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a b s t r a c t

stgf is a community code employed for outer-region R-matrix calculations, describing electron-impact
collisional processes. It is widely recognised that the original version of stgf was written by M.J. Seaton
in 1983, but through constant refinement over the next decades by worldwide contributors has evolved
into its current form that more reflects modern coding practice and current computer architectures.
Despite its current wide acceptance, it was never formally published.

Therefore, we present an updated high-performance parallel version of pstgf, that balances the
requirements of small university clusters, yet can exploit the computational power of cutting edge
supercomputers. There are many improvements over the original stgf, but most noticeably, the full
introduction of MQDT options that provide subsequent integration with ICFT (Intermediate Coupling
Frame Transformation) codes, and for either Breit–Pauli/DARC (Dirac Atomic R-matrix Codes), better
load balancing, high levels of vectorisation and simplified output. Semantically, the program is full
Fortran 90 in conjunction with MPI (Message Passing Interface) though has CUDA Fortran options for
the most numerically intensive code sections.
Program summary
Program Title: RMATRX-PSTGF
CPC Library link to program files: http://dx.doi.org/10.17632/3j55fmr86g.1
Licensing provisions: GNU Lesser General Public License v2.1
Programming language: Fortran 90
Nature of problem: The R-matrix outer region code, pstgf directly calculates various electron-impact
driven processes such as excitation and ionisation, or provides K -matrices for input for subsequent
ICFT, differential or magnetic sub-level codes. As the problem size increases, there is an associated
increase in the input/output, the numerical computation and unbalanced workload, especially for
electron-impact energies where the number of open-channels is of a similar size to the number of
closed. The code has been significantly modified to address these issues.
pstgf interfaces the R-matrix inner region with the outer region, with the R-matrix acting as
intermediary between the two regions. The outer region expresses an electron moving in the multi-
pole expansion of the target and predominantly employs Coulomb functions, perturbed or otherwise
to achieve this. This is a computationally expensive task, as the R-matrix must be formed for every
energy point of every partial wave.
Solution method: An approach that permutes both the partial wave and energy of the incident electron
has been implemented. In this version, each processor does not calculate the same incident energy
point for each partial wave, but rather distributes all energy points across all processors. This achieves
better load-balancing of the work between cores and avoids the case where an overloaded single
processor has to always calculate in the energy range where there are approximately the same number
of half-open or half-closed channels, which is numerically intensive.

✩ The review of this paper was arranged by Prof. Stephan Fritzsche.
✩✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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Additional comments including restrictions and unusual features: Dimension parameters used to define
arrays and matrices within pstgf (PARAM file) have been removed, all array dimensions are dynam-
ically allocatable based upon the H.DAT file and set to the exact dimension. A CUDA subroutine for
matrix multiplications using GPUs has been included, it can be activated or deactivated commenting
this module in the source. Users of serial version stgf or older parallel versions of pstgf can move to
current version without any modification in the input files.
[1] M.J. Seaton, Coulomb functions for attractive and repulsive potentials and for positive and
negative energies, Comp. Phys. Comm. 146 (2) (2002) 225–249. doi:https://doi.org/10.1016/S0010-
4655(02)00275-8.
[2] M.J. Seaton, Quantum defect theory, Rep. Prog. Phys. 46 (2) (1983) 167.
doi:https://doi.org/10.1088/0034-4885/46/2/002.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Time-independent R-matrix theory [1] is a powerful formalism
that may be used to calculate first order collisional processes,
order α, where usually there is one single active electron in the
system: electron-impact excitation, ionisation, photoionisation,
dielectronic recombination, radiative recombination for atoms
and their associated ion stages. In its simplest form, R-matrix
theory splits the collisional problem into two distinct regions:
an inner and an outer region. The inner region is defined by the
radial extent of the most diffuse orbital from the nucleus. This
is sufficient to encompass the charge cloud of the target, though
mathematically this R-matrix radius may be extended further,
though at a computational cost. The inner region represents tar-
get atom/ion plus incident/outgoing electron, and is treated as
N + 1 electron many body problem, with all the interactions
taken in account between indistinguishable particles, including
exchange and correlation. We calculate a complete set of eigen-
functions representing both the bound and continuum spectrum.
One of the strengths of the R-matrix approach is that as we
achieve a complete description of the system in the inner region
that is independent of the incident electron energy, therefore
only requiring one diagonalisation of N + 1 Hamiltonian, for
a range of electron-impact energies. The set of codes used for
the calculations in the inner region was published in [2–5] and
although they form a foundation for this work, they are not the
subject of present paper.

In the outer region, the formalism is quite different, the prob-
lem is treated as a single electron moving in a multipole expan-
sion of the target. In pstgf this single electron, which is moving
in the potential created by the remaining electrons, is considered
to be at a distance that correlation effects would be minimal,
and therefore are not included. Comparatively, in this region the
physics simplifies, but its range may extend to large distances due
to the long-range effect of Coulomb-like potentials. To extract col-
lision strengths, we must be at distances from the nucleus where
the wave function has returned to well-known asymptotic forms,
a distance considerably larger than the R-matrix inner-region
radius.

The key of R-matrix method is the connection of the wave
function at the boundary between the inner and outer regions,
as this interface determines the phase shifts, consequently the S
matrices, and finally the collision strengths. Greater details about
R-matrix method are given in [1].

pstgf is the most common atomic outer-region program used
to perform the calculations in the outer region for electron-
impact excitation processes. As well as directly calculating
electron-impact excitation collision strengths, it is the progenitor
code for subsequent ICFT, LS, jK and jj differential codes, as
well as magnetic sub-level work. It has the capabilities to be
interfaced with the molecular suite of R-matrix codes. In general,

pstgf can be used for any process that can be described by
the time-independent and non-damped R-matrix formalism, the
most common process included in such theory is the electron-
impact excitation and de-excitation of atoms and ions; other
important processes are electron-impact ionisation, single or
multiple, if the target structure includes such ionising states,
electron-impact excitation of molecules, or any one-electron pro-
cess described by time independent R-matrix theory.

pstgf is a community code, employed by the majority of
R-matrix groups around the world, many of whom have made
contributions and improvements over the decades. In present
work, we build upon this to provide new sustainable version, that
will address future problems that inevitably will be larger in scale.

Below, are some notable additions to the code have been
carried out over the years, that due to the original code not
being formally published may have been overlooked. These in-
clude the extension to neutral atoms [6], the ICFT (Intermediate
Frame Transformation) by Griffin and co-workers [7], and the first
systematic parallelisation of the serial code by T.W. Gorczyca [8]
and D.M. Mitnik (2002, unpublished), using the MPI protocol. This
version tried to balance the work-load by distributing the impact-
electron energy distribution across the whole energy range for
each processor, and remains effective when the number of pro-
cessors is significantly less than the number of energy points.
However, in the intervening years, the number of cores available
to researchers has increased to the point where each processor
only carries out 1–3 energy points per partial wave. This spurs
some of the work presented later in this paper.

Subsequently, this parallel pstgf version was improved in
efficiency. In this new version, pstgf was restructured in terms
of its memory usage. At every point in the calculation, memory is
assessed and if not required deallocated, before the next section
reducing the memory footprint of the code by half. Addition-
ally, the H.DAT input file was split into individual partial waves
H.DATXXX files, that ensured that thousands of processors no
longer needed to read a single file, competing against each other,
but could concurrently read 40–100 files in smaller groups of pro-
cessors. Where possible, the LAPACK routines for matrix–matrix
and matrix–vector multiplication where employed, especially if
an optimised-vendor supplied library was available. Specific rou-
tines that considered the multipole perturbation of the non-
perturbed results were heavily loop unrolled and refactored to
ensure the greatest degree of vectorisation. However, even these
improvements need further consideration if we are to progress
routinely to systems involving Hamiltonian matrices in excess
of 100 000 by 100 000 and involving over 10 000 channels. In
this paper, we describe how to address these problems, ranging
from removing the last vestiges of Fortran 77 legacy code (COM-
MON blocks, hard-dimension arrays), to introducing GPU enabled
sections for future hardware compatibility.
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2. Glossary of terms

• Target state: eigenfunction of the Hamiltonian of the target,
N-electron system. It can be labeled with quantum numbers
appropriate to the coupling scheme employed. Usually the
electronic orbitals are calculated by other specialised pack-
ages, for example autostructure [9], MCHF [10], GRASP
[11,12], or CIV3 [13]. R-matrix inner region codes use these
orbitals to calculate the target energies and eigen-
functions.

• Partial wave Jπ or LSπ : symmetry of the initial system
target state plus incoming electron, the quantum numbers
are conserved. Each Hamiltonian representing a partial wave
is calculated independently of every other partial wave.
The total cross section is then the sum of the partial cross
sections for all possible values of J/L, from zero to infinity,
all possible couplings of S (LS coupling case), and π , even
and odd.
For practical reasons, we have used for present work the
notation of the relativistic coupling Jπ , but the whole pro-
cedure is equivalent for the non-relativistic case, and is
achieved by just substituting the indexes Jπ for LSπ .

• Channel: In the inner region, it is an eigenfunction of the
Hamiltonian for the N + 1-electron system. They are or-
thogonal to each other. The channels conserve the quantum
numbers of the total angular momentum J and parity π ,
in the case we are working in level-resolved, relativistic Jπ
coupling; or orbital angular momentum L, total spin S and
parity π in the case we are working in term-resolved non
relativistic LS coupling. Hence, channels are associated to
the partial waves. Channels can be:

– Open: a channel is classified as open when the energy
of the incident electron exceeds the energy between an
initial term/level and a final term/level. In this case, a
transition may be produced, the final population of the
channel will be larger than zero. It has an oscillatory
asymptotic form.

– Closed: A channel is classified as closed when the in-
cident electron energy is less than the energy between
and initial term/level and a final term/level. In this
case, the transition is energetically impossible. It has
an exponentially decaying asymptotic form.

• Phase shift δJπ : phase shift of the wave function in the
asymptotic region with respect to the case of a pure Coulomb
potential, in the case of ion target; or constant potential,
in the case of neutral target. Transition matrices, and in
consequence cross sections, may be determined in terms of
the phase shifts.

• Transitions matrix T Jπ
if , from initial state i to final state f :

transition amplitudes. Its module square |Tif |2 is the transi-
tion probability from the initial target state i to the final one
f . The calculation of the transition matrix is particular and
independent for each partial wave. |Tif |2 =

∑
Jπ |T Jπ

if |
2

• Collision strength Ω(i − f ), from initial state i to final state
f . Dimensionless version of the cross sections, see [1] for
details. Ω(i − f ) =

∑
Jπ Ω Jπ (i − f )

• R-matrix RJπ : A matrix (nchannels × nchannels) which connects
the wave functions of the channels between the inner and
the outer region. This matrix is the key to calculate the
phase shifts, and with them the transition matrices, collision
strengths and cross sections. See [1] for theory details.

3. Overview

pstgf v1.1 beta 2019 is an upgrade of the previous work-
ing version v0.87.1 The program is implemented in Fortran 90
language, parallelised with the message passing interface (MPI)
protocol, and with optional CUDA features for further optimisa-
tions if the computer architecture allows. pstgf reads as input
the target state eigen-energies, the channels associated with each
target state for each partial wave, and the surface amplitudes
(acquired from the matrix diagonalisation) for each partial wave.
All of this information is encapsulated in the H.DATXXX file. pstgf
enforces the continuity of the radial wave function and its first
derivative between the inner and outer regions via the R matrix.
The main goal is the solution of the Schrödinger equation for one
electron under the potential created by the multipole expansion
potential of the others, as a single particle model, neglecting the
electron exchange. This may be expressed as[
−

1
2

d2

dr2
+

l (l + 1)
r2

+
2z
r

+ ϵn

]
F Jπ
n =

N∑
m=1

U Jπ
nmF

Jπ
m , (1)

with n from 1 to N , number of channels in the partial wave Jπ , r
is the radial coordinate, l is the orbital angular momentum, which
depends on the partial wave Jπ , V =

2z
r the potential in the

outer region; z = Z − Ne is the effective charge. ϵn = E − en
is the channel reduced energy, being E the impact energy of the
projectile, and en the excitation energy of the individual target
level, hence ϵn > 0 determines an open channel, while ϵn <

0 a closed one. Fn is the radial wave function, and Unm is the
long-range multipole expansion.

Once Eq. (1) has been solved, the radial wave function Fn is
calculated from the asymptotic region to the interface between
the inner and outer regions r0, then we have to match the solution
with that from the inner region to fulfill its continuity. This is
achieved by the R matrix, which performs the unitary transfor-
mation among the channels to fulfill the continuity of the radial
function and its first derivative

Fn(r0) =

N∑
m=1

Rnm

(
r0

dFm
dr

⏐⏐⏐⏐
r=r0

− bFm

)
, (2)

b is defined by the boundary conditions in the inner region, as
the value of the logarithmic derivative of the radial wave function
in the interface between inner and outer regions. This is usually
chosen to be zero.

The surface amplitudes wnk are defined as follows:

wnk =

nc∑
j=1

cnjkunj(r0) , (3)

where unj(r0) are the reduced surface amplitudes in the inner
region; and cnjk coefficients obtained from the N + 1 Hamilto-
nian diagonalisation. The summation extends to the size of the
continuum basis for each orbital nc , n extends over the number of
channels, while k the second index is over the Hamiltonian matrix
size. The R matrix itself can be defined as follows:

Rnm =
1
2r0

M∑
k=1

wnkwmk

Ek − E
, (4)

where the Ek are the R-matrix poles or eigenvalues of the N +

1 system. This expression (4) was traditionally the part of the
calculation which took the most of the time, but now it has
been highly optimised using the CUDA programming techniques

1 http://connorb.freeshell.org.

http://connorb.freeshell.org


4 L. Fernández-Menchero, A.C. Conroy, C.P. Ballance et al. / Computer Physics Communications 256 (2020) 107489

for GPU (Graphical Processing Units). For further mathematical
details we refer to [1,14,15].

Note in Eq. (1) that the reduced energy ϵn, greater or lower
than zero, will determine the character of the channel, open or
closed, so a different asymptotic behavior, see Section 2. The
relative number of open and closed channels for a value of the
impact energy will be relevant in terms of the computation,
we designate as no the number of open channels and nc the
number of closed channels. Eq. (1) varies slightly if written in a
different coupling scheme i.e., Dirac R-matrix calculations replace
l with κ . Eq. (1) has to be solved for all the values of the impact
energy E and the complete set of partial waves Jπ , usually several
thousands of times. For ions, the collision strengths versus the
impact energy present narrow Rydberg resonance structures and
as a consequence the grid of the impact energies has to be quite
fine to delineate them.

Use of pstgf assumes that the eigen-energies and eigen-
functions in the inner region have been previously calculated,
so we know all the R-matrix poles Ek and coefficients wnk for
all the partial waves. This can be done with several methods
and software packages; some examples are RMATRX [3], DARC
[4,5], or BSR [16]. All of the information about the channels
in the inner region (En and wnk) is stored in a set of generic
binary files H.DATXXX. These may be concatenated into a single
H.DAT file, used by previous versions of the code, though for
good optimisation we would advise against this. Ideally, the inner
region has diagonalised every Hamiltonian concurrently and the
Hamiltonians are already in this H.DATXXX form. pstgf requires
as input the values of the wave functions of all the channels at
the boundary of the inner region r0 for all the partial waves.
With these initial conditions, pstgf expands the wave function
in terms of Eq. (1) from r0 up to a certain asymptotic limit
r1, in which the wave function can be replaced by its analytic
form, of a Coulomb function in the case of a charged target,
or a spherical Bessel function in the case of the neutral target.
From this point onwards, the wave function F Jπ

n just follows its
analytical asymptotic solution. In the interface between the inner
and outer regions r0, we have to impose the continuity of the
wave function and its first derivative.

The main calculation is distributed in two nested iterative
loops. The outer loop runs over partial waves LSπ or Jπ , pstgf
has input options (dstgf ) to calculate all the partial waves stored
in H.DATXXX files or to restrict the calculation to a subset of them.
To obtain the final collision strengths Ω , pstgf has to sum up all
the contributing partial ones ΩJπ , obtained for each partial wave.
The inner loop concerns the impact energies E, this loop runs over
a set of NE discrete values of the scaled energy Ek. This grid should
be fine enough to delineate fine Rydberg resonance structure, and
therefore requires a minimum several thousand energy points.
The inner loop, in energy, is the one which is parallelised, the
energy array {Ek} is split among the processors nproc , so each
processor is assigned a set of nproce = NE/nproc energies to
calculate. For an optimum performance, the number of energies
should be an even divisor of nproc , if this is not the case, then
pstgf will add additional points to enforce this.

The first step in the calculation is to determine which channels
are open and which ones are closed, so their asymptotic behavior
is set as boundary condition to Eq. (1). Then, pstgf performs a
Numerov method to propagate the coupled radial wave functions
F Jπ
nm from the boundary of the inner region r0 and the asymptotic
limit r1. An overview of the operating mode of pstgf is as follows:

1. Read standard input: energy grid E, partial waves Jπ to be
processed, other calculation parameters.

2. Read information about the target H.DAT, Jπ independent.
3. Start loop in Jπ .

4. Read information about the partial wave Jπ H.DAT.
5. Start loop in E. Parallel, split all the E values in all the

processors.
6. Calculate partial ΩJπ for each energy.
7. End loop in E.
8. End loop in Jπ .
9. Add up the partial ΩJπ for all partial waves, add the top-up

up to J → ∞, and get the total Ω(E).
10. Write output to file OMEGA.

4. Computational details

As computer hardware capabilities have improved, more com-
plicated systems have been undertaken, resulting in increasing
number of symmetries and more channels being calculated by
pstgf, which revealed some implementation issues. The first
problem detected was the large time differences based upon
different incident electron energies. The key understanding in this
issue concerns the number of open and closed channels no, nc . It
was detected that when both were approximately equal no ∼ nc ,
the computation time increases dramatically in comparison to the
cases where either only a few channels were open, or all channels
were open. Therefore, in the input array of impact energies Ek,
there is a distinction between what we call ‘‘fast energies’’ and
‘‘slow energies’’. Usually all the partial waves include channel
energies up to a certain threshold Emax, common for all partial
waves. Up to now, for a fixed impact energy, all the partial
waves will have a similar number of open and closed channels.
In other words, if an energy is ‘fast’ or ‘slow’ for an individual
partial wave, most probably, it will have the same character for
all of them. However, computationally the bottleneck lies in the
energies around those with half the channels being closed and the
other half open. In previous v0.87 version, the energy array to be
calculated by each processor was independent of the partial wave,
and all the processors worked on the same energies for each and
every partial wave. When the number of processors increases
that gave rise to some of the processors which only had a small
number of slow energies, or even none, while other processors
had to work considerably harder for several slow energies for
all the partial waves. Hence, the time distribution among the
processors was very different and the fastest ones remained idle
for large parts of the calculation, while waiting for the few slow
ones. This problem is maximised when the number of processors
increases, so there are less energies per processor to proceed.
In new version v1.1, we fix this issue and improve the time
balancing by having the energy grid different for each partial
wave, so the amount of fast energies and slow energies calculated
by each processor is evenly distributed. Fig. 1 shows a diagram
of this energy distribution to the processors, in the left picture
(v0.87) each processor works only an energy array for all partial
waves, while in the right picture (v1.1) each processor works all
the energies.

In v0.87 all the processors worked the same energies for all the
partial waves, and the output was split into several OMEGAXXXX
files, XXXX being the index of the processor, from 0000 to 9999.
Each processor was assigned a unique output file, containing
unique calculated energies which via a post-processing code,
sorted and collated each file into a single universal OMEGA file of
ascending incident energy values. In v1.1 all processors calculate
all energies, but never consecutive energies for the same partial
wave. This mitigates the issue of the ‘slow’ and ‘fast’ energies,
as no individual processor is assigned the half-closed/half-open
channel energy for all partial waves, this now becomes shared
among all processors. As consequence, each OMEGAXXXX will not
contain a converged collision strength at each energy point, in
fact each OMEGAXXXX file now containing every energy only has
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Fig. 1. Diagram of energies and symmetries worked by each processor. Left: v0.87; right v1.1. Pi represents the processor, it is also represented by a particular color;
Ei represents the energy array to be processed by processor Pi in the partial wave Jπ . The oval represents the partial wave were the processor Pi starts calculating.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

meaning when summed over the respective energy points in all
files. Consequently, the OMEGA output file cannot be split, and
therefore the partial collision strengths are added up inside pstgf
using the MPI routinempi_reduce, and a single OMEGA output file
is produced.

A second lack of efficiency of previous versions to v0.87 was
the reading of the input file H.DAT. If the number of partial
waves and channels increases, the size of the H.DAT file can reach
several gigabytes. In previous versions of pstgf, this single file
had to be read by all the processors each time they started the
calculation for a new partial wave. It was usual when the program
was started, that all the processors attempted to read the same
large file at the same time, inevitably leading to some processors
blocking others, wasting computing time. Version v0.87 had al-
ready implemented the possibility to work beyond a single large
H.DAT file, by splitting the monolithic single H.DAT into several
smaller H.DATXXX files, being XXX the label of the partial wave,
from 000 to 999. Then for each partial wave, the processor must
read just the individual H.DATXXX which contains the information
about it, and not the whole H.DAT file, with several records of
irrelevant information. Nevertheless, it was still a blocking issue
when all the processors attempted to read the same file for the
same partial wave, especially at the starting of the calculation.
As mentioned above we solved this problem by changing the
order that the processors work for the partial waves. In v1.1 all
the processors carry-out all the same partial waves, but with
the difference being, not in the same order. This implementation
avoids all the processors reading from the same file at the same
time, so these reading waiting queues are minimised. We avoid
using MPI communications inside the loop in the symmetry,
because it would set barriers, and that would make inefficient the
work load balancing among the processors.

Finally, other programming semantic improvements have been
performed. All common blocks have been removed and replaced
by module, so the programming style is clearly fortran90. All
the statically dimensioned arrays and matrices have been re-
moved, previously enforced through a parameter file (PARAM).
Now, all arrays/matrices are designated allocatable and their
scope is dynamically assigned based upon the values read from
the H.DATXXX files. With this change, pstgf does not suffer from
unexpected segmentation faults, due to a badly user defined
variable in the PARAM file. In addition, the memory usage is
minimised to the essential required. The calls to auxiliary routines
from libraries lapack and blas have been strategically modified
in order to take advantage of their optimisation. Another change
carried out in the subroutines that contain the most load of work
for pstgf, is to split the memory in an strategic efficient way to
work at cache level, with faster access.

In principle, any outer-region electron-impact excitation cal-
culation that can be carried out with present version of pstgf
would also be possible with previous parallel versions, or even
the serial version stgf, considering the calculation time can be-
come huge. The new version of the code will work without doing
any changes to the input files. Nevertheless, some minimum
and optional changes can be done, and they will improve the
efficiency of new version:

Fig. 2. Half of the symmetric R-matrix is calculated by 10 matrix multiplications,
and then symmetrised for the full result. We optimise the memory usage of the
GPU, by allowing several MPI tasks to access the GPU simultaneously. In the
figure, the blue, red and green blocks are representative of a particular task of
matrix multiplication sent to the GPU, three in present case. In general, each task
calculates in a different energy and partial wave, and hence the submatrix of
a different R-matrix. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

• Remove the old parameter dimension information file
PARAM. The code no longer uses it, it is absolutely redun-
dant, as all the dimensions are now dynamically allocatable.

• The former parameter to set the maximum memory storage
dimension without opening any scratch file, mzmeg, is now
an input variable. Set its value in the namelist stgf of the
standard input if you need to use scratch files instead of
in-memory storage (default value is no scratch file to be
opened). We strongly recommend against that unless it is
really necessary, the hard disk can get exhausted if the
number of processors is large.

• If the inner-region code provides one unique H.DAT file, split
it into several files H.DATXXX, each one containing one only
partial wave. We recommend to use the utility tool hsplit.

• Keep the partial-wave list file sizeH.dat or sizeBP.dat, and
format it properly, so the order of the partial waves in this
file is the same as the order in the H.DATXXX files.

5. CUDA optimisations for pstgf

As the processor speed of individual CPUs has remained largely
stagnant for the last decade, one option to maintain greater
scalability of existing codes is to interface with the power of
GPUs (graphical processing units). CUDA Fortran combined with
Nvidia GPUs is one of the simplest ways to seamlessly harness
the power of MPI and the GPUs. GPU usage is ideally suited
to dense matrix multiplications, and the initialisation of the R-
matrix falls into this category. As illustrated in Fig. 2, the R-matrix
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can be calculated in a single matrix multiplication, but this would
exhaust the total memory of the GPU by a single processor. A
more optimal use involves separating the R-matrix formation into
ten smaller matrix multiplications, essentially pipelining them,
one after another. The collective result from these 10 matrix mul-
tiplications, can be then symmetrised to provide the full result.
This greatly reduces the consumption of memory on the GPU and
allows more MPI tasks to concurrently access it. The different
colored blocks, and the respective positioning in the resulting R-
matrix are given in Fig. 2, and corresponds to 3 different R-matrix
matrices, at 3 different energies, being carried out concurrently.
Actual matrix multiples are further optimised by padding the
larger matrices with zeros to ensure that the matrices fall on
optimal, divisible by 32 or 64 boundaries.

Traditionally, for medium to small cases the most time-
consuming aspect of the code was the formation of the R-matrix
itself (subroutine RINIT). Test cases for neutral Fe, show that for
7261 channels and a Hamiltonian size of 106 661 takes 14–18 secs
per R-matrix formation and achieves a factor of 80–100 speed-up
over existing code.

6. Code structure

6.1. Input files

6.1.1. Standard input
File dstgf, mandatory, ASCII.
Structured in namelist blocks, and optionally additional pa-

rameters.
namelist stgf General calculation parameters.

iprint Integer from −2 to 3. Default −2.
Moderates the level of standard output (routf ).
Principally used for debugging
−2 minimum essential output information.
3 maximum available output information. The

size of the output file can become very large.

ipert Integer from 0 to 4. Default 0.
To include the long-range multipole
potentials. See QDT-variable section for more
details.
0 Omit the long-range multipole potentials.
1, 2 Omit long-range multipole potentials for

closed channels when their asymptotic tail
extends outside the asymptotic limit r1.

3, 4 Include all the long-range multipole
potentials, consider the contribution from r1
to infinity.

1, 3 Perturbation for the T matrix.
2, 4 Perturbation for the K matrix.

pert Character(3). Default " ".
Activates the perturbation, variable ipert
automatically. Useful option if QDT is not
activated. This variable should not be included
in the namelist if ipert is set manually.
"YES"/"yes" Activate perturbation, set ipert= 4.
Otherwise Do not activate perturbation, set

ipert= 0.

ac Float positive. Default 1.E-5.
Accuracy/tolerance required for some numeric
subroutines.

imesh Integer, negative or from 1 to 3. Mandatory, no
default value.
Defines the energy mesh. See namelist imesh1,
imesh2, imesh3 for details.
1 For fixed linear grid of incremental

energies.
2 For fixed non-linear grid based upon

effective quantum number (not
recommended).

3 Read directly the energy mesh from
standard input. See additional variables
section.

−(2S + 1) To chose appropriate mesh for a case of
spin S (not recommended).

iopt1 Integer, 1, 2, −1, −2, 10, 11. Default 1.
Defines the partial waves SLπ or Jπ to be
calculated.
1 Calculate all the symmetries stored in

the H.DATXXX files.
2 Specify directly in the standard input

the symmetries to be calculated. See
below format in additional variables
section.

-1 /−2 As options =1, 2, but in this case treat
target levels as degenerate, specify
the degenerate levels after namelist as
additional variables, see such section
and nastd parameter.

10/11 For JAJOM, obsolete and not
implemented in parallel code.

minlt Integer. Default −1.
maxlt Integer. Default 1000.

Case iopt1= 1, not used in case iopt1= 2. Operate
only the symmetries which fulfill L, 2J ≥ minlt
and L, 2J ≤ maxlt. The default values indicate that
all the partial waves included in the H.DATXXX
files will be calculated.

irdec Integer, 0, 1, 2. Default 0.
Calculate the radiative decays between all the
target terms or levels connected by an electric
dipole transition.
0 No radiative decays are calculated.
1 No QDT calculation, Bell and Seaton radiative

decays.
2 If MQDT is activated, Hickman–Robicheaux

radiative decays.

lrglam Integer. Default -1.
Activates the high-L top-up. If top-up is
activated then the partial waves must be
calculated in ascending order by all the
processors, so the efficiency is reduced. It is
recommended to use the top-up option in a
single calculation including only the two last
partial waves.
Negative or 0 No top-up.
Positive Perform top-up from the highest

calculated partial wave up to
infinity.
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lcbe Integer. Default =lrglam.
Advanced control parameter for the dipole top-up.
Not recommended to modify its default value, only
for advanced users.

itop Integer. Default -1.
Controls the non-dipole top-up over degenerate
states. Not necessary if iopt1 is positive. Not
recommended to modify.
-1 Interpolate between degenerate and

non-degenerate limits when energy ratio
exceeds 2L.

Other Interpolate between degenerate and
non-degenerate limits when energy ratio
exceeds the J ratio.

elas Character(3). Default " ".
Controls if the elastic collision strengths should
be written to output OMEGA file.
"YES"/"yes" Write elastic transitions to OMEGA file

in any case.
"NO "/"no " Do not write elastic transitions to

OMEGA file in any case.
Otherwise Write the elastic transitions to OMEGA

file if the target is neutral, or do not if
it is an ion.

iprkm Integer from 0 to 4. Default 0.
Print K matrices in optional output file
KMAT.DAT. For ICFT method. Not recommended
to use this option, ICFT code is not prepared for
present implementation of pstgf. To work in
ICFT formalism, use previous v0.87 version.
0 Do not write K matrices.
1 Each processor writes a binary, sequential file

KMAT.DATXXXX with the physical K matrix
elements, being XXXX the processor number.

2 Write unphysical K matrix to KMATLS file. Not
implemented in parallel code.

3 For input of post-processing differential cross
sections. This option has been removed from
code and no longer available.

4 Each processor writes unphysical K matrices to
KMTLS.YYY.XXXX files, if QDT is not activated, or
S matrices to SMTLS.YYY.XXXX files, if QDT is
activated. These files are input for ICFT code.
YYY is the number of symmetry, and XXXX the
number of processor.

idip Integer 0 or 1. Default 0.
Write the target dipole electric line strengths
0 Do not write the line strengths
1 Write the dipole line strengths S to output

ASCII file STRENGTH.DAT.

nomwrt Integer. Default, see below.
Output management to file OMEGA
0 Collision strengths are not written to any file.
> 0 Collision strengths Ω for first nomwrt

transitions are written to output file OMEGA as
upper triangle row-wise.

< 0 Collision strengths Ω for first -nomwrt
transitions are written to output file OMEGA as
upper triangle column-wise.

The default value indicates that all the
transitions among the nast target levels will be
stored in the OMEGA file row-wise,
nomwrt=((nast*(nast-1))/2 if elastic transitions
are not included, or nomwrt=((nast*(nast+1))/2
if they are.

ibige Integer. Default 0.
Print the infinite energy limit collision strengths
for the electric dipole transitions in OMEGA file,
flagged as negative numbers, see [17] for details.
≤ 0 Do not write the infinite-energy limits.
> 0 Write them.

isgpt Integer. Default 0.
Write partial-wave cross sections to output file
SIGPW.DAT.
≤ 0 Do not write the partial collision strengths.
> 0 Write them.

itrmn Integer. Default 0.
itrmx Integer. Default 0.

Case isgpt= 1, not used in case iopt1= 0. Write in
output file the partial-wave cross sections from
transition itrmn to transition itrmx and also the
sum of these partial wave cross sections for each
Jπ partial wave.

print Character(4). Default "FORM".
Print style of output file OMEGA.
"FORM" Write the collision strengths to the

final output file OMEGA ASCII
formatted.

Otherwise Write the collision strengths to the
final output file OMEGAU binary in
sequential access.

mzmeg Integer. Default Huge(1)/2**23.
Mega-words of memory available to store in
memory the omem array, containing all the
open-channel collision strengths for all energies. If
the size of omem is larger than mzmeg×8 × 220

bytes, then a scratch file must be opened to store
the array in hard disk. Warning, one scratch file is
opened by each processor, if the number of
processors is large, the hard disk can be exhausted.

mzpts Integer. Default 3201.
Number of spatial grid points of the outer region,
to perform the Numerov integration.

namelist stgf MQDT variables.
To be used only if multichannel quantum-defect theory is

activated in the calculation. These options are necessary for ICFT,
otherwise it will consume a lot of computing time unnecessarily.
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iqdt Integer 0, 1, 2. Default 0.
Controls MQDT operation. If iqdt > 0, then
higher dipole perturbing potentials will be
included in terms of variable ipert
0 No QDT operation is performed.
1 Full MQDT, all channels treated as open, it

uses unphysical K/S matrices.
2 Work with unphysical K matrices rather than

S ones.

imode Integer 0, 1, −1. Default 0.
Controls read and write of unphysical matrix
when MQDT is activated.
0 Calculates the unphysical matrix and writes it

to output file JBIN.
1 Reads the unphysical matrix from file JBIN.

Solution on a newly defined energy mesh
obtained solely by interpolation of the
previous coarse mesh data read.

-1 Single pass operation. It is performed a full
solution on a coarse mesh and an
interpolative solution on a fine mesh.

ijbin Integer. Default 0.
Write JBIN file in case imode=0.
0 Do not write the file.
Other-
wise

Write the file.

lmx Integer. Default 2 (quadrupole).
If perturbations are activated, largest perturbing
multipole.

ieq Integer. Default -1.
Controls how often the unphysical K or S matrix
is updated.
< 0 K or S matrix is updated at every |ieq|’th

point of the mesh, fine for constant step in a
previously calculated coarser energy mesh
(imode=1), not so good (inefficient) for
constant step in effective quantum number.

> 0 K or S matrix is updated at ieq linearly
spaced energies across the total energy range
defined by the input energy mesh.

qetest Float. Default 1.E-7.
Energy in scaled Rydberg units E/z2. The K or S
matrix is only re-interpolated when the total energy
has changed by more than the qetest value since the
last time. It gives a small time saving when using a
very fine mesh.

fnumin Float. Default 0.0.
The effective quantum number below which the
closed channel is omitted when iqdt= 1, 2.

fnuhyb Float. Default -1.0.
The effective quantum number below which the
closed channel is a Θ function rather than S and C
ones, when iqdt= 1, 2.

namelist stgf Advanced options

We strongly recommend against the modification of these
variables, and they should only be worked by experienced
users.

iomsw Integer 1,0,-1. Default 1.
Controls the number of channels to be treated
as open in MQDT operation.
1 Full MQDT: it omits closed channels with

n < l + 0.1.
0 Partial MQDT: keep (with a = −a,

iomit(ichan)= −1 in subroutine SC when
a < 0).

-1 Hybrid: use Θ functions for ν < fnuhyb and
ν < l, otherwise operate as in case iomsw= 0.

lprtsw Integer. Default -1 for ions and 5 for neutrals.
Value of L or 2J above which negative ipert is
allowed.

iccint Integer 1,0. Default 1.
Whether to include closed-closed channels
perturbing integrals in both MQDT or
non-MQDT operations.
1 Include them.
0 Do not.

intpq Integer 0, 1. Default 0.
Used in internal calculation subroutine.
0 use internal subroutine CORINT for closed

channel MQDT S and C integrals.
1 use Θ function subroutines to generate Q

integrals.

namelist mesh1

Mandatory if imesh=1. Otherwise not present.

mxe Integer.
Number of electron-impact energies.

e0 Float.
First z-scaled energy of the grid in Rydberg E/z2.

eincr Float.
Energy increment step.

qnmax Float.
If iqdt= 0 no MQDT except Gailitis average for
n >qnmax.
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abvthr Float. Default −1.0 for ions, or 1.E-3 for
neutrals.
> 0 Drop energies from the grid within abvthr

z-scaled Rydberg above the first excitation
threshold.

≤ 0 Do not drop any energy.

belthr Float. Default −1.0 for ions, or 1.E-3 for
neutrals.
> 0 Drop energies from the grid within belthr

z-scaled Rydberg below the first excitation
threshold.

≤ 0 Do not drop any energy.
These variables are only necessary in the case of
neutral targets.

For an optimum performance mxe must be an even multiplier
of the number of processors. This condition is sometimes difficult
to fulfill if abvthr or belthr are used, so energies are dropped
from the grid. This happens commonly in the case of neutrals.

namelist mesh2
Mandatory if imesh=2 or negative, otherwise not present. This

option is not yet implemented in parallel version pstgf.

namelist mesh3
Mandatory if imesh=3, otherwise not present.

mxe Integer.
Number of electron-impact energies. To be read
afterwards as additional parameter.

Additional variables not sorted as namelist, mandatory for
determined values of the variables in namelist stgf, see above.

Case iopt1=2.
In this case, the partial waves to be calculated must be spec-

ified. It is expected several lines, each one with three integer
numbers S, L, PI.

S, L, PI Several lines of three free-format integers each.
. . . List of partial waves to be calculated. These

symmetries should be present in the files
H.DATXXX.
S 2S + 1 of the partial wave, or 0 to flag Jπ

coupling.
L L or 2J of the partial wave.
PI Parity of the partial wave: 0 for even, 1 for

odd.
A value of -1 -1 -1 or an End-Of-File marks the
end of the list.

Case iopt1=-1,-2.
In this case, the target term or level energies are treated as

degenerate, and the number of degenerate terms or levels for
each target energy must be read in. It is expected a first line
with an integer number nastd, and a second line with a set of
nastd integers nlev(1:nastd). In the case iopt1= −2 the list of
partial-wave symmetries is specified after the shortlist of the
degeneration of the energies.

nastd Integer, free format.
Number of target degenerated energies.

nlev(1:nastd) nastd integer, free format.
Number of degenerated terms or levels for
each energy.

Case imesh=3.
After the namelist mesh3, expected a total of mxe floating

point numbers.

emesh(1:mxe) mxe float, free format.
Electron-impact z-scaled energies in Rydberg,
sorted from smallest to largest. For an
optimum performance, mxe should be an
even multiplier of the number of processors.

6.1.2. H.DAT
Mandatory, binary (see Table 1).
Binary output from the inner region codes, used as input for

the outer region codes.
It can be presented in three different ways. pstgf inquires

which one is present in the following order, if several types
are present, just the first one inquired as positive is used, the
remaining ones are just ignored:

1. Several H.DATXXX files, starting by H.DAT000 (recomme-
nded). H.DAT000 contains the information about the target
and at least the first Jπ or LSπ partial wave. Each H.DATXXX
file contains information about the channels of one (recom-
mended) or several partial waves. In the case the number
of H.DATXXX files is the same as the number of lines in
the sizeH.dat file and the sorting of the XXX indexes agrees
with the sorting of partial waves in sizeH.dat (see 6.1.3) the
performance will be optimum.

2. One single H.DAT file. The single file contains the informa-
tion about the target and the channels of all the partial
waves calculated in the inner region. pstgf will still work,
but its performance will be not optimum because all the
processors will have to read the same large file for all the
symmetries.

3. One single DSTGH.DAT file. For inner region calculations
with the old version DARC code, now obsolete. The option
is kept just to allow the code work for older calculations,
but it is not recommended for new work.

Information about the target, first set of records of H.DAT000
or H.DAT files:

• 1: Number of electrons; nuclear charge; maximum L or 2J
(target); maximum calculated coupling multipole; number
of target terms or levels; R-matrix box size (a.u.); logarith-
mic derivative of the radial function in the boundary.

• 2: Target level or term energies.
• 3: Target L or 2J of each term or level.
• 4: Target 2S + 1 of each term, or 0 if Jπ coupling.
• 5: Coefficients for Buttle correction.
• Following 3×lrang2 records: alternative form of the Buttle

correction for DARC codes. For older versions of inner-region
codes, these data could be in the different file DBUT instead
of H.DAT.

Information about the N + 1-electron symmetries, following
records of H.DAT or H.DAT000 files, after the target information;
or whole files H.DATXXX files, with XXX ̸= 000.

• 1: L or 2J; 2S + 1 or 0; parity of partial wave; number
of channels; number of Hamiltonian eigenvalues in partial
wave; flag to check if present partial wave is the last one to
be read.
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Table 1
Record structure of the H.DAT000 file.
H.DAT000, Target information

1: 5 INT*4, 2 REAL*8 NELC,NZED,LRANG2,LAMAX,NAST,RA,BSTO
2: NAST REAL*8 (ENAT(I) I=1-NAST)
3: NAST INT*4 (LAT(I) I=1-NAST)
4: NAST INT*4 (ISAT(I) I=1-NAST)
5: 3LRANG2 REAL*8 ((COEFF(I,L) I=1-3), L=1-LRANG2)
L=1-LRANG2
L1: 1 INT*4 NBUTD(L)
L2: NBUTD REAL*8 EBUTD(I,L) I=1-NBUTD
L3: NBUTD REAL*8 CBUTD(I,L) I=1-NBUTD

H.DAT000, First symmetry information

1: 6 INT*4 LRGL2,NSPN2,NPTY2,NCHAN,MNP2,MORE2
2: NAST INT*4 (NCONAT(I) I=1-NAST)
3: NCHAN INT*4 (L2P(I) I=1-NCHAN)
4: LAMAX × NCHAN2 REAL*8 (((CF(I,N,M) I=1-NCHAN),N=1-NCHAN),M=1-LAMAX)
5: MNP2 REAL*8 (VALUE(I) I=1-MNP2)
6: NCHAN × MNP2 REAL*8 ((WMAT(I,K) K=1-NCHAN),I=1-MNP2)

Table 2
Formatted line structure of the sizeH.dat and sizeBP.dat files.
sizeH.dat

1-NSLPI: 8X,I5,10X,I6,8X,I6,3(4X,I3) NCHAN,NCON,MNP2,S,L,IPI

sizeBP.dat

1-NSLPI: 3I7,9X,I3,8X,I3 NCHAN,NCON,MNP2,J2,IPI

• 2: Number of channels attached to the target level I .
• 3: L or 2J of the target term or level associated to channel I .
• 4: Coefficient of the multipole potential expansion.
• 5: Eigenvalues of the Hamiltonian, R-Matrix pole energies Ek

Eq. (4).
• 6: R-Matrix amplitudes wij Eq. (4).

6.1.3. sizeH.dat
Optional, nevertheless highly recommended, ASCII (see Ta-

ble 2).
All the codes that work the inner region and provide H.DAT

files are able to provide an auxiliary formatted sizeH.dat file.
There are two kinds of sizeH.dat files readable by pstgf. It inquires
if they exist in the following order:

1. sizeH.dat for LSπ or Jπ coupling.
2. sizeBP.dat for Jπ coupling only.

If both files exist, only sizeH.dat is read by pstgf and sizeBP.dat
is ignored. sizeH.dat contains the basic information about each
partial wave: 2S + 1, L, π , number of channels, number of con-
tinuum basis × number of channels, number of eigenvalues for
the N + 1 Hamiltonian. If 2S + 1 = 0 then pstgf assumes that
partial waves are presented in Jπ coupling and J = 2L. The
number of lines in the file is interpreted by pstgf as the number
of partial waves stored in the H.DATXXX files (see 6.1.2). The best
performance is reached if there is exactly one partial wave per
H.DATXXX file and the sorting of the XXX indexes agrees with the
sorting of partial waves in sizeH.dat

sizeBP.dat file works the same way as sizeH.dat file but it has
no value of S stored, it assumes always Jπ coupling.

If no sizeH.dat or sizeBP.dat files are found or they have dif-
ferent number of lines than the number of H.DATXXX files, then
a preliminary read of the H.DATXXX files has to be carried out
in order to let the program know in which file is stored which
partial wave, and that will take some time if the files are large.
A correctly formatted sizeH.dat will help a good performance of
pstgf.

The file is ASCII formatted and has nslpi lines, number of par-
tial waves. In each partial wave is read the number of channels;

the number of continuum functions (nchan×nrang); number
of eigenvalues of the Hamiltonian (ncon plus bound functions);
2S + 1 or 0; L or 2J; parity.

6.1.4. DBUT
File to store the Buttle correction. It works only for old ver-

sions of inner-region codes, currently the Buttle correction is
integrated in H.DATXXX files.

6.2. Output files

6.2.1. Standard output
File routf from processor 0 and routfgXXXX from other proces-

sors, being XXXX the processor number, ASCII. Standard output,
execution information, warnings and errors. If the calculation
finished OK, with no errors, then the standard output files from
processors different to 0 will have no additional information, and
they can be safely removed to save space in the hard disk.

6.2.2. OMEGA
Final results, binary or ASCII depending on input variable

print.
One single file, if in the standard input the variable print is

specified as ‘‘FORM’’ then output will be formatted in an OMEGA
file, any other value and it will be unformatted with sequential
access in an OMEGAU file.

In any of the formats it contains the information shown in
Table 3:

• 1: nuclear charge and number of electrons of the target.
• 2: Number of target terms or levels, number of impact

energies and number of transitions stored, nomwrt, it can
also contain elastic transitions if variable elas is set to "YES".

• 3: Array containing the L, S or 0, 2J of each target term or
level.

• 4: Array containing the term or level excitation energies of
the target in Rydberg scaled units with respect to the ground
state energy.
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Table 3
Record or line structure of the OMEGA file.
OMEGA

1: 2 INT*4 NZED NELC
2: 3 INT*4 NAST MXE NOMWRT
3: 2×NAST INT*4 (ISAT(I) LAT(I), I=1-NAST)
4: NAST REAL*8 (ENAT(I), I=1-NAST)
J=1-MXE: |NOMWRT|+1 REAL*8 E(J), (OMEGA(J,I), I=1-NOMWRT)

• J = 1 − MXE: Impact scaled energy in Rydberg E/z2 and
array with the Ω values for the collision strengths for that
energy. The Ω(i − j) matrix is stored as the upper triangle
by rows or columns depending of the sign of the variable
nomwrt.

6.2.3. SIGPW.DATXXXX
XXXX: index of processor.
ASCII, written if isgpt= 1.
Partial wave transition amplitudes, to calculate partial cross

sections.

6.2.4. JBINLS.DATXXXX
XXXX: index of processor.
Binary, written if iprkm= 4.
Channel information to input in STGICF.

6.2.5. SMTLS.YYY.XXXX
XXXX: index of processor; YYY : index of symmetry.
Binary, written if iprkm= 4 and MQDT active.
Unphysical S matrix, to be used as input for STGICF.

6.2.6. KMTLS.YYY.XXXX
XXXX: index of processor; YYY : index of symmetry.
Binary, written if iprkm= 4 and MQDT active.
Unphysical K matrix, to be used as input for STGICF.
These two files should be used with care, as the output is

sorted by each processor in terms of its local energy grid. ICFT
code does not work with present implementation of pstgf, so
these files cannot be used unless pstgicf is updated in a consis-
tent way of current pstgf version.

6.2.7. OMEGDR
ASCII, written if ndrmet> 0. Same format of OMEGA file,

replacing the number of transitions nomwrt for initial states for
DR nast.

Dielectronic recombination cross sections. pstgf is not the
appropriate code to use to calculate DR. The radiation-damped
code pstgfdamp should be used instead.

6.3. STRENGTH.DAT

ASCII, written if idip= 1.
E1 line strengths S between all target terms or levels.

6.3.1. TERM.DAT
ASCII, written if iprkm= 4.
Information about the target terms or level: 2S + 1, L, π and

E.

6.4. Scratch files

6.4.1. SCRATCH1
File to store the omem array if its dimension is larger than

mzmeg×220. In this case a scratch file is opened and the array
omem is stored on the hard disk. One file is opened by each
processor, if the number of processors is large, caution must be
taken to ensure that hard disk is not unexpectedly filled.

The best practice is not to modify the default value of mzmeg
to ensure that no scratch files are open. There is also a reduction
the input and the output time.

7. Test cases

We have used v1.1 to calculate the electron-impact excitation
of the ion Ni3+, for 42 Jπ partial waves, with a maximum of
1818 channels per partial wave and 10 energies per processor.
We compare the computation time with the version v0.87. Fig. 3
shows the real nature of the problem, how the calculation time
is very different for each value of the impact energy. The differ-
ence between the named slow and fast energies is self-evident,
reaching in the worst cases a factor ten. Most of the calculation
time will be spent on energies around the 150 index.

Fig. 4 illustrates the workload unbalance versus processor
time. When some processors have to calculate a larger number
of slow energies, other processors do not. In the slowest cases,
the relative difference in the processing time can reach 20%, this
is unused processing time. In contrast, twisting the distribution of
energy points and forcing all processors to work all energies, the
workload balancing is greatly improved reducing the overall pro-
cessing time by approximately 15%, and the maximum processor
waiting time to less than one half. Both curves in Fig. 4 have the
same area, but curve for v1.1 is flatter and its maximum (total
calculation time) is a 15% smaller.

This difference is more evident in a more extreme calculation
case. Fig. 5 shows a calculation case for neutral Fe, with 10
partial waves and number of channels between 6943 and 7102.
In this case we perform the calculation in the most extreme case,
one processor per energy, and equal number of partial waves
than energies, so each processor works only one symmetry in
each energy. The unequal workload balance is more extreme in
this case, reaching a comparative factor of 4 in the worst case.
The effect of the redistribution of the energies and symmetries
among the processors leads to a reduction of a factor 1/2 in the
computing time.

8. Example of input

We show an example the ASCII standard input (dstgf ) for the
case of electron-impact excitation of ion Ge2+, 30-electron system
plus projectile.

For the inner region calculation, we carried out 42 relativis-
tic partial waves, with J =

1
2 to 20 1

2 , even and odd parity.
From the inner region, 42 H.DATXXX files were produced and
one sizeBP.dat of length 42 lines, transcribing the partial wave
symmetry associated with H.DATXXX file. Section 6.1.3.

We calculate in the outer region the collision strengths for the
first 40 partial waves, from the first excitation threshold of the
ion (0.56 Ry = 0.14z2) to twice the ionisation limit (5.0 Ry =

1.25z2), with a fine energy mesh of 10−5z2. It is a good practice
to start the energy grid a little below the first threshold, so
the user can double-check that all collision strengths are zero
below such threshold. This is useful not only as first check for
the validity of the calculation, but also for postprocessing tasks,
in case an interpolation or spline of the collision strengths below
the threshold is carried out. In the case of neutral targets, the drop
of the cross section below the threshold is smoother than in the
case of ions, so it is possible to have non-zero cross sections for
energies slightly below such threshold.
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Fig. 3. Total processor time spent in each energy Ni3+ . The calculation of the transition matrix S turns much slower when the number of open channels no and
closed channels nc is similar.

Fig. 4. Total time of each processor Ni3+ . The horizontal lines mark the total calculation time (maximum).

&STGF IMESH=1 IQDT=0 IPRINT=-2 IOPT1=2 LRGLAM=-1 &END
&MESH1 MXE=120000 E0=0.13000 EINCR=0.00001 &END
0 1 0
0 1 1
0 3 0
0 3 1
0 5 0
0 5 1
0 7 0
0 7 1
0 9 0
0 9 1
0 11 0
0 11 1
0 13 0
0 13 1
0 15 0
0 15 1

0 17 0
0 17 1
0 19 0
0 19 1
0 21 0
0 21 1
0 23 0
0 23 1
0 25 0
0 25 1
0 27 0
0 27 1
0 29 0
0 29 1
0 31 0
0 31 1
0 33 0
0 33 1
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Fig. 5. Total time of each processor Fe neutral. The horizontal lines mark the total calculation time (maximum).

0 35 0
0 35 1
0 37 0
0 37 1
0 39 0
0 39 1
-1 -1 -1

With this input we will perform the calculation of the first
40 partial waves specified in sizeBP.dat file and no top-up, with
the full balancing efficiency of pstgf, distributing read files in
the different processors and doing the efficient energy split in
processors and partial waves.

In order to use this efficient split, we are forced to deactivate
the top-up procedure, through setting LRGLAM to negative. As
a second step we perform the high-J top-up, in this case it is
necessary that all processors calculate the collision strengths for
the same energies at least for the two last partial waves. Hence, to
perform the top-up, we carry out a second calculation including
just these two last partial waves. In this second calculation, we do
not take advantage of the efficiency improvements of v1.1-2018,
but it is a small calculation, so the loss in user time is minimal.

&STGF IMESH=1 IQDT=0 IPRINT=-2 IOPT1=2 LRGLAM=41 &END
&MESH1 MXE=1200 E0=0.130 EINCR=0.001 &END
0 41 0
0 41 1
-1 -1 -1

This time, we set the top-up variable LRGLAM to the value of 2J
of the last partial wave calculated = 41. The cross sections for the
higher partial waves do not present resonant structure, so it is not
necessary to calculate an energy mesh as fine as in the previous
calculation. With the simple post-processing tool omadd, we can
add-up the two OMEGA files from the two calculations.

9. Future work

All these improvements in the implementation have been
applied to the undamped version of pstgf. Nevertheless, they do
not modify the physics of the problem. As a consequence all these
modifications can be integrated within the radiationally damped
version pstgfdamp [18] with a similar increase of efficiency.

Likewise, it would be necessary to modify the ICFT code pst-
gicf [7] to allow for the reading of the files containing the K and
S in a consistent way with current version of pstgf.
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