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Collision strengths for nebular [O III] optical and infrared lines
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ABSTRACT
We present electron collision strengths and their thermally averaged values for the nebular
forbidden lines of the astronomically abundant doubly ionized oxygen ion, O2+, in an interme-
diate coupling scheme using the Breit–Pauli relativistic terms as implemented in an R-matrix
atomic scattering code. We use several atomic targets for the R-matrix scattering calculations
including one with 72 atomic terms. We also compare with new results obtained using the
intermediate coupling frame transformation method. We find spectroscopically significant dif-
ferences against a recent Breit–Pauli calculation for the excitation of the [O III] λ4363 transition
but confirm the results of earlier calculations.

Key words: atomic data – atomic processes – radiation mechanisms: non-thermal – planetary
nebulae: general – infrared: general.

1 IN T RO D U C T I O N

The forbidden lines of O2+ are among the most important features
in the spectra of photoionized plasmas which include, inter alia, H II

regions and planetary nebulae. The exceptional brightness of the
strongest [O III] lines means that they can be used to determine the
oxygen abundances and physical conditions in the Milky Way, and
other galaxies out to cosmological distances that reach redshifts of
more than z = 3 (Maiolino et al. 2008).

It has been recently suggested (Nicholls, Dopita & Sutherland
2012) that the elemental abundance and electron temperature
anomalies seen in the analysis of the planetary nebula spectra, where
considerable differences have been observed between the results ob-
tained from the collisionally excited lines (CEL) and those obtained
from the optical recombination lines (ORL), might be resolved by
using non Maxwell–Boltzmann (MB) distributions for the energies
of the free electrons. The κ distribution, which is widely used in the
analysis of solar data, was proposed as a replacement for the MB
distribution to resolve this issue. If the electron distributions are
generally non-Maxwellian in nebulae, it would affect the analysis
of [O III] lines significantly and reliable collision strength data are
needed to compute the effective collision strengths for collisional
excitation and de-excitation.

The proposal that the electron energy distribution in planetary
nebulae is not Maxwellian dates back to the 1940s at least where
Hagihara (1944) proposed that the velocity distribution of free elec-
trons in gaseous assemblies, such as those found in planetary neb-
ulae, deviates significantly from the Maxwellian. Bohm & Aller
(1947) argued against Hagihara and concluded that any deviation
from the Maxwellian equilibrium distribution is very small. The
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essence of Bohm and Aller’s argument is that for typical planetary
nebulae conditions of electron temperature of about 10 000 K and
electron number density of about 104 cm−3, the thermalization pro-
cess of elastic collisions between an electron and other electrons
and ions is by far the most frequent event and typically occurs
once every second, while other processes that shift the system from
its thermodynamic equilibrium, like inelastic scattering with other
ions that leads to metastable excitation or recapture, occur at much
larger time-scales estimated to be months or even years. Bohm and
Aller also indicated the significance of any possible deviation from
a Maxwellian distribution on derived elemental abundances.

Although there have been many studies related to collision
strengths of O2+, as we will discuss in the coming paragraphs,
some of the previous data have limitations. For example, some of
these data are produced in an LS-coupling scheme while others
are based on approaches that do not adequately treat resonance
phenomena.

Before the advent of close-coupling codes there were several
calculations of collision strengths for excitation of the O III forbidden
lines that did not incorporate resonance effects (Czyzak et al. 1968;
Seaton 1975; Bhatia, Doschek & Feldman 1979).

The first close-coupled collision strengths were obtained by
Baluja, Burke & Kingston (1980) for some of the semiforbid-
den intercombination transitions of O III using the R-matrix method
(Berrington et al. 1974, 1987; Hummer et al. 1993; Berrington,
Eissner & Norrington 1995). They included all channels with con-
figurations 1s2 2s2 2p2, 1s2 2s 2p3 and 1s2 2p4 in the expansion of
the wavefunction. They also used three pseudo-orbitals (3s, 3p and
3d) and allowed for configuration interaction in the included states
with the addition of correlation terms in the total wavefunction.

Ho & Henry (1983) also used the close-coupling approximation
with configuration interaction in the target wavefunction to compute
the collision strengths of some of O III transitions in LS-coupling.
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They employed a mix of spectroscopic and correlation Hartree–
Fock orbitals to describe their target.

Relatively extensive work was done by Aggarwal (1983, 1985)
who computed collision strengths of O III transitions between the
fine-structure levels using configuration interaction target wave-
functions. He transformed LS-coupling reactance matrices obtained
from R-matrix calculations to pair coupling with the program
JAJOM (Saraph 1978). The results were obtained with a fine en-
ergy mesh up to 5.16 Rydberg where a complex resonance structure
was observed on the entire mesh.

Aggarwal (1993) used an elaborate configuration interaction tar-
get described by Aggarwal & Hibbert (1991) and the R-matrix
method in LS-coupling to compute effective collision strengths for
some inelastic transitions of O III between 26 LS-coupled states
of six configurations over a wide range of electron temperature
(2500–200 000 K). They employed the standard and no-exchange
R-matrix codes on a fine energy mesh that reveals the resonance
structure. This work was extended by Aggarwal & Keenan (1999),
who computed the collision strengths for the transitions between
the fine-structure levels using the R-matrix method including all
partial waves with L ≤ 40 to ensure convergence. Aggarwal &
Keenan (1999) transformed the LS reactance matrices obtained by
Aggarwal (1993) into pair coupling using JAJOM (Saraph 1978)
where necessary. They only tabulated fine-structure collision
strengths for some transitions, pointing out that in pair coupling,
if one of the terms in a transition has spin zero and hence J = L,
e.g. 3P–1D, the fine-structure collision strengths are proportional to
the statistical weight of the non-zero spin states, in this example the
3PJ levels.

Lennon & Burke (1994) did extensive work on O2+ collision
strengths for the transitions between the fine-structure levels, as
part of a wider investigation on the carbon isoelectronic ions, using
the R-matrix method, where the CIV3 configuration interaction code
(Hibbert 1975) was used to generate the target wavefunctions. The
target included 12 states belonging to three configurations (1s2 2s2

2p2, 1s2 2s 2p3 and 1s2 2p4). They also transformed to pair coupling
in the same way as Aggarwal & Keenan (1999) described above.
They presented a sample of Maxwellian based effective collision
strengths in the temperature range 103–105 K.

Recently, Palay et al. (2012) made the first calculation of collision
strengths for the O III forbidden transitions using a relativistic Breit–
Pauli (BP) R-matrix method with resolved resonance structures.
They used 22 configurations (3 spectroscopic and 19 correlation) to
describe the target. Like most of the previous studies, they have also
presented samples of the Maxwellian averaged effective collision
strengths which were also computed at temperatures down to 100 K.

The most recent R-matrix calculations (Lennon & Burke 1994;
Aggarwal & Keenan 1999; Palay et al. 2012) generally agree to
within 10 per cent for the thermally averaged collision strengths for
the forbidden transitions among the five lowest levels. An excep-
tion to this generally close agreement is for the transitions from
the lowest three 3PJ levels to the 1S0 state. The recent results of
Palay et al. (2012) differ significantly from those of earlier workers.
The excitation mechanism of the 1S0 level is important because the
1S0 → 1D2 λ4363 line is widely used to infer the electron tem-
perature in H II regions and planetary nebulae. If a κ distribution
of electron energies is assumed, the number of free electrons capa-
ble of exciting the 1S0 state would be increased relative to a MB
distribution which would affect the derived O2+ abundance.

The aim of this paper is twofold. First, we make a BP R-matrix
calculation of the O2+ collision strengths with an independently
derived target configuration basis to compare with previous work,

especially the only other BP results from Palay et al. (2012). Sec-
ondly, we attempt to place realistic error estimates on our results by
examining the effect of several factors on our results. We discuss
the convergence of our calculation as the number of target states
is increased. Our largest target includes significant contributions
to the dipole polarizability of the three energetically lowest terms.
We also consider the effect of Gailitis averaging of the collision
strengths close to the excitation thresholds, especially for excitation
of the 3P1 level between the 3P1 and 3P2 thresholds. We additionally
compare the results of the BP calculation with those obtained using
the intermediate coupling frame transformation (ICFT) R-matrix
method (Griffin, Badnell & Pindzola 1998). This method is based
on transforming the non-physical LS-coupled reactance matrices, to
compute collision strengths in intermediate coupling.

The calculation described in the following sections is constructed
to provide accurate results for the excitation of the optical and
infrared forbidden transitions among the five lowest levels of O2+

at temperatures typical of the photoionized plasmas in nebulae. We
compute collision strengths up to ≈1.3 Rydberg free electron energy
relative to the ground level and MB averaged collision strengths
from 100 to 25 000 K. We set the lower limit of temperature at
100 K to reflect the suggestion that planetary nebulae may contain
material of very low temperature, in the form of knots or clumps,
within the main nebular body which is at a much higher temperature
(Liu et al. 2000, 2006; Zhang et al. 2004). These multicomponent
nebular models have gathered momentum recently as they seem to
offer the most satisfactory explanation to the long-standing problem
of ORL–CEL abundance and temperature inconsistency (Storey &
Sochi 2014). As for the upper limit, it is justified by the fact that the
estimation of the maximum temperature for photoionized nebulae
is around 20 000–25 000 K.

The main tools used in this investigation are the AUTOSTRUCTURE

code1 (Eissner, Jones & Nussbaumer 1974; Nussbaumer & Storey
1978; Badnell 2011) to define and elaborate the atomic target and the
UCL–Belfast–Strathclyde R-matrix code2 (Berrington et al. 1995)
to do the actual scattering calculations. We compare our results with
earlier calculations and also assess the reliability of our results.

2 C O M P U TAT I O N

In the following, we outline the computational methods used in this
work.

2.1 The O2+ target

We used the AUTOSTRUCTURE code (Badnell 2011) to generate the
target radial functions required as an input to the first stage of the R-
matrix code. The radial data were generated using 39 configurations
containing seven orbitals; three physical (1s, 2s and 2p) and four
correlation orbitals (3s, 3p, 3d and 4f). These configurations are
given in Table 1. An iterative optimization variational protocol was
used to obtain the orbital scaling parameters, λnl, which are given
in Table 2. The correlation orbitals are calculated in a Coulomb
potential with central charge 8|λnl|.

In the scattering calculations, targets with differing numbers of
target states were used, with the largest having 72 terms which are

1 See Badnell: AUTOSTRUCTURE write-up on WWW. URL: amdpp.phys.strath.
ac.uk/autos/ver/WRITEUP.
2 See Badnell: R-matrix write-up on WWW. URL: amdpp.phys.strath.
ac.uk/UK_RmaX/codes/serial/WRITEUP.
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Table 1. The configuration basis
used to define the scattering target.
The 1s2 core is to be understood in
all configurations. The bar signifies a
correlation orbital.

2s2 2p2, 2s 2p3, 2p4

2s2 2p 3l; l = 0, 1, 2
2s 2p2 3l; l = 0, 1, 2
2p3 3l; l = 0, 1, 2
2s2 3l 3l

′
, l, l

′=0,1,2
2s 2p 3l 3l

′
, l, l

′=0,1,2
2p2 3l 3l

′
, l, l

′=0,1,2
2s2 2p 4f, 2s 2p2 4f, 2p3 4f
2s2 3d 4f, 2s 2p 3d 4f, 2p2 3d 4f
2s2 4f2, 2s 2p 4f2, 2p2 4f2

Table 2. Orbital scaling parameters, λnl, for AUTOSTRUCTURE

input. The rows stand for the principal quantum number n,
while the columns stand for the orbital angular momentum
quantum number l.

s p d f

1 1.448 89

2 1.224 18 1.182 82

3 −0.805 08 −0.619 05 −1.047 31

4 −1.874 10

listed in Table 3. Calculations were also made with the first 10 and
20 terms from this list as discussed in more detail below. Comparing
the statistically weighted oscillator strengths, gf, in the length and
velocity formulations for all the strong allowed transitions between
the 2s2 2p2 and 2s 2p3 configurations, we find excellent agreement
with an average difference of 2.6 per cent. Good agreement between
the length and velocity results is a necessary but not sufficient
condition for ensuring the quality of the target wave functions.
These transitions also make the largest contributions to the dipole
polarizabilities of the three lowest terms.

The 72 terms listed in Table 3 were chosen to include all those
correlation configurations that contribute significantly to the dipole
polarizability of the three lowest terms. The main contributions
come from 2s2 2p 3d configuration. The contribution of states out-
side the n = 2 complex to the dipole polarizabilities of the 3P, 1D and
1S terms is 37, 37 and 60 per cent, respectively. In Table 4, we list
the energies of the 18 levels of the n = 2 complex configurations.
We show theoretical energies which include one- and two-body
fine-structure interactions (Eth2) and those which only include the
spin–orbit interaction (Eth1), the latter being the only fine-structure
interactions included in the version of the R-matrix code that we
use (see footnote 2). We return to the effect of omitting two-body
fine-structure interactions in Section 3.

2.2 The scattering calculations

We made several calculations with increasing numbers of target
states, both with BP and the ICFT R-matrix methods. The target
radial functions were supplied as a radial grid format rather than
Slater-type orbital format where the radial file was generated by
AUTOSTRUCTURE. The inner region radius (RA) in the R-matrix for-
mulation was 9.315 au. 12 continuum basis functions were used
to represent the wavefunctions in the inner region. This choice was

based on convergence tests and with experience from previous work
on the C+ + e− system (Sochi 2012; Sochi & Storey 2013). The
maximum value of 2J for the (N + 1)-electron problem was chosen
to be 19 although 15 was found to be sufficient for convergence of
the collision strengths for the forbidden transitions of interest here.

As indicated previously, we made three sets of calculations using
the configuration basis described in Section 2.1 with 10-, 20- and 72-
terms using both the BP and ICFT approaches. These three targets
comprise 18, 34 and 146 fine-structure levels, respectively. The main
purpose of using several targets is to have an estimate of the error in
the final results from observing the convergence of the results with
different numbers of target terms. For all three targets, the (N + 1)-
electron wavefunction contains all possible configurations formed
from the 39 configurations of the N-electron target combined with
any of the orbitals, spectroscopic and correlation. There are 102
such (N + 1)-electron configurations.

Experimental energies obtained from the National Institute of
Standards and Technology (NIST)3 were used in place of theoretical
ones to ensure correct positioning of thresholds for convergence of
resonance series. In some cases this required re-ordering the target
states.

Collision strengths were calculated for electron energies up to
1.28 Rydberg relative to the 2s2 2p2 3P

0
ground level, hence 0.89 Ry-

dberg relative to the highest state of interest, 2s2 2p2 1S
0
. This energy

corresponds to ≈7 kT when the electron temperature T = 20 000 K,
the approximate upper limit for temperatures in photoionized neb-
ulae. Over this energy range, collision strengths were calculated at
20 000 equally spaced energies, except between the 2s2 2p2 3P

1
and

3P
2

levels where calculations were performed on a mesh 100 times
finer. Calculations were also made with and without Gailitis aver-
aging of the collision strengths in the region beneath each threshold
where the effective quantum number ν > 10.

We calculate the thermodynamically averaged collision strengths
for electron excitation, ϒ , from a lower state i to an upper state j
from

ϒi→j (εi, Tf ) =
√

π

2
e

(
�Eij
kTf

) ∫ ∞

0
	ij (εi)

(
kTf

εi

)1/2

f (εi, Tf ) dεj ,

(1)

where Tf is the effective temperature, k is the Boltzmann constant,
εi and εj are the free electron energy relative to the states i and j,
respectively, �Eij (=εi − εj) is the energy difference between the
two states, 	ij is the collision strength of the transition between the
i and j states, and f(εi, Tf) is the energy- and temperature-dependent
electron distribution. In what follows, we will only consider (MB)
distributions of electron energy, given by

fMB(ε, T ) = 2

(kT )3/2

√
ε

π
e− ε

kT , (2)

although, as discussed above, other distributions such as the κ

distribution have been proposed and discussed (Vasyliunas 1968;
Nicholls et al. 2012; Storey & Sochi 2013).

3 R ESULTS AND DI SCUSSI ON

3.1 Results

A sample of our 10-, 20- and 72-term BP collision strengths is shown
in Fig. 1. The agreement between the three calculations is excellent,

3 See NIST website: www.nist.gov.
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Table 3. Target terms and energies, E, calculated by AUTOSTRUCTURE using the configuration
basis listed in Table 1. The 1s2 core is suppressed from all configurations. All these terms are
included in the 72-term target, while for the smaller targets (10- and 20-term) only the first 10
and 20 terms respectively are included.

Index Configuration Term E (cm−1) Index Configuration Term E (cm−1)

1 2s2 2p2 3P 0.0 37 2s 2p2 3p 1So 483 995
2 2s2 2p2 1D 21 257 38 2s 2p2 3p 3Po 485 363
3 2s2 2p2 1S 45 630 39 2s 2p2 3s 3S 486 363
4 2s 2p3 5So 58 948 40 2s 2p2 3p 1Po 486 594
5 2s 2p3 3Do 121 133 41 2s 2p2 3p 3Do 491 627
6 2s 2p3 3Po 144 640 42 2s 2p2 3s 3P 496 357
7 2s 2p3 1Do 190 314 43 2s 2p2 3p 3Po 498 566
8 2s 2p3 3So 199 693 44 2s 2p2 3p 3So 503 468
9 2s 2p3 1Po 214 885 45 2s 2p2 3s 1P 506 149
10 2p4 3P 287 613 46 2s 2p2 3s 1S 508 564
11 2s2 2p 3p 1P 301 182 47 2s 2p2 3p 1Do 509 665
12 2p4 1D 302 782 48 2s 2p2 3p 1Po 526 999
13 2s2 2p 3p 3D 306 265 49 2s2 2p 3d 3Fo 539 361
14 2s2 2p 3s 3Po 309 248 50 2p3 3p 5P 542 552
15 2s2 2p 3p 3S 310 788 51 2s2 2p 3d 1Do 550 865
16 2s2 2p 3p 3P 315 730 52 2p3 3s 5So 551 832
17 2s2 2p 3s 1Po 323 156 53 2p3 3p 3P 553 504
18 2s2 2p 3p 1D 328 464 54 2p3 3p 3D 567 272
19 2s2 2p 3p 1S 345 567 55 2p3 3p 1P 567 946
20 2p4 1S 351 203 56 2p3 3p 3F 568 179
21 2s 2p2 3p 3So 372 370 57 2p3 3p 1F 570 684
22 2s 2p2 3p 5Do 376 169 58 2s2 2p 3d 3Po 572 129
23 2s 2p2 3s 5P 379 161 59 2s2 2p 3d 3Do 578 854
24 2s 2p2 3p 5Po 379 976 60 2p3 3s 3Do 584 855
25 2s 2p2 3p 3Do 392 038 61 2p3 3s 3So 589 631
26 2s 2p2 3p 5So 395 094 62 2p3 3p 3P 600 736
27 2s 2p2 3p 3Po 400 796 63 2s 2p2 3d 5F 600 824
28 2s 2p2 3s 3P 418 063 64 2p3 3s 1Do 602 294
29 2s 2p2 3p 3Fo 437 947 65 2p3 3p 1D 606 079
30 2s 2p2 3p 1Do 439 915 66 2p3 3p 3S 606 299
31 2s 2p2 3s 3D 442 045 67 2p3 3p 3D 607 292
32 2s 2p2 3p 1Fo 443 431 68 2s 2p2 3d 5D 610 073
33 2s 2p2 3p 3Do 447 068 69 2p3 3p 1P 612 417
34 2s 2p2 3p 1Po 449 383 70 2s2 2p 3d 1Po 617 417
35 2s 2p2 3p 3Po 456 397 71 2p3 3p 3P 618 955
36 2s 2p2 3s 1D 468 076 72 2s2 2p 3d 1Fo 620 437

with the most obvious difference being that some resonances move
to lower energies as the target size is increased, as might be expected.
Fig. 2 shows the results for the thermally averaged collision strength,
ϒ , as a function of temperature for the 10- and 20-term calcula-
tions relative to the 72-term calculation as a percentage difference.
The differences are less than 9 per cent at any temperature for the
10-term calculation and less than 5 per cent for the 20-term case.

The energy region between the 2s2 2p2 3P
1

and 3P
2

states contains
a Rydberg series of resonances converging on the 3P

2
level with an

effective quantum number at the 3P
1

threshold of 47.7. The energy
difference between the 3P

1
and 3P

2
levels of 193 cm−1 corresponds

to a temperature of 278 K, so this energy region is significant for
computing ϒ at temperatures down to 100 K. We calculate the col-
lision strengths with an energy interval of 6.4 × 10−7 Rydberg in
this interval and compare with the result of using Gailitis averaging
in this region. The difference is less than 1 per cent at any temper-
ature and we conclude that Gailitis averaging is adequate to obtain
accurate values of ϒ down to 100 K.

The results of the ICFT calculations showed unexpectedly large
differences from the BP results in some energy domains. This is

illustrated in Fig. 3 where we compare the thermally averaged col-
lision strengths for the 72-term ICFT calculations with the 72-term
BP results for the 3P

1
–3P

2
transition. Due to the difference in scal-

ing with effective charge (zeff) of term energy separations (∝ zeff)
and resonance energies (∝ z2

eff ), resonance effective quantum num-
bers can become small for lowly ionized systems. Such deeply
closed channels can be problematic for the multichannel quantum
defect theory (MQDT) used by the ICFT method due to computa-
tional finite numerical precision of highly divergent wavefunctions.
Gorczyca & Badnell (2000) found that classically forbidden chan-
nels (e.g. n < l) could be handled expediently by simply omitting
them from the MQDT representation. For low-energy scattering in
O2+, we encountered a similar problem in a new guise for n � 2.
The closed-channel partition of the MQDT representation should
give no contribution since all bound orbitals (spectroscopic and
pseudo) are projected out of the continuum basis. All such closed
channel contributions (e.g. correlation resonances) arise instead in
the open–open part of the scattering matrix. For l > 1, the original
Gorczyca & Badnell (2000) expediency already omits such closed
channels (n < l). For l = 0, 1 we found it necessary to explicitly
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Table 4. The 18 lowest energy levels of the n = 2 complex of O2+ and their
experimental (Eex) and theoretical (Eth1 and Eth2) energies in wavenumbers
(cm−1). Four non-physical states of the configuration 2s2 2p 3s are omitted
from the list which is indexed in experimental energy order. The experimen-
tal energies are obtained from the NIST data base while the theoretical ener-
gies were obtained from AUTOSTRUCTURE with the configuration basis listed
in Table 1. The energies Eth1 were obtained with only spin–orbit terms
in the target Hamiltonian while Eth2 also include two-body fine-structure
interactions within the n = 2 complex.

Index Level Eex Eth1 Eth2

1 2s2 2p2 3P
0

0.00 0 0
2 2s2 2p2 3P

1
113.18 115 113

3 2s2 2p2 3P
2

306.17 339 308
4 2s2 2p2 1D

2
20 273.27 21 489 21 471

5 2s2 2p2 1S
0

43 185.74 45 900 45 882
6 2s 2p3 5So

2
60 324.79 59 600 59 582

7 2s 2p3 3Do
3

120 058.2 121 800 121 775
8 2s 2p3 3Do

2
120 053.4 121 804 121 799

9 2s 2p3 3Do
1

120 025.2 121 812 121 805
10 2s 2p3 3Po

2
142 393.5 145 316 145 307

11 2s 2p3 3Po
1

142 381.8 145 321 145 307
12 2s 2p3 3Po

0
142 381.0 145 331 145 319

13 2s 2p3 1Do
2

187 054.0 191 025 191 006
14 2s 2p3 3So

1
197 087.7 200 423 200 405

15 2s 2p3 1Po
1

210 461.8 215 609 215 591
...

...
...

...
20 2p4 3P

2
283 759.7 288 653 288 629

21 2p4 3P
1

283 977.4 288 863 288 854
22 2p4 3P

0
284 071.9 288 965 288 951

omit such closed channels from the closed partition as well. We
show the effect of this modification as the dashed blue line in Fig. 3.
The agreement with the full BP calculation is now excellent.

Considering the convergence as the number of target states is
increased and the good agreement between the ICFT and BP results,
we adopt the results of the 72-term BP calculation as our final results
and, based on the convergence behaviour and the effect of Gailitis
averaging, estimate an uncertainty of no more than 5 per cent in the
final thermally averaged collision strengths. In Table 5, we tabulate
thermally averaged collision strengths ϒ , for the 72-term target in
the temperature range log10T = 2.0(0.1)4.4.

3.2 Comparison to previous work

We compare our effective collision strength results with those from
previous calculations of similar quality, that is those which used
close-coupling techniques and computed collision strengths at suf-
ficient energies to delineate resonances.

In Table 6, we compare our final 72-term results with the LS
results of Lennon & Burke (1994). That calculation was based on
the 12-state target including n = 3 correlation orbitals described by
Burke, Lennon & Seaton (1989). They agree within 10 per cent for
all transitions and all temperatures. The effective collision strengths,
ϒ(3P–1D) and ϒ(3P–1S), for excitation of the optical forbidden lines
do not differ by more than 6 per cent at any temperature. The agree-
ment is generally even better with our 20-term calculation which
might be expected since that calculation includes the 12 terms of
the n = 2 complex which is the target of Lennon & Burke (1994).
However, their target does not include the states constructed from
correlation orbitals that make a large contribution to the polarizabil-
ity of the important states, as discussed in Section 2.1.

Figure 1. Collision strength (vertical axis) versus final electron energy
in Rydberg (horizontal axis) for BP calculations of the 1–2, 1–3 and 1–4
transitions with 10-term (dotted black line), 20-term (dashed blue line) and
72-term (solid red line). Refer to Table 4 for level indexing.

The most recent R-matrix calculations where fine-structure col-
lision strengths are presented are those of Aggarwal & Keenan
(1999) and Palay et al. (2012). The former calculation is based
on an elaborate 26-term target described by Aggarwal & Hibbert
(1991) constructed from 1s, 2s and 2p spectroscopic and 3s, 3p,
3d, 4s, 4p and 4d correlation orbitals. The resulting LS-coupled
reactance matrices were recoupled algebraically using the JAJOM

(Saraph 1978) program where necessary. This approach neglects
the fine-structure interactions between target states and in this ap-
proximation some fine-structure collision strengths can be derived
directly from LS-coupled collision strengths using only statisti-
cal weight factors as described by both Lennon & Burke (1994)
and Aggarwal & Keenan (1999). Palay et al. (2012) have made a
19-level BP R-matrix calculation where the target is expanded over
a configuration set involving 1s, 2s, 2p and 3s spectroscopic orbitals
and 3p, 3d, 4s and 4p correlation orbitals. Palay et al. (2012) use
an extended version of the BP R-matrix code which they attribute
to Eissner & Chen (in preparation) that includes two-body fine-
structure interactions which enables Palay et al. (2012) to calculate
the fine-structure splitting of the ground 3PJ levels with an error
of the order of 3 per cent. Palay et al. (2012) were also the first
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Collision strengths for nebular [O III] 3033

Figure 2. Thermally averaged collision strengths from the 10-term target (solid black line) and 20-term target (dotted blue line), shown as the percentage
difference from the 72-term target, plotted against log T [K]. The labels of the sub-figures refer to the level indices in Table 4.

to extend the tabulation of thermally averaged collision strengths
down to very low electron temperatures (100 K).

In Fig. 4, we compare graphically our fine-structure results with
those of Lennon & Burke (1994), Aggarwal & Keenan (1999) and
Palay et al. (2012). In Table 7, we compare the same results numeri-
cally and also include the results of the earlier R-matrix calculation
by Aggarwal (1983). Fig. 4 shows the percentage difference in the
thermally averaged collision strengths from these three calculations
relative to our results, for all 10 transitions among the energetically
lowest five levels. Where necessary, we derived fine-structure col-
lision strengths from the results of Lennon & Burke (1994) and
Aggarwal & Keenan (1999) using statistical weight factors as out-

lined above. With the exception of the 1D
2
–1S

0
transition, our results

agree with those of Lennon & Burke (1994) and Aggarwal & Keenan
(1999) to within 10 per cent for all temperatures between 1000 and
25 000 K where comparison can be made and to within 5 per cent for
the majority of temperatures. For these two calculations, the differ-
ences are relatively insensitive to temperature, indicating that their
collision strengths have a similar energy dependence to ours. We
find generally larger disagreements with the results of Palay et al.
(2012), reaching 10–15 per cent at the extremes of tabulated temper-
ature for many transitions and being even larger for the transitions
from the ground 3PJ levels to the 1S0 state (transitions 1–5, 2–5 and
3–5). Here, the differences reach 100 per cent at 100 K and are over
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3034 P. J. Storey, T. Sochi and N. R. Badnell

Figure 3. Effective collision strength (Upsilon) versus temperature from
the 72-term target: BP (solid black line), ICFT before modification (dotted
red line) and ICFT after modification (dashed blue line), for the transition
between levels 2 and 3 of Table 4. On this scale, the solid and dashed lines
are almost indistinguishable.

20 per cent at 10 000 K. The differences also show a distinctive tem-
perature dependence. With the exception of the 3PJ–1S0 transitions,
the Palay et al. (2012) results are generally smaller than ours at the
lowest temperatures and larger at the highest temperatures.

In Fig. 5, we compare collision strengths from Palay et al. (2012)
with our 72-term target for the transitions, 3P2–1S0 and 3P2–1D2,
over an energy range that includes the 1S0 threshold. For the 3P2–
1S0 transition the results of Palay et al. (2012) are generally larger
near the threshold and rise sharply as the threshold is approached,
being approximately a factor of 2 larger than our results at the
threshold. This behaviour, which is replicated for the 3P0–1S0 and
3P1–1S0 transitions, explains the large differences seen in Figs 4
and 8 for the thermally averaged collision strengths at the lowest
temperatures. The plot of the 3P2–1D2 collision strength shows that
there is a resonance feature just below the 1S0 threshold in the results
of Palay et al. (2012) that is not present in our 72-term results which
might be the cause of the sharp rise seen at threshold in their 3P2–1S0

collision strength. We note that Palay et al. (2012) omitted the three
2p4 terms from their scattering target, although it was included in
their configuration expansion. This raises the possibility that the O+

2p5 state, which is presumably represented by an (N+1)-electron
state composed only of target orbitals in their calculation, is not
accurately described and is the cause of the feature seen just below
the 1S0 threshold and hence of the large difference compared to our,
and other calculations.

We attempted to confirm this possibility by making two simple
test calculations, one with all 12 terms of the n = 2 complex in the
target and one with the three terms of the 2p4 configuration omitted
as in the Palay et al. (2012) calculation. This latter nine-term target
does not show the resonance feature seen in their results just below
the 1S0 threshold nor the sharp rise in the 3PJ–1S0 collision strengths
at threshold. To clarify the position of the 2p5 2Po state in these
calculations, we also calculated photoionization cross-sections from
O+ 2s 2p4 2D3/2 which is expected to show prominent resonances
corresponding to the 2s 2p4 2D3/2–2p5 2Po

1/2,3/2 transitions. In the
12-term calculation, the 2p5 2Po

1/2,3/2 states are found at 0.3166 and
0.3145 Rydberg, well below the 1S0 threshold, while in the nine-
term calculation they lie at 0.4371 and 0.4379 Rydberg, well above
it. Given that the Palay et al. (2012) calculation omits the 2p4 target
terms but includes other correlation in the configuration expansion
it is at least plausible that the resonance feature just below the 1S0

threshold is indeed due to the misplaced 2p5 levels. Incidentally, the
3P2–1D2 collision strengths from our 72-term calculation in Fig. 5
shows a minor series perturbation near 0.315 Rydberg that probably
corresponds to 2p5 2Po.

3.3 Discussion

In photoionized plasmas, the O III forbidden lines are commonly
used to determine the electron temperature of the emitting material,
and hence to determine the number of O2+ emitters relative to H by
comparison with a strong H recombination line. The temperature
determination rests on the ratio of the intensity of the λ4363 line
to either or both of the λ4959 and λ5007 lines. The λ4363 line
is relatively weak and cannot be seen if the temperature is much
below 5000 K. Once the temperature is known, the much stronger
λλ4959, 5007 lines can be used to deduce the O2+ number density.
In nebular plasmas, all these lines are excited collisionally from the
3PJ ground levels. The excitation mechanism for λ4363 is therefore
central to determining the electron temperature and abundances.
In Fig. 6, we show how the derived electron temperature from
our work differs from that obtained from Lennon & Burke (1994)
and from the data of Aggarwal & Keenan (1999) and Palay et al.
(2012). In all the temperature determinations, the radiative transition
probabilities were taken from Nussbaumer & Storey (1981) and
Storey & Zeippen (2000). Very similar temperatures are obtained
with the collision strength data of Lennon & Burke (1994) and
Aggarwal & Keenan (1999). Palay et al. (2012) state that there are
no significant differences in line ratios arising from their calculation
when comparing to Aggarwal & Keenan (1999) but Fig. 6 shows
that this is not the case. The difference in derived temperature is
213 K at 5000 K, 421 K at 10 000 K and 504 K at 15 000 K.

In summary, our new BP R-matrix calculation generally shows
much better agreement for thermally averaged collision strength
with the earlier non-BP R-matrix calculations of Lennon & Burke
(1994) and Aggarwal & Keenan (1999) than the more recent BP
work of Palay et al. (2012). The results of the important forbidden
line diagnostic line ratios show the same pattern. One question that
arises is whether the two-body fine-structure terms that are included
in the BP R-matrix formulation of Palay et al. (2012) and not in our
calculation might be part of the cause. We do not believe that this
is the case for the following reason. In Fig. 7, we show two sets of
results for the thermally averaged collision strength for the 3P

1
–3P

2

transition from 72-term ICFT calculations. The solid line includes
the effects of the spin–orbit interaction in the target, introduced via
the so-called Term-Coupling Coefficients (TCCs), while the dashed
line shows the results obtained in pair-coupling, i.e. without TCCs.
Except at the lowest temperatures (T < 300 K) they differ by no
more than 1 per cent. The larger difference at the lowest tempera-
tures simply reflects the fact that the pair-coupling calculation does
not separate the 3PJ levels in energy, and therefore, the threshold
energies of these levels are not correct. The results for the other
transitions show similar behaviour. We emphasize, however, that
the ICFT calculation which does incorporate target spin–orbit ef-
fects agrees with the full BP calculation to within 1 per cent at
all temperatures. The good agreement that we find shows that the
spin–orbit interaction has a very small effect on the results. In O2+,
two-body fine-structure interactions are substantially smaller than
the spin–orbit interaction and should therefore have a negligible
effect on the results. This point is emphasized in Fig. 8 where we
show the percentage difference between the results of Palay et al.
(2012) and ours for the three 3PJ–1S0 transitions. Except at very
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Collision strengths for nebular [O III] 3035

Table 5. Thermally averaged collision strengths from the 72-term BP calculation as a function of
temperature. See Table 4 for the transition indices.

log T [K] 1–2 1–3 1–4 1–5 2–3 2–4 2–5 3–4 3–5 4–5

2.0 0.635 0.226 0.232 0.030 1.112 0.697 0.090 1.170 0.151 0.383
2.1 0.626 0.226 0.232 0.030 1.110 0.698 0.090 1.172 0.151 0.383
2.2 0.615 0.225 0.233 0.030 1.107 0.700 0.090 1.174 0.151 0.383
2.3 0.602 0.225 0.233 0.030 1.104 0.702 0.090 1.178 0.151 0.383
2.4 0.587 0.224 0.234 0.030 1.100 0.706 0.090 1.184 0.151 0.384
2.5 0.572 0.224 0.236 0.030 1.095 0.710 0.090 1.191 0.151 0.384
2.6 0.557 0.224 0.238 0.030 1.092 0.715 0.090 1.199 0.151 0.385
2.7 0.543 0.225 0.239 0.030 1.093 0.719 0.090 1.206 0.151 0.386
2.8 0.532 0.226 0.239 0.030 1.098 0.720 0.090 1.208 0.150 0.387
2.9 0.524 0.229 0.239 0.030 1.109 0.718 0.089 1.205 0.150 0.388
3.0 0.520 0.231 0.237 0.030 1.122 0.713 0.089 1.197 0.150 0.390
3.1 0.517 0.233 0.234 0.030 1.134 0.705 0.089 1.184 0.149 0.392
3.2 0.515 0.235 0.231 0.029 1.143 0.696 0.088 1.168 0.148 0.397
3.3 0.514 0.236 0.228 0.029 1.150 0.686 0.088 1.152 0.148 0.405
3.4 0.513 0.237 0.225 0.029 1.156 0.677 0.087 1.137 0.147 0.420
3.5 0.514 0.238 0.223 0.029 1.163 0.672 0.087 1.129 0.146 0.445
3.6 0.516 0.240 0.223 0.029 1.174 0.673 0.088 1.131 0.147 0.480
3.7 0.520 0.242 0.227 0.030 1.187 0.682 0.089 1.148 0.150 0.521
3.8 0.526 0.246 0.232 0.030 1.206 0.700 0.091 1.177 0.154 0.562
3.9 0.534 0.251 0.240 0.031 1.228 0.724 0.095 1.217 0.159 0.596
4.0 0.542 0.257 0.249 0.033 1.253 0.751 0.098 1.262 0.166 0.617
4.1 0.550 0.263 0.258 0.034 1.277 0.778 0.102 1.307 0.172 0.627
4.2 0.555 0.270 0.267 0.035 1.299 0.803 0.106 1.348 0.178 0.625
4.3 0.559 0.277 0.274 0.036 1.319 0.825 0.109 1.385 0.184 0.616
4.4 0.561 0.283 0.280 0.037 1.338 0.842 0.112 1.414 0.188 0.602

Table 6. Comparison of thermally averaged collision strengths, ϒ , from Lennon & Burke (1994, LB)
and the current work within the lowest five levels of O2+ as a function of temperature. The first row
of each temperature is from Table 3 of LB and the second row is from the current work using the BP
72-term target. The values given for 3P–1D

2
and 3P–1S

0
are summed over the 3P

J
levels.

log T [K] 3P
0
–3P

1
3P

0
–3P

2
3P

1
–3P

2
3P–1D

2
3P–1S

0
1D

2
–1S

0

3.0 0.4975 0.2455 1.1730 2.2233 0.2754 0.4241
0.5199 0.2313 1.1218 2.1331 0.2667 0.3897

3.2 0.5066 0.2493 1.1930 2.1888 0.2738 0.4268
0.5154 0.2349 1.1430 2.0811 0.2643 0.3968

3.4 0.5115 0.2509 1.2030 2.1416 0.2713 0.4357
0.5132 0.2367 1.1558 2.0237 0.2610 0.4200

3.6 0.5180 0.2541 1.2180 2.1117 0.2693 0.4652
0.5158 0.2398 1.1736 2.0107 0.2616 0.4799

3.8 0.5296 0.2609 1.2480 2.1578 0.2747 0.5232
0.5260 0.2462 1.2057 2.0913 0.2732 0.5621

4.0 0.5454 0.2713 1.2910 2.2892 0.2925 0.5815
0.5421 0.2568 1.2526 2.2425 0.2941 0.6174

4.2 0.5590 0.2832 1.3350 2.4497 0.3174 0.6100
0.5551 0.2698 1.2994 2.3987 0.3165 0.6254

4.4 0.5678 0.2955 1.3730 2.5851 0.3405 0.6090
0.5609 0.2835 1.3378 2.5184 0.3339 0.6022

low temperatures, they do not show any significant dependence on
J which might be expected if fine-structure effects were important
and indicate rather that the term–term 3P–1S collision strengths
differ significantly between the two calculations.

4 C O N C L U S I O N S

In this paper, the collision strengths for the transitions between
the lowest five levels of the astronomically-important O2+ + e−

atomic system up to about 1.3 Rydberg of electron excitation en-
ergy are computed in the close-coupling approximation using the
UCL–Belfast–Strathclyde R-matrix atomic code. Different cou-
pling schemes with different atomic definitions and parameters are
used to describe the scattering target and scattering process.

Our results were extensively compared to previous work. We
found good agreement in most cases which increases our confidence
in our results. However, we found significant differences with Palay
et al. (2012) who also used a BP coupling scheme, and hence,
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3036 P. J. Storey, T. Sochi and N. R. Badnell

Figure 4. Percentage differences of thermally averaged collision strengths from our 72-term BP calculation (vertical axis) versus temperature in 10 000 K
(horizontal axis). Results are from Lennon & Burke (1994, solid black line), Aggarwal & Keenan (1999, dashed blue line) and Palay et al. (2012, dotted red
line). The labels of the sub-figures refer to the level indices in Table 4.

better agreement was expected. The good agreement between our
R-matrix BP calculation and earlier R-matrix work in which the
fine-structure was treated more approximately strongly supports
our results. We showed that the relatively large differences found
for the excitation of the λ4363 line between the work of Palay et al.
(2012) on the one hand, and all previous calculations, on the other,
leads to significant differences in derived temperatures from the
main [O III] line ratios.

With regard to the use of the ICFT method, for lowly ionized
systems some resonances can have very low principal quantum

number, and channels are deeply closed, which can cause problems
for MQDT. This difficulty can be overcome by explicitly omitting
channels with very low effective quantum number and in any case
evaporates as the effective charge number increases.
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Collision strengths for nebular [O III] 3037

Table 7. Comparison of thermally averaged collision strengths, ϒ , between Aggarwal (1983, A), Lennon & Burke (1994, LB), Aggarwal & Keenan
(1999, AK), Palay et al. (2012, P) and the current work (SSB) using the 72-term target as a function of temperature [K]. See Table 4 for the transition
indices. Note that the values attributed to Lennon & Burke (1994) for T = 2500 K and 25 000 K are those tabulated for log T = 3.4 and 4.4 in that work,
respectively.

Index Temperature [K]
100 500 1000 2500 5000 7500 10 000 12 500 15 000 17 500 20 000 25 000 30 000

1–2 A 0.5041 0.5172 0.5310 0.5417 0.5490 0.5537 0.5567 0.5586 0.5612 0.5633
LB 0.4975 0.5115 0.5454 0.5678
AK 0.5011 0.5084 0.5159 0.5222 0.5266 0.5294 0.5311 0.5324 0.5348 0.5380
P 0.5814 0.5005 0.4866 0.5240 0.5648 0.6007 0.6116
SSB 0.6350 0.5430 0.5199 0.5132 0.5199 0.5317 0.5421 0.5494 0.5540 0.5569 0.5587 0.5609 0.5623

1–3 A 0.2499 0.2566 0.2646 0.2717 0.2776 0.2824 0.2865 0.2901 0.2962 0.3013
LB 0.2455 0.2509 0.2713 0.2955
AK 0.2406 0.2449 0.2512 0.2573 0.2626 0.2669 0.2707 0.2739 0.2798 0.2855
P 0.2142 0.2153 0.2234 0.2469 0.2766 0.3106 0.3264
SSB 0.2259 0.2247 0.2313 0.2367 0.2424 0.2497 0.2568 0.2629 0.2682 0.2727 0.2766 0.2833 0.2890

1–4 A 0.2283 0.2262 0.2337 0.2426 0.2506 0.2627 0.2627 0.2672 0.2740 0.2790
LB 0.2470 0.2380 0.2544 0.2872
AK 0.2260 0.2265 0.2343 0.2434 0.2515 0.2582 0.2637 0.2683 0.2751 0.2799
P 0.1959 0.2088 0.2154 0.2347 0.2693 0.3094 0.3256
SSB 0.2318 0.2389 0.2370 0.2249 0.2265 0.2381 0.2492 0.2579 0.2646 0.2698 0.2739 0.2797 0.2832

1–5 A 0.0278 0.0280 0.0295 0.0310 0.0324 0.0335 0.0344 0.0351 0.0362 0.0368
LB 0.0306 0.0301 0.0325 0.0378
AK 0.0307 0.0304 0.0310 0.0321 0.0332 0.0342 0.0351 0.0358 0.0370 0.0378
P 0.0597 0.0535 0.0496 0.0409 0.0407 0.0430 0.0442
SSB 0.0299 0.0298 0.0296 0.0290 0.0295 0.0312 0.0327 0.0339 0.0349 0.0357 0.0363 0.0371 0.0375

2–3 A 1.1925 1.2239 1.2592 1.2884 1.3107 1.3275 1.3404 1.3510 1.3679 1.3821
LB 1.1730 1.2030 1.2910 1.3730
AK 1.1680 1.1870 1.2100 1.2320 1.2490 1.2620 1.2730 1.2820 1.2980 1.3150
P 1.0360 1.0320 1.0720 1.2100 1.3300 1.4510 1.4990
SSB 1.1121 1.0928 1.1218 1.1557 1.1873 1.2221 1.2526 1.2763 1.2943 1.3082 1.3194 1.3374 1.3518

2–4 A 0.6848 0.6785 0.7010 0.7279 0.7518 0.7716 0.7879 0.8014 0.8221 0.8368
LB 0.7411 0.7139 0.7631 0.8617
AK 0.6780 0.6795 0.7029 0.7302 0.7545 0.7746 0.7911 0.8049 0.8253 0.8397
P 0.5903 0.6285 0.6483 0.7067 0.8108 0.9313 0.9802
SSB 0.6975 0.7187 0.7132 0.6772 0.6823 0.7175 0.7506 0.7768 0.7969 0.8125 0.8247 0.8421 0.8527

2–5 A 0.0833 0.0840 0.0884 0.0931 0.0972 0.1006 0.1033 0.1054 0.1085 0.1105
LB 0.0918 0.0904 0.0975 0.1135
AK 0.0921 0.0911 0.0929 0.0962 0.0995 0.1025 0.1052 0.1074 0.1109 0.1135
P 0.1765 0.1590 0.1477 0.1228 0.1223 0.1294 0.1332
SSB 0.0900 0.0897 0.0892 0.0873 0.0890 0.0939 0.0985 0.1022 0.1052 0.1075 0.1093 0.1118 0.1131

3–4 A 1.1413 1.1308 1.1683 1.2131 1.2529 1.2860 1.3132 1.3357 1.3702 1.3947
LB 1.2352 1.1898 1.2718 1.4362
AK 1.1300 1.1325 1.1715 1.2170 1.2575 1.2910 1.3185 1.3415 1.3755 1.3995
P 0.9934 1.0560 1.0890 1.1880 1.3630 1.5640 1.6450
SSB 1.1702 1.2057 1.1965 1.1374 1.1474 1.2066 1.2620 1.3055 1.3389 1.3647 1.3850 1.4137 1.4310

3–5 A 0.1388 0.1401 0.1473 0.1552 0.1620 0.1676 0.1721 0.1757 0.1809 0.1842
LB 0.1530 0.1507 0.1625 0.1892
AK 0.1536 0.1518 0.1549 0.1603 0.1659 0.1709 0.1753 0.1790 0.1849 0.1891
P 0.2850 0.2587 0.2421 0.2045 0.2046 0.2170 0.2235
SSB 0.1512 0.1506 0.1497 0.1467 0.1496 0.1579 0.1657 0.1720 0.1769 0.1808 0.1839 0.1881 0.1902

4–5 A 0.4708 0.5463 0.6114 0.6468 0.6630 0.6687 0.6692 0.6670 0.6599 0.6524
LB 0.4241 0.4357 0.5815 0.6090
AK 0.3907 0.4312 0.4836 0.5227 0.5478 0.5629 0.5719 0.5769 0.5809 0.5812
P 0.3900 0.3899 0.3899 0.4544 0.5661 0.6230 0.6219
SSB 0.3827 0.3856 0.3897 0.4196 0.5208 0.5882 0.6174 0.6266 0.6265 0.6223 0.6163 0.6026 0.5886

co-workers for making their collision strength data available to us.
The work of PJS and NRB was supported in part by STFC (grant
ST/J000892/1). Full-precision data for the energy-dependent colli-
sion strengths of the transitions between the lowest five levels of the

investigated O2+ + e− system using the 72-term target under a BP
intermediate coupling scheme can be obtained in electronic format
from the Centre de Données astronomiques de Strasbourg data base
(http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/MNRAS/catalog VI/141).
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Figure 5. Collision strengths as a function of incident electron energy for
(a) the 3P2–1S0 and (b) the 3P2–1D2 transitions near the 1S0 threshold from
the present 72-term target (solid black line) and from Palay et al. (2012, red
dashed line). The vertical dotted lines indicate the positions of the 1S0 and
5So

2 thresholds.

Figure 6. The difference in derived electron temperature from the
λ4363/(λ4959+λ5007) line intensity ratio using the data of Lennon & Burke
(1994, solid black line), Aggarwal & Keenan (1999, dashed blue line) and
Palay et al. (2012, dotted red line) against the temperature derived from the
present results.

Figure 7. Effective collision strength (Upsilon) versus temperature from the
72-term target for the 3P1–3P2 transition: ICFT with spin–orbit interactions
in the target (solid black line) and ICFT in pair coupling (dashed blue line).
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Figure 8. Percentage difference in ϒ versus logarithm of temperature be-
tween the results of Palay et al. (2012) and our 72-term BP calculation for
the transitions 3P

0
–1S

0
(black triangle), 3P

1
–1S

0
(blue circle) and 3P

2
–1S

0
(red square).
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