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Abstract
We compare the results of the semi-classical (SC) and quantum-mechanical (QM) formalisms for
angular-momentum changing transitions in Rydberg atom collisions given in a series of papers
by Vrinceanu et al, most recently Vrinceanu et al (2012 Astrophys. J. 747 56), with those of the
SC formalism using a modified Monte Carlo realization. We find that this revised SC formalism
agrees well with the QM results. This provides further evidence that the rates derived from the
QM treatment are appropriate to be used when modeling recombination through Rydberg
cascades, an important process in understanding the state of material in the early universe. The
rates for ℓ 1D =  derived from the QM formalism diverge when integrated to sufficiently large
impact parameter, b. Further to the empirical limits to the b integration suggested by Pengelly
and Seaton (1964 Mon. Not. R. Astron. Soc. 127 165), we suggest that the fundamental issue
causing this divergence in the theory is that it does not fully cater for the finite time taken for
such distant collisions to complete.

Keywords: Rydberg states, atomic collisions, semi-classical approximations

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been significant recent interest in the rates for
angular momentum changing collisions of low velocity ions
with Rydberg atoms. While this may seem a somewhat
obscure corner of atomic physics, the time to pass through the
ladder of high-angular momentum levels in highly excited
atoms proves to be a bottleneck in the process of atomic (re-)
combination in the early universe. The details of the ℓ-chan-
ging rates therefore have a major impact on our understanding
of this important stage in cosmic development [1].

For this Stark mixing process to be the dominant, the
impact parameter of the collision must be sufficiently large
that both the orbital quantum number within the target does
not change, and the field due to the collider ion must remain

smaller than that of the host nucleus throughout the interac-
tion [2].

The atomic physics of these rates can be calculated by a
variety of approximations, developing from classical orbit
[3–5] to quantum orbit theory [2, 6–10]. In what follows we
will refer to [2, 10] as VF01 and VOS12, respectively. In this
paper, we will concentrate on the differences between the
most detailed of these formulations, those based on treating
the response of the target orbital using quantum-mechanical
perturbation theory (QM) and a semi-classical (SC) approach
which makes use of classical trajectory theory. As discussed
elsewhere ([11, 12], and references therein), these theories
result in predictions for integrated rates which differ by up to
an order of magnitude, sufficient to have a major impact on
the interpretation of observations. This difference is primarily
the result of the different range in impact parameter over
which ℓ 1D =∣ ∣ transitions are active in the different theories:

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 115201 (9pp) https://doi.org/10.1088/1361-6455/aa6f58

5 Author to whom any correspondence should be addressed.

0953-4075/17/115201+09$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

mailto:robin.williams@awe.co.uk
http://doi.org/10.1088/0004-637X/747/1/56
http://doi.org/10.1093/mnras/127.2.165
https://doi.org/10.1088/1361-6455/aa6f58
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/aa6f58&domain=pdf&date_stamp=2017-05-11
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/aa6f58&domain=pdf&date_stamp=2017-05-11


the QM theory has a logarithmic divergence in transition rate,
which requires a limit to be placed on the largest impact
parameter for which collisions are active in causing transi-
tions, while in the SC approach as applied by VF01/VOS12,
this limit arises as a result of the finite domain in impact
parameter over which a single collision can cause a complete

ℓ 1D =∣ ∣ transition.
In this paper, we will present the results of calculations

using the SC theory of VF01, but using Monte Carlo trajec-
tory binning [6, 13]. We find that with this alternative
approach, the SC results agree well with those of the quantum
theory. So far as there are differences, these are as would be
expected when relating a quantum theory to its classical limit,
and are consistent with the correspondence principle. When
integrated over impact parameter, b, and a thermal spectrum
of colliders, it is clear that the differences in rates computed
using this modified SC approach and the original QM form-
alism will be minimal.

In section 2 we present the background theory, and in
section 3 compare the QM transition probabilities with SC
probabilities as calculated by VF01 and VOS12, and with our
revised approach. In section 4, we briefly discuss how the
discretely sampled VF01 SC approach can be made some-
what more accurate, and consistent with the discrete detailed
balance relations. Finally, in section 5, we summarize our
results, and discuss the processes which prevent the overall
dipole transition rate from diverging in a plasma of finite
density.

2. Theory

VF01 and VOS12 provide detailed formulae for the rates of
transitions ℓ ℓ ¢ for precise values of ℓ, ℓ¢. They derive their
SC formulae using approximations which correspond to the
continuum limit n ℓ ℓ, , ¢  ¥, with ℓ/n and ℓ n¢ finite, and
then apply them in the case of finite quantum numbers. They
apply what they term as a microcanonical ensemble, sampling
the fundamentally continuous classical-limit expressions at
discrete values of incoming and outgoing angular momentum
appropriate for the angular momentum quantum number.
Using this procedure provides values for the overall collision
rate which are finite for all ℓD , as noted above.

The process of returning from the continuum to the dis-
crete limit is not, however, unique. In the present paper, we
use a method similar to that discussed by [13]. To ensure
thermodynamic consistency for the derived total rates, it is
better to follow a finite-volume formalism (see, e.g., [14]),
where each of the discrete quantum numbers is taken to
correspond to a finite range of continuum values. The sim-
plest assumption which will ensure results are consistent with
the thermodynamical equilibrium is to assume that the prob-
ability density of states in the continuum band corresponding
to each of the aggregate states is internally in thermodynamic
equilibrium. As there is no energy difference between states
in the case considered by Vrinceanu et al, this corresponds to
assuming a uniform population. This procedure provides
results consistent with the thermodynamic requirements of

unitarity and detailed balance and with the quantum and
classical limits, as well as with usual practice in Monte Carlo
simulation of off-lattice systems [15]. However, it leaves us
looking to statistical physics, rather than numerical conven-
tion, to understand how to prevent the dipole transition rates
from diverging as a result of the long-range nature of the
Coulomb interaction.

For the standard quantum mechanical association of the
radial quantum number n, the total angular momentum
quantum numberℓ satisfies ℓ n0 1  - . If we assume that
each value of ℓ maps to a shell with total angular momentum
between ℓ and ℓ 1 +( ) , with a classical density of states

ℓµ (which may be visualized as a two-dimensional polar
coordinate system), then the area of this shell is ℓ2 1µ + .
This is consistent with the number of z-angular momentum
eigenstates m ℓ∣ ∣ corresponding to each total angular
momentum eigenstate. It results in a mean-squared angular
momentum in the shell of

L ℓ ℓ 1
1

2
, 12 2á ñ = + +

⎡
⎣⎢

⎤
⎦⎥( ) ( )

which is a constant 22 greater than the value which enters
in quantum mechanical calculations, L ℓ ℓ 12 2á ñ = +( ) . For
comparison, assuming that the total angular momentum
corresponding to a quantum number ℓ is exactly ℓ under-
estimates L2á ñ by ℓÿ2, which is a significantly larger error for
large ℓ. (Taking the angular momentum for the discrete state
to be ℓ 1

2
+( ) is more accurate, with the classical and

quantum density of states being equivalent, and the mean-
square angular momentum L2á ñ over-estimated by 42 .)

Transition probabilities in the finite volume regime can
be derived from the SC results of VF01/VOS12 by inter-
preting them as probability density functions in the continuum
limit, so the transition probability from the state n ℓ,( ) to
n ℓ, ¢( ) becomes
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is the SC transition probability given by VOS12. In this
expression, K is the complete elliptic integral,
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cos , 72h l= ¢ ( )

and χ is given in terms of n and other implicit parameters of
the collision by
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where the swept angleDF is assumed to be p- , and the Stark
mixing parameter α depends on the average radius and
velocity, an and vn of the target orbital, as well as the charge
Z e1 , impact parameter b and velocity v of the impinging ion.

This procedure replaces the closed-form expressions of
VF01 and VOS12 with a double integral, so is not as suitable
for numerical work. However, it seems worthwhile to com-
pare the results with those of the discrete interpretation in
order to inform possible modifications to the VF01/VOS12
formalism which might be made to ensure compatibility with
the limit of thermodynamic equilibrium.

There are a number of desirable properties for any set of
approximate transition probabilities. These include unitarity,
i.e. that the system must reside in one of the angular
momentum states at the end of the transition

P 1, 10
ℓ

nℓℓå =
¢

¢ ( )

and detailed balance, i.e.

ℓ P ℓ P2 1 2 1 , 11nℓℓ nℓ ℓ+ = ¢ +¢ ¢( ) ( ) ( )

for the quantum level degeneracy g ℓ ℓ2 1= +( ) . Note that
the sum for the unitarity requirement includes the probability
that the scattering leads to no transition, Pnℓℓ¢ with ℓ ℓ¢ = . It is
possible to determine this rate using the same analytic forms
as for the ℓ-changing interactions, and this rate is included in
the plots shown below.

The symmetry of the expressions for A and B in λ andl¢,
together with the overall factor of l¢ in equation (3), means
that equation (3) satisfies the detailed balance relations in the
continuum limit,

P n P n2 , , 2 , , , 12SC SCl l l l l l¢ = ¢ ¢( ) ( ) ( )

given the classical density of states g 2l l=( ) . As a result of
this, it is simple to verify that the phase-space average,
equation (2), satisfies the discrete detailed balance relation

ℓ P ℓ P2 1 2 1 . 13nℓℓ nℓ ℓ
SC SC+ á ñ = ¢ + á ñ¢ ¢( ) ( ) ( )

Beyond these absolute requirements, we also suggest that
the rates should be subject to another statistical requirement
for collisions at small impact parameter. For these scatterings,
the output state of the interaction is dependent on complex
interference phenomena, sensitive to many details of the
atomic physics. However, the net effect of this complexity,
when averaged over some small range of incoming particle
properties, would be expected to be asymptotically close to
the output states being in statistical equilibrium (see, for the
classical case, [16]). We therefore suggest that, in the limit of
close scatterings b 0 , the rates should be subject to an

ergodicity property

P
ℓ

n

2 1
, 14nℓℓ 2

á ñ
¢ +

¢  ( )

i.e. when the collider passes close enough to the core of the
target atom, in the Stark adiabatic region, the effect of the
collision is to randomize the output state, when the input state
is coarse-grained over a suitable domain. Of course, in reality
scatterings will cease to be purely ℓ-changing in this limit.
Even so, it is to be expected that the output state angular
momentum will become statistically independent within the
shell. This requirement seems to be the best physical inter-
pretation which can be put on the statement in [17], hereafter
PS64, that in the core the scattering probability becomes a
rapidly oscillating function with mean value 1

2
. This is what

would result from the core ergodicity principle in the case of a
two-level system, so the core ergodicity principle seems like a
reasonable generalization, agreeing with the work of PS64 at
least in spirit. As we will see, it is also a reasonable
description of what in fact happens when the quantum and
shell-averaged classical transition probabilities are calculated
in detail.

3. Results

3.1. Comparison of QM and SC theory for fixed quantum
numbers

In figures 1 and 2, we compare the quantum mechanical
probability distributions with the SC transition probabilities
sampled at specific ℓ, ℓ¢. The QM dipole transition rates,

ℓ 1D =  decay slowly as b increases, which is the origin of
the divergence of the rate integral for these transitions. The
SC transition probabilities show sharp edges where the tran-
sitions first become allowed, for all ℓD : the transition rates for
all ℓD are similar, as there is nothing in the SC formulation
which fundamentally distinguished a ℓ 1D =∣ ∣ transition from
one with a larger change in angular momentum. There are
also internal peaks for many cases, corresponding to orbital
resonances. These are used by VOS12 to limit the domain
over which ℓ 1D =∣ ∣ transitions are allowed, avoiding the
divergence in the integrated transition rate found for the QM
dipole transition rate.

It is clear that the SC transition probabilities cannot
satisfy unitarity, as where any transition ceases to be allowed,
there is no corresponding increase in the others. Indeed, at
sufficiently large radii, the probability of no transition, Pnℓℓ,
increases above unity, which is inconsistent with usual defi-
nition of probability. The quantum transition probabilities do
satisfy unitarity (note that the curves as plotted are divided by
ℓ2 1¢ + to make the ergodicity property at small b more
obvious, but this means that this summation property for the
probabilities is less obvious as shown).

In figures 3 and 4, we compare the quantum mechanical
probability distributions with the SC probability distributions
averaged over angular momentum shells. These plots are
significantly more alike than those for the comparison

3
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between the quantum mechanical probability and the dis-
cretely sampled SC transition probability. While there are no
longer any sharp edges in the shell-averaged SC probabilities,
for ℓ 1D >∣ ∣ they will be non-zero only within some range of
α values. (The integration over a quantized shell width means
that there is now a genuine distinction in qualitative behavior
between transitions with different ℓD∣ ∣.) The shell-averaged

SC probabilities also satisfy unitarity and the quantum-
weighted detailed balance constraint.

Away from the region where the discretely sampled
transition probability is zero, the binning has a relatively
minor effect, simply smoothing out the steepest peaks.

The general form of the transition probability distribu-
tions shown in these figures is of interest. Working from large

Figure 1. Plots of P ℓ2 1nℓℓ ¢ +¢ ( ) versus b for n=30 and ℓ 0= (first row), ℓ 1= (second row) and ℓ 2= (third row). The Stark parameter is
b6a = . Left column is using the QM formalism, right is using the SC formalism. The highest curve at large b has ℓ 0D = , larger ℓD curves

appear in order as b reduces. Dotted curves are for ℓ ℓ¢ < .

4
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b inwards, it is initially most likely that no change in ℓ will
result. At least in the QM case, all other values of ℓD are
possible, with probabilities reducing as ℓD∣ ∣ increases. As b
becomes smaller, the probabilities of the higher ℓD∣ ∣ transi-
tions increase, following a smooth power law dependency,
until the statisical weight of the output state reaches a similar
level to that of the ℓ 0D = transition. Thereafter, the prob-
abilities are subject to significant oscillations, around an
average level consistent with statistical balance, apart from a
strong spike at the very smallest values of b. This suggests
that the combination of the asymptotic behavior at large b, the
core ergodicity principle, and the fundamental requirements
of unitarity and detailed balance, should be sufficient to
provide thermodynamically consistent estimates of the
impact-parameter and thermal-averaged rates which would be
acceptably accurate for many applications.

3.2. The classical limit of the QM formalism

Having shown that the SC results can be made acceptably
consistent with those of the QM formalism by an appropriate
binning procedure, it is also of interest to demonstrate

consistency in the opposite direction. To do this, in figure 5,
we compare the non-averaged SC probability for one trans-
ition with a series of QM results with quantum numbers
increasing by factors of 2. As the quantum numbers increase,
while maintaining their ratios, the QM results tend to the SC
limit, with the resolution of sharp features, including the
orbital resonances seen in the classical results, gradually
improving. Oscillations remain within the classically allowed
range, and long tails in the classically forbidden range. This
combination of Gibbs phenomenon ringing and evanescent
tunneling behavior, typical of the Airy function, is char-
acteristic of the classical limit of quantum phenomena. The
QM formalism remains accurate for all values of the quantum
numbers, but the expressions for the rates become increas-
ingly difficult to evaluate numerically.

4. Use of SC probabilities

The shell-sampled probabilities presented in the previous
section are determined using a computationally expensive
double integral. It may be possible to perform one or both of

Figure 2. Plots of P ℓ2 1nℓℓ ¢ +¢ ( ) versus b for ℓ 20= (first row) and ℓ 29= (second row). The n and α parameters are as in figure 1. Left
column is using the QM formalism, right is using the SC formalism. Dotted curves are for ℓ ℓ¢ < . Note that there are no upward transitions
for ℓ 29= due to the constraint that ℓ n¢ < .
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these integrals analytically, but numerical results were suffi-
cient for the present analysis.

However, given that the use of a classical transition rate
is already a significant approximation, using a point sample
of the transition rate rather than an integral is likely to be an
acceptable approximation, at least away from the case of

ℓ 1D =  , b  ¥. As these rates are being attributed to

quantum mechanical rather than classical states, it makes
sense to ensure the rates are chosen so as to satisfy quantum
mechanical rather than classical statistics. The most con-
sistent identification of quantum mechanical states with a
continuum band has ℓ as the angular momentum at the
innermost edge of the band. Hence, if a single value based
on the classical transition probability is to be used for this

Figure 3. Plots of P ℓ2 1nℓℓ ¢ +¢ ( ) versus b for ℓ 0= (first row), ℓ 1= (second row) and ℓ 2= (third row). Left column is using the QM
formalism, right is using the SC formalism, averaged over shells. Dotted curves are for ℓ ℓ¢ < .
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quantum number, it will be accurate to a higher order if the
angular momentum used in this expression is somewhat
higher than ℓ . In particular, in order to be consistent with
the quantum mechanical detailed balance condition, the
value ℓ2 1¢ + should be used in the numerator of the pre-
factor of equation (6) of VOS12. This means that the
ℓ ℓ 0 ¢ = rates will not be strictly zero, as required by the
expressions given by VF01. Given that VF01 provide
expressions for the transition rate out of an ℓ 0= state, a
zero inward rate is in clear violation of the detailed balance
requirement.

The values used in the elliptic integral terms must be
symmetric functions of ℓ ℓ, ¢, as is true for the expressions
given. Ideally they should also be chosen to satisfy unitarity,
but in reality the correction to the overall transition rates as a
result of violating this constraint will be small compared
to the other approximations underlying this approach.

Using ℓ ncos 1
1

2
h = +( ) , etc, will be at least somewhat

more accurate than without the 1

2
, and also means

that the cases ℓ 0= , ℓ 0¢ = do not require a special
treatment.

5. Conclusions

We have shown that, by using an alternative form for the
Monte Carlo realization, the results for the SC and QM
formalisms described by VF01 and VOS12 can be brought
closely into line. As this is consistent with what is expected as
a result of the correspondence principle, it provides further
evidence that the results of the QM formalism of VF01 and
VOS12 is accurate, and should be preferred over their SC
formalism in regimes where their results differ significantly.

While finding agreement between the different forms of
theory is satisfying, this does not take into account the major
reason given by VF01 and VOS12 for preferring their SC
results, specifically the need for an outer limit to be imposed
on the integration over impact parameters to prevent the total
collision rate diverging for ℓ 1D =  when using the QM
theory. This type of divergence is common in other areas of
collision rate physics (in particular, the two-body relaxation
time, [18, 19]), so is not unexpected. PS64 give expressions
for a variety of empirical limits to the range of b over which
Stark mixing will be active, due to Debye screening, target
atom state radiative lifetimes, and the lifting of degeneracy

Figure 4. Plots of P ℓ2 1nℓℓ ¢ +¢ ( ) versus b for ℓ 20= (first row) and ℓ 29= (second row). Left column is using the QM formalism, right is
using the SC formalism, averaged over shells. Dotted curves are for ℓ ℓ¢ < .
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between the ℓ levels as a result of relativistic effects, or the
finite core radius for target atoms of species heavier than H.
The value of the outer cut-off is taken to be the most con-
straining of these processes. The logic here is similar to the
outer limit applied to the Coulomb logarithm in other con-
texts, such as two-body relaxation in plasmas. The relevant
Debye screening is that which reduces the long-range field of
the impinging ion (Debye screening of the charge of the target
atom nucleus is in effect a continuum lowering process), and
will be rapid for colliders with thermal velocities due to the
high mobility of electrons.

Nevertheless, it is also worth noting that as b increases,
so does the time over which the collision takes place: the
treatment of collisions as independent events must therefore
eventually become inaccurate. During the extended period
taken to complete the most distant encounters, there will be
time for many collisions at smaller impact parameters. While,
at first order, the effects of collisions will superpose linearly,
at sufficiently large b a limit will be reached where smaller
impact parameter collisions together are sufficient to rando-
mize the angular momentum of the target orbital during the
time over which the larger b interaction is taking place. Once
b increases above the level where this occurs, beq, the effect of
collisions at larger impact parameter will be felt, in effect, as a
superposition of Ncoll coll eqt t~ partial interactions adding in
quadrature, rather than linearly (where collt is the collision
time at the large b of interest, and eqt is the collision time at
the smallest radius leading to effective randomization). A
reduction in contribution to the transition probability by

N bcoll
1 2 1 2~ µ- - at the largest b will be sufficient to prevent

the weak logarithmic divergence in the overall rate. This is a
somewhat academic argument, as the plasma particle corre-
lations underlying Debye screening will in general result in
more stringent limits to the range of b over which collisions
are effective. Nevertheless, given that the agreement we now

find between the SC and QM gives greater confidence in SC
results for the Rydberg scattering problem, it may be possible
to investigate the corrections required for these multiple
interactions in a believable manner using explicit classical
trajectory calculations.
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