j

}2

× (L!)2(n − L − 1)!

(n + L)!
(2 sin χ )2L

[
C

(L+1)
n−L−1(cos χ )

]2
, (A1)

where j = (n − 1)/2 and C(γ )
n denotes an ultraspherical (or Gegen-

bauer) polynomial. The rotation angle χ between the orientation of
the initial- and final-states is given by

cos χ = 1 + α2 cos(π
√

1 + α2)

1 + α2
(A2)

for straight-line trajectories. The scattering parameter α is given by

α = 3Zn

2vzR
, (A3)

where v denotes the speed of the collider.
Evaluation of both the ultraspherical polynomials and the 6j-

symbols {. . . } is numerically challenging on considering principal
quantum numbers up to ∼1000 and for all allowed orbital angular
momenta due to under- & overflow and cancellation error. Vrinceanu
et al. (2019) used high precision (400 digits) to overcome this, but
note that it took 2 d of CPU time on a single processor machine to
evaluate the QM results of Fig. 3. We describe the algorithms that
we use for their evaluation and which are many orders of magnitude
faster since they require only standard 64-bit floating point arithmetic
for example.
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Quadrature: We remark in passing that we evaluate all probability
integrals using the trapezoidal rule utilizing a logarithmic α-mesh.
This simultaneously yields both cross sections and rate coefficients.

A1 Ultraspherical polynomials

We describe a fast, accurate and stable algorithm for the evaluation
of ultraspherical polynomials C(γ )

n (x) as they occur in (A1).
We exploit the fact that γ + n is fixed in the summation. Use

Abramowitz & Stegun (1972) equation (22.7.3):

(n + 1)C(γ )
n+1(x) = 2(n + γ )xC(γ )

n (x) − (n + 2γ − 1)C(γ )
n−1(x) (A4)

to eliminate C
(γ )
n+1 from Abramowitz & Stegun (1972) equation

(22.7.23):

(n + γ )C(γ−1)
n+1 (x) = (γ − 1)

[
C

(γ )
n+1(x) − C

(γ )
n−1(x)

]
(A5)

to obtain

(n + 1)C(γ−1)
n+1 (x) = 2(γ − 1)

[
xC(γ )

n (x) − C
(γ )
n−1(x)

]
. (A6)

Then use (A4) again to eliminate C
(γ )
n−1 from (A5) so as to obtain

(n + 2γ − 1)C(γ )
n−1(x) = 2γ

[
C

(γ+1)
n−1 (x) − xC

(γ+1)
n−2 (x)

]
(A7)

on relabelling n → n − 2 and γ → γ + 1.
Initialize C

(γ )
−1 (x) = 0 and C

(γ )
0 (x) = 1. Then equations (A6) and

(A7) can be used in tandem to make a single pass recurrence
synchronized with the summation in (A1) which must start at the
upper limit here. The equations (A6) and (A7) are coupled directly
here through the C

(γ )
n−1(x) terms.

The above algorithm is applicable up to principal quantum number
n ≈ 650, using 64-bit floating point arithmetic. Simply rescaling
C

(γ )
0 (x) once extends the use of 64-bit arithmetic up to n ≈ 1500

without the need to resort to higher precision. This is sufficiently
high in n so as to establish collisional LTE.

A2 Wigner 6j-symbols

Racah (1942) first gave a closed expression for the recoupling of three
angular momenta to give a resultant total – the Racah W-coefficient
– which is written in terms of factorials. These factorials can become
rather large in practical applications and so subject to cancellation
error and underflow & overflow when evaluated numerically. The
Wigner 6j-symbol is closely related to the Racah W-coefficient but
it exhibits the full symmetry of the problem (Edmonds 1957).

Consider the evaluation of the 6j-symbol{
a b c

d e f

}
. (A8)

Define

w(j ) =
{

j b c

d e f

}
(A9)

where b, c, d, e, f have been specified already. Any 6j-symbol can
be re-ordered thus. The w(j) satisfy the following linear 3-term
recurrence relation (Edmonds 1957, Schulten & Gordon 1975a):

jA(j + 1)w(j + 1) + B(j )w(j ) + (j + 1)A(j )w(j − 1) = 0

(A10)

for jmin ≤ j ≤ jmax where jmin = max{|b − c|, |e − f|}, and jmax =
min{|b + c|, |e + f|}.

The A(j) and B(j) correspond to specific 6j-symbols with an
argument 1/2. They are given by

A(j )2 = [j 2 − (b − c)2][(b + c + 1)2 − j 2]

×[j 2 − (e − f )2][(e + f + 1)2 − j 2] (A11)

and

B(j )/(2j + 1) = j (j + 1)[−j (j + 1) + b(b + 1) + c(c + 1)]

+ e(e + 1)[j (j + 1) + b(b + 1) − c(c + 1)]

+ f (f + 1)[j (j + 1) − b(b + 1) + c(c + 1)]

− 2j (j + 1)d(d + 1)] . (A12)

Note that A(jmin) = 0 = A(jmax + 1). A two-term relation then
starts-off the unnormalized recurrence. The solution is subsequently
normalized via

∑
j

(2j + 1)(2d + 1)

{
j b c

d e f

}2

= 1 . (A13)

The phase is determined through

sign

{
j b c

d e f

}
= (−1)b+c+e+f . (A14)

The above linear three-term recurrence relation (A10) can be viewed
as a finite-difference relation for a second-order differential equation
cf. the Schrödinger equation for a bound-state electron. It suffers a
similar pathology to its solution.

We note that the range jmin ≤ j ≤ jmax can be further subdivided
as

jmin ≤ j ≤ jI ≤ j ≤ jII ≤ j ≤ jmax, (A15)

where jI ≤ j ≤ jII defines the classically allowed region of w(j)
and where the solution is oscillatory as a function of j. This region
corresponds to the resultant j following the coupling of three angular
momenta. These boundaries jI and jII (corresponding to the turning
points w

′′
(j) = 0) can be determined from the root of a Cayley

determinant (Schulten & Gordon 1975b).
The required solution for w(j) is exponentially decreasing in the

classically forbidden regions jmin ≤ j ≤ jI and jII ≤ j ≤ jmax as j
→ jmin and j → jmax, respectively. The recursion must then start at
both ends and match somewhere in the classically allowed region so
as to avoid picking-up the complementary exponentially increasing
solution. Note that the use of a linear three-term recurrence relation
in the classically forbidden region leads to the need for constant
rescaling so as to avoid both numerical underflow and overflow.

The algorithm detailed above has been implemented by Schulten &
Gordon (1976) as the CPC program ACWQ.

The use of a non-linear two-term recurrence relation in the
classically forbidden region avoids the need for continual rescaling
(Luscombe & Luban 1998). Define

r(j ) ≡ w(j )

w(j − 1)
. (A16)

Then the original recurrence relation (A10) can be written as

r(j ) = −(j + 1)A(j )

B(j ) + jA(j + 1)r(j + 1)
for j ≤ jmax − 1 . (A17)

This defines a backwards recurrence with starting value

r(jmax) = −(jmax + 1)A(jmax)/B(jmax), (A18)
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since A(jmax + 1) = 0. Then w(j) for jII + 1 ≤ j ≤ jmax is given by

w(jII + k) = w(jII)
k∏

p=1

r(jII + p) (A19)

for 1 ≤ k ≤ jmax − jII. The value of w(jII) at this point is both undefined
and arbitrary.

This approach avoids underflow and overflow issues since r(j)
is bounded above by order unity. One can extend the evaluation
somewhat into the classically allowed region but must stop short of
w(j) changing sign so as to ensure that w(j) �= 0.

Now define

s(j ) ≡ w(j )

w(j + 1)
. (A20)

Then the original recurrence relation (A10) can be written as

s(j ) = −jA(j + 1)

B(j ) + (j + 1)A(j )s(j − 1)
for j ≥ jmin + 1 . (A21)

This defines a forwards recurrence with starting value

s(jmin) = −jminA(jmin + 1)/B(jmin) (A22)

since A(jmin) = 0. Then w(j) for jmin ≤ j ≤ jI − 1 is given by

w(jI − k) = w(jI)
k∏

p=1

s(jI − p) (A23)

for 1 ≤ k ≤ jI − jmin. The value of w(jI) is again both undefined and
arbitrary.

We now need to determine w(j) in the classically-allowed region
and match with the arbitrary/undefined w(jI) and w(jII). Define

wI(j ) ≡ w(j )

w(jI)
and wII(j ) ≡ w(j )

w(jII)
. (A24)

These quantities wI(j) and wII(j) satisfy the original three-term
recurrence relation. It is well behaved in the classically allowed
region.

Use the initial values wI(jI − 1) = s(jI − 1) and wI(jI) = 1 so as
to carry-out a forwards recurrence for wI(j) starting at j = jI and on

out to j = jm ≤ jII. Use the initial values wII(jII + 1) = r(jII + 1)
and wII(jII) = 1 so as to carry-out a backwards recurrence for wII(j)
starting at j = jII and on in to j = jm ≥ jI. Then we have that

wII(jm)

wI(jm)
= w(jm)

w(jII)
× w(jI)

w(jm)
= w(jI)

w(jII)
. (A25)

We see that our two unknowns w(jI) and w(jII) are reduced to a single
unknown (ratio).

We have wII(j) over jm ≤ j ≤ jII. We obtain the remaining values
for jI ≤ j ≤ jm from

wII(j ) = wI(j ) × w(jI)

w(jII)
. (A26)

We now have w(j) over jI ≤ j ≤ jII:

w(j ) = wII(j )w(jII) (A27)

in terms of the unknown factor w(jII). This factor can be determined
through use of the normalization condition (A13). Then w(jI) can
be determined from (A25). We already have w(j) in the classically
forbidden region where it is written in terms of w(jI) and w(jII) – see
(A19) and (A23). This completes the determination of the w(j).

The algorithm described above for the determination of 6j-symbols
is accurate for pathological cases such as{

170/2 168/2 172/2
179/2 179/2 179/2

}
= 3.3988213869 × 10−8 (A28)

for which cancellation is an issue unless high precision is used. There
are no issues with regards to over/underflow. These again require
high precision or constant re-scaling when using other algorithms.
We note that a 6j-symbol with a value of �10−16 is indistinguishable
from being identically zero in the classically allowed region when
using 64-bit floating point arithmetic. We set such to zero.

We remark that this approach for 6j-symbols can be adapted easily
for the calculation of 3j-symbols as well (cf. Schulten & Gordon
1975a).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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