J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 235203 (12pp)

# *R*-matrix inner-shell electron-impact excitation of Fe<sup>15+</sup> including Auger-plus-radiation damping

### G Y Liang, A D Whiteford and N R Badnell

Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK

E-mail: guiyun.liang@strath.ac.uk

Received 11 September 2008, in final form 28 October 2008 Published 24 November 2008 Online at stacks.iop.org/JPhysB/41/235203

#### Abstract

We present results for the inner-shell electron-impact excitation of  $Fe^{15+}$  using the intermediate-coupling frame transformation *R*-matrix approach in which Auger-plus-radiation damping has been included. The target and close-coupling expansions are both taken to be the 134 levels belonging to the configurations  $2s^22p^63l$ ,  $2s^22p^53s3l$ ,  $2s^22p^53p^2$  and  $2s^22p^53p3d$ . The comparison of Maxwell-averaged effective collision strengths with and without damping shows that the damping reduction is about 30–40% for many transitions at low temperatures, but up to 80% for a few transitions. As a consequence, the results of previous Dirac *R*-matrix calculations (Aggarwal and Keenan 2008 *J. Phys. B: At. Mol. Opt. Phys.* **41** 015701) overestimate the effective collision strengths due to their omission of Auger-plus-radiation damping.

(Some figures in this article are in colour only in the electronic version)

### 1. Introduction

Radiation from Fe<sup>15+</sup> occupies a considerable fraction of the EUV and x-ray radiation spectrum of (the astrophysically abundant element) iron. Its temperature of peak fractional abundance is at  $\approx 2.5 \times 10^6$  K in collision-dominated plasmas (Bryans *et al* 2006) and a few times  $10^4$  K in photoionized plasmas (Kallman and Bautista 2001). Observations of innershell excitation lines such as  $2p^63s-2p^53l3l'$  in the solar corona have led to extensive investigations of inner-shell excitation data for this ion (see, e.g., Dere *et al* 2001).

Earlier calculations adopted the distorted-wave (DW) approximation. For example, Cornille *et al* (1994) reported excitation data amongst the lowest 44 levels belonging to the  $2p^63s$  and  $2p^53s3l$  (l = s, p and d) configurations. This data was adopted by Phillips *et al* (1997) to analyse the contribution of satellite lines to line-ratios, arising from inner-shell excitations, which are useful in solar diagnostic applications. Resonant excitation plays an important role in electron–ion collision processes, enhancing the effective collision strength ( $\Upsilon$ ), especially for forbidden transition lines. These lines are usually density and temperature sensitive and so have potential diagnostic applications. Bautista (2000) performed

a standard R-matrix (Berrington et al 1995) calculation for inner-shell excitation which included the 134-levels belonging to the  $2s^22p^63l$ ,  $2s^22p^53s3l$ ,  $2s^22p^53p^2$  and  $2s^22p^53p3d$  (l =s, p and d) configurations (the same configurations considered in the present work). The enhancement of Maxwell-averaged effective collision strengths  $(\Upsilon)$  by resonances in the ordinary collision strengths  $(\Omega)$  was found to be up to three orders of magnitude at low temperatures, for some transitions. In Bautista's calculation, relativistic effects were included by using term-coupling coefficients (TCC) via the JAJOM code<sup>1</sup>. This changed the background collision strengths by up to an order of magnitude when compared to the results of his LS-coupling calculations, in which the algebraic splitting of scattering matrices was used to obtain the fine-structure data. Recently, Aggarwal and Keenan (2008) calculated inner-shell excitation data using the same 134-level target configurations with the fully-relativistic Dirac atomic R-matrix code (DARC) of Norrington and Grant (1987). Detailed comparisons with the excitation data of Bautista (2000) were made, and they pointed out deficiencies in the data of Bautista due to the methodology used by JAJOM.

<sup>1</sup> The TCCs were obtained from the *R*-matrix RECUPD code.

In a detailed study of Fe<sup>14+</sup>, Berrington et al (2005) found that the Breit-Pauli R-matrix effective collision strengths agreed with the DARC calculations to within 6%. For complex species, the number of (closely spaced) levels that must be included in the close-coupling (CC) expansion is very large, which makes the calculation computationally demanding. An alternative approach to a full Breit-Pauli R-matrix calculation is to perform an R-matrix calculation in LS-coupling and then, on making use of multi-channel quantum defect theory (MQDT), transform the resulting 'unphysical' K- or S-matrices to intermediate coupling. This eliminates at root the deficiency of JAJOM, namely, only transforming the open-open part of the physical K-matrix, since all channels are treated as being 'open' in MQDT. This is the intermediate coupling frame transformation (ICFT) method. In studying of the ICFT Rmatrix electron excitation of Fe<sup>14+</sup> and Ni<sup>4+</sup>, Griffin et al (1998) and Badnell and Griffin (1999) found that the ICFT results agreed closely with those determined from the full Breit-Pauli R-matrix calculation. Another advantage of the ICFT method is the saving of computational time, which makes meaningful iso-electronic sequence calculations a reality within the *R*-matrix framework (Witthoeft *et al* 2007).

Resonances superimposed upon the background cross section enhance the effective collision strengths for electronimpact excitation, especially at lower temperatures and/or for weaker transitions. However, some resonant states may decay by an Auger process or fluorescence radiation and so are lost in the transition under study. Such loss mechanisms can be represented by a complex optical potential. Robicheaux et al (1995) provided a detailed description of radiation damping via such a potential within the R-matrix method. Subsequently, Gorczyca et al (1995) showed the effect of radiation damping on the electron-impact cross section of Ti<sup>20+</sup> while Gorczyca and Badnell (1996) demonstrated its even greater importance for photorecombination. Gorczyca and Robicheaux (1999) extended the optical potential approach so as to include Auger damping. Whiteford et al (2002) demonstrated the Auger damping effect on the effective collision strengths of inner-shell transitions in Li-like Ar<sup>15+</sup> and Fe<sup>23+</sup>, and showed significant reductions in effective collision strengths at low temperatures ( $\sim$ 30% for the 1s<sup>2</sup>2s<sup>2</sup>S<sub>1/2</sub> – 1s2s<sup>2 2</sup>S<sub>1/2</sub> transition of  $Fe^{23+}$ ). Correspondingly, this has an influence on the spectroscopic diagnostic and modelling of plasmas, especially photoionized plasmas which typically have a much lower electron temperature. Furthermore, Bautista et al (2004) demonstrated the smearing of the photoabsorption K-edge by such damping, primarily Auger, for Fe<sup>16+</sup> through Fe<sup>22+</sup>.

In the present work we study the inner-shell electronimpact excitation of  $Fe^{15+}$ , via the *R*-matrix ICFT approach, using the same CC and CI expansions as in the work of Aggarwal and Keenan (2008) but now include Augerplus-radiation damping. This work is a part of ongoing collaborative work—the UK atomic processes for astrophysical plasmas (APAP) network<sup>2</sup>, a broadening of scope of the original UK RmaX network. In section 2 we present details of our structure calculation and make comparisons with other data available in the literature. Our calculations for the scattering problem are detailed in section 3. The results, and their comparison with those of others, are discussed in section 4. We conclude with section 5.

#### 2. Structure

We included the following configurations:  $2s^22p^63l$ ,  $2s^22p^53s3l$ ,  $2s^22p^53p^2$  and  $2s^22p^53p3d$ . The orbital basis functions (1s-3d) were obtained from AUTOSTRUCTURE (Badnell 1986) using the Thomas–Femi–Dirac–Amaldi model potential (Eissner et al 1974). The radial scaling parameters were obtained by a two-step procedure of energy minimization. In the first step, the average energy of all 59 terms was minimized by allowing all scaling parameters (one for each nl orbital) to change. We then fixed the resulting radial scaling parameter of the 1s orbital ( $\lambda_{1s} = 1.41958$ ). Finally, we minimized the average energy sum of all 134 levels, obtained from an intermediate coupling calculation, so as to determine the remaining scaling parameters. The resultant values are  $\lambda_{2s} = 1.30324$ ,  $\lambda_{2p} = 1.14032$ ,  $\lambda_{3s} = 1.23627$ ,  $\lambda_{3p} = 1.13555$  and  $\lambda_{3d} = 1.00615$ . (The mass-velocity plus Darwin contribution from the 1s orbital is too large for the minimization procedure to converge if the 1s scaling parameter is varied in intermediate coupling-the energy functional has no minimum.)

We compare our energies with the values available from the NIST database  $v3.0^{-3}$  and the GRASP calculation of Aggarwal and Keenan (2007) (hereafter referred to as AK07). Their (AK07) calculations of structure used the same configurations as herein. The subsequent electron collision scattering calculations of Aggarwal and Keenan (2008) (hereafter, AK08) also used a structure determined by AK07. Excellent agreement (within 0.1%) is obtained when compared with the results of the AK07 GRASP calculation that omitted Breit and QED effects. The AK07 data is systematically higher than our results by less than 0.1 Ryd for the doubly-excited levels. The agreement with the NIST data is to within 0.5%, except for the  $2s^22p^53s3d^2D_{5/2}$ ,  ${}^2F_{7/2}$ ,  ${}^2F_{5/2}$ and  ${}^{2}P_{3/2}$  levels. The difference is within 0.2% for these levels. Note, although AK07 obtained better agreement with the NIST data when Breit and QED effects were included, they are not present within DARC (nor two-body fine-structure within Breit-Pauli R-matrix) and so such a structure cannot be used in a scattering calculation.

Due to the strong configuration interaction and level mixing, as illustrated in table 1 of AK07, level orderings for comparisons are not the same in different calculations. Here, we match the level assignment according to configuration, total angular momentum and then energy ordering. Fortunately, only a few level assignments are inconsistent in the two different calculations, which facilitates our later comparisons for radiative decay rates (*A*-coefficients) and collision strengths. However, for some levels, their different assignments result in large discrepancies (up to 0.84 Ryd) with the NIST values in the AK07 work, such as for levels 11 and 14. Similar disturbed level ordering appears for levels

<sup>&</sup>lt;sup>2</sup> http://amdpp.phys.strath.ac.uk/UK\_APAP

<sup>&</sup>lt;sup>3</sup> http://physics.nist.gov/PhysRefData/ASD/levels\_form.html

**Table 1.** Energy levels (Ryd), and differences, for the  $2s^22p^63l$ ,  $2s^22p^53s3l$  (l = s, p and d),  $2s^22p^53p^2$  and  $2s^22p^53p3d$  configurations of Fe<sup>15+</sup>.

| Index    | Configuration                                      | $^{2S+1}L_J$                      | NIST <sup>a</sup>      | AS <sup>b</sup>       | GRASP <sup>c</sup>   | FAC <sup>d</sup>       | AS–NIST   | GRASP-NIST |
|----------|----------------------------------------------------|-----------------------------------|------------------------|-----------------------|----------------------|------------------------|-----------|------------|
| 1        | 2s <sup>2</sup> 2p <sup>6</sup> 3s                 | ${}^{2}S_{1/2}$                   | 0.000 00               | 0.000 00              | 0.000 00             | 0.000 00               | 0.000 00  | 0.000 00   |
| 2        | 2s <sup>2</sup> 2p <sup>6</sup> 3p                 | ${}^{2}P_{1/2}$                   | 2.525 98               | 2.559 04              | 2.56618              | 2.547 49               | 0.033 06  | 0.040 20   |
| 3        | $2s^22p^63p$                                       | ${}^{2}\mathbf{P}_{3/2}$          | 2.71688                | 2.76660               | 2.75486              | 2.73695                | 0.04972   | 0.037 98   |
| 4        | 2s <sup>2</sup> 2p <sup>6</sup> 3d                 | ${}^{2}D_{3/2}$                   | 6.155 62               | 6.176 19              | 6.19591              | 6.16930                | 0.020 57  | 0.040 29   |
| 5        | 2s <sup>2</sup> 2p <sup>6</sup> 3d                 | ${}^{2}D_{5/2}$                   | 6.182 09               | 6.217 36              | 6.22081              | 6.194 88               | 0.035 27  | 0.03872    |
| 6        | $2s^22p^53s^2$                                     | ${}^{2}P_{3/2}$                   | 52.607 45              | 52.348 42             | 52.317 94            | 52.413 68              | -0.25903  | -0.28951   |
| 7        | $2s^22p^53s^2$                                     | ${}^{2}P_{1/2}$                   | 53.51871               | 53.287 28             | 53.24028             | 53.333 65              | -0.23143  | -0.27843   |
| 8        | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}S_{3/2}$                   |                        | 54.117 60             | 54.08374             | 54.17677               |           |            |
| 9        | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}D_{5/2}$                   | 54.51199               | 54.365 41             | 54.32940             | 54.42627               | -0.14658  | -0.18259   |
| 10       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}D_{7/2}$                   |                        | 54.413 66             | 54.381 45            | 54.47648               |           |            |
| 11       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}P_{3/2}$                   |                        | 54.424 11             | 54.389 38            | 54.48968               |           |            |
| 12       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}P_{1/2}$                   | 54.685 14              | 54.551 54             | 54.52045             | 54.61949               | -0.13360  | -0.16469   |
| 13       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}P_{5/2}$                   |                        | 54.653 36             | 54.62489             | 54.725 04              |           |            |
| 14       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}D_{3/2}$                   | 54.79442               | 54.656 85             | 54.628 69            | 54.73060               | -0.13757  | -0.16573   |
| 15       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}S_{1/2}$                   | 55.05876               | 54.87978              | 54.844 42            | 54.93987               | -0.17898  | -0.21434   |
| 16       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}D_{1/2}$                   | 55.35947               | 55.264 94             | 55.213 06            | 55.308 85              | -0.09453  | -0.14641   |
| 17       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{4}D_{3/2}$                   | 55.487 05              | 55.358 90             | 55.307 39            | 55.404 41              | -0.12815  | -0.17966   |
| 18       | 2s <sup>2</sup> 2p <sup>3</sup> 3s3p               | ${}^{4}P_{1/2}$                   | 55.487 05              | 55.37835              | 55.33684             | 55.428 04              | -0.10870  | -0.15021   |
| 19       | 2s <sup>2</sup> 2p <sup>3</sup> 3s3p               | ${}^{4}P_{3/2}$                   | 55.55084               | 55.478 99             | 55.435 83            | 55.52946               | -0.07185  | -0.11501   |
| 20       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | $^{2}D_{5/2}$                     |                        | 55.479 04             | 55.444 67            | 55.53084               |           |            |
| 21       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}D_{5/2}$                   | 55.67842               | 55.54816              | 55.504 69            | 55.600 98              | -0.13026  | -0.17373   |
| 22       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | $^{2}P_{3/2}$                     | 55.851 56              | 55.61425              | 55.58697             | 55.674 45              | -0.23731  | -0.26459   |
| 23       | 2s <sup>2</sup> 2p <sup>3</sup> 3s3p               | ${}^{2}P_{1/2}$                   |                        | 56.298 95             | 56.25643             | 56.343 56              |           |            |
| 24       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | $^{2}D_{3/2}$                     | 56.65347               | 56.45616              | 56.409 48            | 56.490 89              | -0.197 31 | -0.243 99  |
| 25       | 2s <sup>2</sup> 2p <sup>5</sup> 3s3p               | ${}^{2}S_{1/2}$                   | 57.10911               | 57.01687              | 56.99370             | 57.085 92              | -0.09224  | -0.11541   |
| 26       | $2s^22p^33p^2$                                     | ${}^{4}P_{3/2}$                   |                        | 57.104 17             | 57.067.04            | 57.15630               |           |            |
| 27       | $2s^22p^33p^2$                                     | ${}^{2}\mathbf{P}_{1/2}$          |                        | 57.104 68             | 57.064 88            | 57.159 17              |           |            |
| 28       | $2s^22p^33p^2$                                     | ${}^{4}P_{5/2}$                   |                        | 57.173 52             | 57.13944             | 57.227 99              |           |            |
| 29       | $2s^{2}2p^{3}3p^{2}$                               | ${}^{2}F_{7/2}$                   |                        | 57.192.33             | 57.148.06            | 57.244.27              |           |            |
| 30       | $2s^{2}2p^{3}3p^{2}$                               | ${}^{2}P_{3/2}$                   |                        | 57.265 44             | 57.227 68            | 57.32010               |           |            |
| 31       | $2s^2 2p^3 3p^2$                                   | $^{2}D_{5/2}$                     |                        | 57.38943              | 57.351 18            | 57.44727               |           |            |
| 32       | $2s^{2}2p^{3}3p^{2}$                               | $^{2}D_{3/2}$                     |                        | 57.425.87             | 57.39127             | 57.48631               |           |            |
| 33       | $2s^{2}2p^{3}3p^{2}$                               | ${}^{4}P_{1/2}$                   |                        | 57.440.09             | 57.40547             | 57.495.46              |           |            |
| 34       | $2s^{2}2p^{3}3p^{2}$                               | <sup>4</sup> D <sub>7/2</sub>     |                        | 57.453.69             | 57.421.05            | 57.51216               |           |            |
| 35       | $2s^{2}2p^{3}3p^{2}$                               | <sup>-</sup> D <sub>5/2</sub>     |                        | 57.46957              | 57.437.29            | 57.530.05              |           |            |
| 36       | $2s^{2}2p^{3}3p^{2}$                               | $^{-}D_{1/2}$                     |                        | 57.931.00             | 57.87458             | 57.965 58              |           |            |
| 3/       | $2s^{2}2p^{3}3p^{2}$                               | <sup>-</sup> S <sub>3/2</sub>     |                        | 57.96240              | 57.91773             | 58.01194               |           |            |
| 38       | $2s^{2}2p^{3}3s3d$                                 | $^{4}P_{1/2}$                     |                        | 58.031.32             | 57.93888             | 58.029 /6              |           |            |
| 39       | $2s^{2}2p^{3}3s3d$                                 | $^{2}P_{3/2}$                     |                        | 58.100.48             | 58.005.38            | 58.096.16              |           |            |
| 40       | $2s^{2}2p^{3}3p^{2}$                               | <sup>2</sup> F <sub>5/2</sub>     |                        | 58.182.27             | 58.12/51             | 58.184.95              |           |            |
| 41       | $2s^{2}2p^{3}3p^{2}$                               | $^{+}D_{3/2}$                     |                        | 58.196 /2             | 58.095 55            | 58.20798               |           |            |
| 42       | $2s^{2}2p^{2}3s3d$                                 | <sup>4</sup> P                    | 59 257 20              | 58.19/3/              | 58.141.50            | 58.219.59              | 0.027.46  | 0 120 26   |
| 45       | $2s^{2}2p^{2}3s3d$                                 | 4E                                | 38.237 50              | 58 240 82             | 59 161 02            | 58 247 24              | -0.03740  | -0.13930   |
| 44       | $2s^2 2p^2 3s 3u^2$                                | Γ <sub>7/2</sub><br>2 <b>5</b>    |                        | 58 262 04             | 58 211 80            | 58 200 62              |           |            |
| 45       | $2s^{-}2p^{-}3p^{-}$                               | $-S_{1/2}$                        | 50 275 77              | 58.203.94             | 58.211.89            | 58.300.03              | 0.051.64  | 0 121 01   |
| 40       | $2s^2 2p^2 3s 3u^2$                                | <sup>2</sup> D                    | 38.57577               | 58 208 17             | 58 267 42            | 58.529.55<br>58.427.01 | -0.031 04 | -0.13191   |
| 47       | 28 2p 5p                                           | $^{2}D_{3/2}$                     |                        | 58 427 14             | 59 242 52            | 58 452 25              |           |            |
| 40       | $2s^{2}2p^{2}3s3d$                                 | $^{-}D_{3/2}$                     | 59 501 57              | 36.42/14<br>59/17/11  | 58 205 64            | 58.435.23              | 0.047.46  | 0 125 02   |
| 49<br>50 | 2s 2p 3s3u<br>$2s^2 2p^5 3p^2$                     | $^{2}D^{7/2}$                     | 36.32137               | 58 490 76             | 59 429 27            | 58 507 28              | -0.04740  | -0.123 93  |
| 50       | $2s^2 2p^2 3p^2$                                   | $D_{5/2}$                         | 50 540 01              | 58 500 26             | 58 422 42            | 58.507.20              | 0.049.55  | 0 126 40   |
| 52       | $2s^{2}p^{5}3s^{2}d$                               | P <sub>3/2</sub><br>2E            | 36.346 91              | 58 502 82             | 58 454 02            | 58.55072               | -0.048 33 | -0.12049   |
| 52       | 28 2p 3830<br>28 <sup>2</sup> 2p <sup>5</sup> 2s2d | <sup>1</sup> 5/2<br>2 <b>D</b>    | 58 520 69              | 58 546 72             | 58 180 20            | 58 565 72              | 0.016.05  | _0.050.30  |
| 55       | $2s^2 2p^5 3s 3d$                                  | ${}^{\Gamma_{1/2}}_{2\mathbf{D}}$ | 58 64015               | 58 72207              | 58 662 24            | 58 742 15              | 0.010.03  | -0.03039   |
| 55       | 28 2p 3830<br>28 <sup>2</sup> 2p <sup>5</sup> 2s2d | <sup>4</sup> D                    | 30.04913               | 58 812 05             | 58 760 00            | 58 825 81              | 0.074 02  | 0.015 19   |
| 55       | 25 2p 5550<br>$2s^2 2p^5 2s 2d$                    | $^{4}D$                           | 58 096 22              | 50.01393              | 50.700.90            | 50.033.04              | 0 126 42  | 0.056.02   |
| 50       | 28 2p 3830                                         | 4 <b>E</b>                        | 30.700 32              | 50 22/ 27             | 59.04524<br>50 11077 | 50 206 27              | 0.12042   | 0.05092    |
| 58       | 28 2p 3830<br>28 <sup>2</sup> 2n <sup>5</sup> 383d | ${}^{13/2}_{2E_{r}}$              | 58 731 16              | 59.22457<br>59.22457  | 59.14077             | 59.20057<br>59.20057   | 0 403 83  | 0 403 81   |
| 50       | 20 2p 3000                                         | <sup>4</sup> D                    | 50.751.10              | 59.22499<br>50.250.61 | 59.15497             | 59.22141               | 0.475 05  | _0.007.55  |
| 60       | 28 2p 3830<br>28 <sup>2</sup> 2n <sup>5</sup> 282d | $^{2}D_{-}$                       | 59.200.00<br>58.00/ 20 | 59.20001              | 59.155.05            | 59.233.02              | 0.000.05  | 0.097.55   |
| 61       | 25 2p 5550<br>25 <sup>2</sup> 2n <sup>5</sup> 2o2d | ${}^{2}\mathbf{F}_{-}$            | 50 387 77              | 59 251 49             | 59.20+74             | 59 337 67              | _0.03570  | _0 135 00  |
| 01       | 25 2p 555u                                         | <b>⊥</b> ″//2                     | 57.30141               | 57.551 40             | 51.451 51            | 57.554.04              | 0.05577   | 0.155 90   |

| Table 1. (Continued.) |                                        |                                                 |           |           |           |            |          |            |
|-----------------------|----------------------------------------|-------------------------------------------------|-----------|-----------|-----------|------------|----------|------------|
| Index                 | Configuration                          | $^{2S+1}L_J$                                    | NIST      | AS        | GRASP     | FAC        | AS–NIST  | GRASP-NIST |
| 62                    | $2s^22p^53p^2$                         | ${}^{2}P_{1/2}$                                 |           | 59.41694  | 59.34593  | 59.415 07  |          |            |
| 63                    | $2s^22p^53s3d$                         | ${}^{2}D_{5/2}$                                 | 59.378 16 | 59.421 56 | 59.34082  | 59.428 44  | 0.043 40 | -0.03734   |
| 64                    | $2s^22p^53p^2$                         | ${}^{2}\mathbf{P}_{1/2}$                        |           | 59.52244  | 59.47971  | 59.557 88  |          |            |
| 65                    | $2s^22p^53p^2$                         | ${}^{2}P_{3/2}$                                 |           | 59.59573  | 59.55298  | 59.631 94  |          |            |
| 66                    | $2s^22p^53s3d$                         | ${}^{2}D_{3/2}$                                 |           | 59.73085  | 59.688 22 | 59.74983   |          |            |
| 67                    | $2s^22p^53s3d$                         | ${}^{2}\mathbf{P}_{1/2}$                        | 59.90670  | 59.95897  | 59.95160  | 60.011 29  | 0.05227  | 0.044 90   |
| 68                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}D_{1/2}$                                 |           | 60.133 69 | 60.046 11 | 60.134 89  |          |            |
| 69                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}D_{3/2}$                                 |           | 60.206 90 | 60.118 29 | 60.19617   |          |            |
| 70                    | 2s <sup>2</sup> 2p <sup>5</sup> 3s3d   | ${}^{2}F_{5/2}$                                 | 59.74267  | 60.229 59 | 60.128 42 | 60.207 05  | 0.48692  | 0.38575    |
| 71                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}D_{5/2}$                                 |           | 60.321 95 | 60.23238  | 60.320 59  |          |            |
| 72                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}G_{7/2}$                                 |           | 60.437 67 | 60.35233  | 60.438 39  |          |            |
| 73                    | $2s^22p^53p3d$                         | ${}^{4}G_{9/2}$                                 |           | 60.462 85 | 60.373 02 | 60.462 92  |          |            |
| 74                    | $2s^22p^53s3d$                         | ${}^{2}P_{3/2}$                                 | 60.098 06 | 60.465 53 | 60.402 30 | 60.471 52  | 0.367 47 | 0.304 24   |
| 75                    | $2s^22p^53p3d$                         | ${}^{4}D_{7/2}$                                 |           | 60.475 14 | 60.385 02 | 60.473 72  |          |            |
| 76                    | $2s^22p^53p3d$                         | ${}^{4}G_{11/2}$                                |           | 60.504 04 | 60.41011  | 60.50021   |          |            |
| 77                    | $2s^22p^53p3d$                         | ${}^{2}D_{5/2}$                                 |           | 60.525 99 | 60.447 77 | 60.53085   |          |            |
| 78                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{2}P_{3/2}$                                 |           | 60.57279  | 60.48675  | 60.573 93  |          |            |
| 79                    | $2s^22p^53p3d$                         | ${}^{4}F_{5/2}$                                 |           | 60.634 53 | 60.556 05 | 60.637 74  |          |            |
| 80                    | $2s^22p^53p3d$                         | ${}^{2}F_{7/2}$                                 |           | 60.638 82 | 60.548 20 | 60.641 32  |          |            |
| 81                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{2}P_{1/2}$                                 |           | 60.69241  | 60.601 83 | 60.693 57  |          |            |
| 82                    | $2s^22p^53p3d$                         | ${}^{2}G_{7/2}$                                 |           | 60.743 57 | 60.67077  | 60.75621   |          |            |
| 83                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}P_{1/2}$                                 |           | 60.835 23 | 60.735 33 | 60.823 00  |          |            |
| 84                    | $2s^22p^53p3d$                         | ${}^{4}F_{9/2}$                                 |           | 60.840 00 | 60.768 30 | 60.85278   |          |            |
| 85                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}P_{3/2}$                                 |           | 60.865 06 | 60.77171  | 60.857 69  |          |            |
| 86                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}S_{3/2}$                                 |           | 60.908 03 | 60.81615  | 60.900 62  |          |            |
| 87                    | $2s^22p^53p3d$                         | ${}^{4}D_{7/2}$                                 |           | 60.923 32 | 60.82874  | 60.914 66  |          |            |
| 88                    | $2s^22p^53p3d$                         | ${}^{4}F_{5/2}$                                 |           | 60.943 96 | 60.853 44 | 60.93610   |          |            |
| 89                    | $2s^22p^53p3d$                         | ${}^{4}P_{5/2}$                                 |           | 60.953 86 | 60.859 14 | 60.941 13  |          |            |
| 90                    | $2s^22p^53p3d$                         | ${}^{2}D_{3/2}$                                 |           | 60.986 20 | 60.91494  | 60.993 07  |          |            |
| 91                    | $2s^22p^33p3d$                         | ${}^{2}P_{3/2}$                                 |           | 61.057 53 | 60.96448  | 61.04079   |          |            |
| 92                    | $2s^22p^33p3d$                         | ${}^{4}F_{9/2}$                                 |           | 61.06044  | 60.95573  | 61.04687   |          |            |
| 93                    | $2s^22p^33p3d$                         | ${}^{4}D_{5/2}$                                 |           | 61.09688  | 61.01801  | 61.097 55  |          |            |
| 94                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{4}F_{7/2}$                                 |           | 61.12962  | 61.037 64 | 61.121 45  |          |            |
| 95                    | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d   | ${}^{2}F_{5/2}$                                 |           | 61.147 34 | 61.063 69 | 61.14624   |          |            |
| 96                    | $2s^22p^33p3d$                         | ${}^{4}D_{7/2}$                                 |           | 61.169 98 | 61.084 98 | 61.162.28  |          |            |
| 97                    | 2s <sup>2</sup> 2p <sup>3</sup> 3p3d   | ${}^{2}P_{1/2}$                                 |           | 61.18777  | 61.11025  | 61.18841   |          |            |
| 98                    | 2s <sup>2</sup> 2p <sup>3</sup> 3p3d   | $^{2}D_{3/2}$                                   |           | 61.254 89 | 61.18234  | 61.261 36  |          |            |
| 99                    | $2s^22p^33p3d$                         | $^{4}D_{5/2}$                                   |           | 61.27670  | 61.202.05 | 61.28070   |          |            |
| 100                   | $2s^{2}2p^{3}3p3d$                     | $^{2}D_{3/2}$                                   |           | 61.329.68 | 61.248 93 | 61.32473   |          |            |
| 101                   | $2s^{2}2p^{3}3p3d$                     | G <sub>5/2</sub>                                |           | 61.340.88 | 61.245.85 | 61.331.04  |          |            |
| 102                   | $2s^{2}2p^{3}3p3d$                     | $^{7}D_{1/2}$                                   |           | 61.412.49 | 61.353.21 | 61.423 49  |          |            |
| 103                   | $2s^{2}2p^{3}3p3d$                     | <sup>2</sup> F <sub>5/2</sub>                   |           | 61.433.93 | 61.344 45 | 61.425 16  |          |            |
| 104                   | $2s^{2}2p^{3}3p3d$                     | ${}^{2}S_{1/2}$                                 |           | 61.494 22 | 61.424.43 | 61.488 94  |          |            |
| 105                   | $2s^{2}2p^{3}3p3d$                     | ${}^{+}\Gamma_{3/2}$                            |           | 61.499.58 | 61.402.08 | 61.50040   |          |            |
| 100                   | $2s^{-}2p^{-}3p3d$                     | ${}^{2}\Gamma_{7/2}$                            |           | 61.51/01  | 01.422.21 | 01.300 /0  |          |            |
| 107                   | $2s^{-}2p^{-}3p3d$                     | <sup>-</sup> F <sub>5/2</sub><br><sup>2</sup> E |           | 01.37211  | 01.4/34/  | 01.33/43   |          |            |
| 108                   | $2s^{2}2p^{3}3p3d$                     | <sup>-</sup> F <sub>7/2</sub>                   |           | 61.650 /9 | 61.560.56 | 61.640.55  |          |            |
| 109                   | $2s^{-}2p^{-}3p3d$                     | <sup>-</sup> G <sub>9/2</sub><br>4D             |           | 01.0/8.33 | 01.381 /3 | 01.003 /0  |          |            |
| 110                   | $2s^{2}2p^{2}sp3d$                     | $^{2}D_{3/2}$                                   |           | 61.09/01  | 61.602.24 | 01.08/24   |          |            |
| 111                   | $2s^{2}p^{5}p^{5}d$                    | 4E                                              |           | 61 826 06 | 61 721 11 | 61 202 25  |          |            |
| 112                   | $2s^{2}p^{5}p^{5}d$                    | г <sub>3/2</sub><br>2р                          |           | 61 808 47 | 61 800 27 | 61 874 50  |          |            |
| 113                   | $2s^2 2p^5 3p 3d$                      | $^{2}D_{5/2}$                                   |           | 61 061 61 | 61 865 16 | 61 030 45  |          |            |
| 114                   | $2s^2 2p^5 3p 3d$                      | 4 <b>D</b>                                      |           | 61.901.01 | 61 880 70 | 61 062 75  |          |            |
| 115                   | $2s^2 2p^5 3p 3d$<br>$2s^2 2p^5 3p 3d$ | ${}^{2}F_{\pi}$                                 |           | 61 990 48 | 61 899 80 | 61 968 94  |          |            |
| 117                   | $2s^2 2p^5 3p3d$                       | ${}^{17/2}_{2}$                                 |           | 62 008 86 | 61 914 57 | 61 987 90  |          |            |
| 118                   | $2s^{2}p^{5}3n^{3}d$                   | $^{4}P_{e}$                                     |           | 62 044 87 | 61 9/8 88 | 62 020 / 1 |          |            |
| 110                   | $2s^2 2p^5 3p3d$                       | <sup>4</sup> D <sub>1</sub> /2                  |           | 62.044.07 | 61 070 08 | 62.02041   |          |            |
| 120                   | $2s^{2}p^{5}3p3d$                      | ${}^{4}D_{2}$                                   |           | 62.005.20 | 61 978 02 | 62.05719   |          |            |
| 120                   | $2s^2 2p^5 3p 3d$<br>$2s^2 2n^5 3n 3d$ | $^{2}F_{7/2}$                                   |           | 62 105 21 | 61 996 87 | 62.000.09  |          |            |
| 122                   | $2s^2 2p^5 3p 3d$<br>$2s^2 2n^5 3n 3d$ | ${}^{2}D_{5/2}$                                 |           | 62 115 42 | 62 021 63 | 62.096.05  |          |            |
| 123                   | $2s^2 2p^5 3p 3d$<br>$2s^2 2n^5 3n 3d$ | ${}^{2}D_{2}/2$                                 |           | 62 123 17 | 62.050.18 | 62.113.36  |          |            |
| 140                   | 25 2P 5P50                             | - 3/2                                           |           | 02.125 17 | 02.05010  | 02.115.50  |          |            |

|       | Table 1. (Commudel.)                 |                          |      |           |           |           |         |            |
|-------|--------------------------------------|--------------------------|------|-----------|-----------|-----------|---------|------------|
| Index | Configuration                        | $^{2S+1}L_J$             | NIST | AS        | GRASP     | FAC       | AS–NIST | GRASP-NIST |
| 124   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | $^{2}D_{3/2}$            |      | 62.29418  | 62.276 80 | 62.32294  |         |            |
| 125   | $2s^22p^53p3d$                       | ${}^{2}D_{5/2}$          |      | 62.33871  | 62.283 42 | 62.34267  |         |            |
| 126   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{2}\mathbf{P}_{1/2}$ |      | 62.36979  | 62.318 59 | 62.379 20 |         |            |
| 127   | $2s^22p^53p3d$                       | ${}^{2}P_{3/2}$          |      | 62.54002  | 62.504 35 | 62.55742  |         |            |
| 128   | $2s^22p^53p3d$                       | ${}^{2}S_{1/2}$          |      | 62.71307  | 62.700 84 | 62.74891  |         |            |
| 129   | $2s^22p^53p3d$                       | ${}^{2}G_{7/2}$          |      | 62.83419  | 62.72376  | 62.79211  |         |            |
| 130   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{2}F_{5/2}$          |      | 62.893 39 | 62.833 99 | 62.88208  |         |            |
| 131   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{4}P_{3/2}$          |      | 62.941 92 | 62.86270  | 62.92242  |         |            |
| 132   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{2}P_{1/2}$          |      | 63.108 50 | 63.03638  | 63.08932  |         |            |
| 133   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{2}D_{3/2}$          |      | 63.27928  | 63.21048  | 63.295 28 |         |            |
| 134   | 2s <sup>2</sup> 2p <sup>5</sup> 3p3d | ${}^{2}D_{5/2}$          |      | 63.358 11 | 63.273 58 | 63.368 69 |         |            |

Table 1 (Continued)

<sup>a</sup> http://physics.nist.gov/PhysRefData/ASD/levels\_form.html

<sup>b</sup> AUTOSTRUCTURE (present work).

<sup>c</sup> Aggarwal and Keenan (2007).

<sup>d</sup> Present work.



**Figure 1.** Comparisons of energy levels from the present AUTOSTRUCTURE (AS), GRASP (AK07) and FAC (present work) calculations. (a) Differences relative to the available experimental values (NIST database) versus the NIST data. Opened and filled square symbols correspond to the GRASP results, without and with the inclusion of Breit and QED effects, respectively (AK07); triangle symbols indicate the present FAC results; opened circles denote the present AS results. (b) The differences relative to the present AS results versus the present AS results versus the present AS results. Symbols as before. The dashed and dotted lines correspond to agreement within 0.1% and 0.5%, respectively.

19/20, 26/27, 62/63 etc. Our new assignment eliminates the mis-order compared to the NIST values, as shown in table 1.

We also performed a structure calculation with the flexible atomic code (FAC) of Gu (2003), which shows slightly better agreement with our AUTOSTRUCTURE results than those from GRASP. Both are systematically higher than GRASP's, FAC more so. The results of the three different calculations are compiled in table 1, along with NIST data.

In the scatter plot of figure 2, we compare radiative decay rates  $(A_{i,j}$  for the  $i \leftarrow j$  transition) for all electric and magnetic multipoles from our AUTOSTRUCTURE calculation with the GRASP data from AK07 for decays to the lowest 5-lying levels. Electric dipole line strengths are also shown. Rates for some electric dipole transitions to the ground state are listed in table 2. For two-thirds of the transitions, the results of the two calculations agree to within 20%, and 95% of transitions agree to within a factor of 2. We also note that there are differences of more than a factor of 2, and up to an order of magnitude for few transitions, which may be due to

the mismatch of the mapping of energy levels according to the parity, total angular momentum and energy order scheme in the two different calculations. Overall, the agreement is satisfactory.

#### 3. Scattering

For the present case of Fe<sup>15+</sup>, the resonance state configurations are of the form  $[2s, 2p]^{q-1}[3s, 3p, 3d]^2nl$  (here  $q = 8, n \ge 3$ ), and they can decay via the following channels:

$$[2s, 2p]^{q-1}[3s, 3p, 3d]^2 nl \rightarrow [2s, 2p]^q[3s, 3p, 3d] + e^-$$
 (1)

 $\rightarrow [2s, 2p]^q nl + e^-$  (2)

 $\rightarrow [2s, 2p]^{q}[3s, 3p, 3d]^{2} + h\nu$  (3)

$$\rightarrow$$
 [2s, 2p]<sup>q</sup>[3s, 3p, 3d]nl + hv. (4)



**Figure 2.** Comparison of radiative decay rates,  $A_{i,j}$ , (all multipoles) and electric dipole line strengths (*S*) from the present AUTOSTRUCTURE (AS) calculation and the GRASP calculation by AK07 for transitions to the lowest five levels. Solid and dashed lines correspond to agreement within 20% and a factor of 2, respectively. Transitions with differences of more than a factor of 2 are marked by the transition label. (In the case of the rates, labelling is restricted to strong rates:  $\gtrsim 10^9 \text{ s}^{-1}$ .)



**Figure 3.** ICFT *R*-matrix excitation collision strengths for the  $2s^22p^63s^2S_{1/2}-2s^22p^53s^2P_{3/2}$  transition, without damping (top) and Auger-plus-radiation damping (bottom). The circle symbols represent the results of our FAC DW calculation.

The participator LM*n* Auger pathway (1) scales as  $n^{-3}$  and is automatically described in the *R*-matrix method by the contribution to the close-coupling expansion from the righthand side of (1). However, the spectator LMM Auger pathway (2) is independent of *n* and only low-*n* resonances ( $n \le 3$ here) can be included in the close-coupling expansion. But, the spectator Auger pathway dominates for n > 3. The last two channels, (3) and (4), represent radiation damping. These Auger and radiation damping processes reduce the resonant enhancement of the excitation collision strengths and can be expected to be especially important for inner-shell transitions due to the large energy jump.

For the Auger process, the participator Auger channel can be included explicitly within the *R*-matrix close-coupling expansion, whereas the spectator Auger decay cannot easily be included for the higher-*n* resonances as it requires the inclusion of target states with nl (with n > 3) orbitals. (So, only the

Table 2. Electric dipole radiative rates.

| i | j  | AS <sup>a</sup>        | <b>GRASP</b> <sup>b</sup> | FAC <sup>c</sup> |
|---|----|------------------------|---------------------------|------------------|
| 1 | 2  | 6.071(09) <sup>d</sup> | 6.283(09)                 | 6.303(09)        |
| 1 | 3  | 7.542(09)              | 7.834(09)                 | 7.884(09)        |
| 1 | 6  | 8.553(11)              | 8.202(11)                 | 6.465(11)        |
| 1 | 7  | 8.317(11)              | 8.450(11)                 | 6.666(11)        |
| 1 | 26 | 9.461(10)              | 9.327(10)                 | 8.946(10)        |
| 1 | 27 | 3.088(11)              | 3.087(11)                 | 2.991(11)        |
| 1 | 30 | 1.199(11)              | 1.187(11)                 | 1.188(11)        |
| 1 | 33 | 8.400(10)              | 8.529(10)                 | 8.788(10)        |
| 1 | 36 | 6.020(10)              | 5.136(10)                 | 6.060(10)        |
| 1 | 37 | 2.067(10)              | 1.664(10)                 | 2.180(10)        |
| 1 | 38 | 4.509(10)              | 4.774(10)                 | 4.486(10)        |
| 1 | 39 | 9.727(10)              | 9.867(10)                 | 9.301(10)        |
| 1 | 41 | 8.636(09)              | 6.427(09)                 | 7.977(09)        |
| 1 | 47 | 2.700(10)              | 4.872(09)                 | 5.000(10)        |
| 1 | 48 | 3.379(10)              | 4.862(10)                 | 5.315(09)        |
| 1 | 51 | 1.473(10)              | 5.425(08)                 | 1.757(08)        |
| 1 | 53 | 1.161(12)              | 1.025(12)                 | 1.000(12)        |
| 1 | 54 | 4.042(12)              | 3.670(12)                 | 3.545(12)        |
| 1 | 55 | 3.413(12)              | 3.161(12)                 | 3.205(12)        |
| 1 | 56 | 1.197(12)              | 7.926(11)                 | 9.465(11)        |
| 1 | 57 | 2.133(11)              | 2.632(11)                 | 2.790(11)        |
| 1 | 62 | 3.950(11)              | 5.031(11)                 | 4.780(11)        |
| 1 | 64 | 7.181(10)              | 4.447(10)                 | 1.723(11)        |
| 1 | 65 | 2.730(12)              | 2.170(12)                 | 3.221(12)        |
| 1 | 66 | 1.217(13)              | 1.359(13)                 | 1.145(13)        |
| 1 | 67 | 2.254(13)              | 2.461(13)                 | 2.260(13)        |
| 1 | 74 | 7.338(12)              | 9.012(12)                 | 8.160(12)        |

<sup>a</sup> AUTOSTRUCTURE (present work).

<sup>b</sup> Aggarwal and Keenan (2007).

<sup>c</sup> Present work.

<sup>d</sup> (m) denotes  $\times 10^m$ .

Auger damping from n = 3 resonances has been included in the work of AK08.)

We employ the *R*-matrix intermediate-coupling frame transformation (ICFT) method of Griffin *et al* (1998) allowing for both Auger-plus-radiation damping via the complex optical potential, as described above. We used 25 continuum basis per orbital angular momentum. Contributions from partial waves



**Figure 4.** Scatter plot of ratios of 'undamped' effective collision strengths from the present ICFT *R*-matrix calculation and the DARC calculation of Aggarwal and Keenan (2008) as a function of the present AS (a) line strength (*S*) (for dipole transitions) and (b) Born-limit (non-dipole allowed transitions). 'o' and '•' symbols denote transitions at  $5.12 \times 10^4$  K with threshold energy differences between ICFT and AK08 calculations being less than and greater than 0.2 Ryd, respectively. ' $\Box$ ' symbols: corresponding results at  $1.58 \times 10^7$  K. Solid and dashed lines correspond to agreement within 20% and a factor of 2, respectively. Dotted lines mark where the ratios agree.



**Figure 5.** Collision strengths ( $\Omega$ ) from the ICFT *R*-matrix (present work), DARC (AK08) and JAJOM (Bautista (2000): B00) calculations. (a) For 1–15 ( $2s^22p^63s^2S_{1/2}-2s^22p^53s3p^2S_{1/2}$ ) transition line. (b) 1–21 ( $2s^22p^63s^2S_{1/2}-2s^22p^53s3p^2D_{5/2}$ ) transition line. 'o' denote DW values obtained from FAC (present work).

up to J = 12 were included in the exchange calculation. The contributions from higher partial waves up to J = 42 were included via a non-exchange calculation. A 'top-up' was used to complete the partial collision strength sum over higher *J*-values by using the Burgess sum rule (Burgess 1974) for dipole transitions and a geometric series for the non-dipole transitions

(Badnell and Griffin 2001). In the outer-region calculation, we used an energy mesh step of  $2 \times 10^{-6}z^2$  Ryd through the resonance region (from threshold to 72 Ryd), where z is the residual charge of the ion (15 in the present case). Beyond the resonance region (from 72 to 450 Ryd), for the exchange calculation, an energy step of  $2 \times 10^{-4}z^2$  Ryd was used. For

the non-exchange calculation, we used a step of  $1 \times 10^{-3} z^2$ Ryd over the entire energy range. The calculation was carriedout up to an incident energy of 450 Ryd. We used the infinite energy Born limits (non-dipole allowed) and line-strengths (dipole-allowed) from AUTOSTRUCTURE so that the collision strengths could be interpolated at any desired energy when Maxwell-averaging (see Whiteford *et al* (2001)).

Observed energies were used for the lowest 25-lying levels. For those levels missing from the NIST database, we first derived the mean value of differences between our level energies and the corresponding NIST values for available levels of the  $2s^22p^53s^3p$  configuration, then we adjusted our calculated level energies by this mean value. These observed and adjusted energies are employed in the MQDT formula which converts from the slowly-varying-withenergy unphysical K-matrix to the strongly (resonant) energydependent physical K-matrix. This ensures that Rydberg series of resonances converge on the observed thresholds. In addition, low-lying (non-correlation) resonances can be expected to be positioned accurately just above excitation thresholds. A similar procedure has been demonstrated to be very accurate in the study of dielectronic recombination, where there is much precise experimental cross-section data with which to compare with (see Savin et al (2002), for example).

In figure 3, we show the collision strength of the  $2s^22p^63s^2S_{1/2}-2s^22p^53s^{2}P_{3/2}$  transition line, both without damping<sup>4</sup> as well as with Auger-plus-radiation damping. The reduction due to the effect of Auger-plus-radiation damping is very apparent on resonances, especially at higher energies, and can be up to two orders of magnitude. Some resonances are completely damped. The damping is dominated by far (~90%) by the Auger process for n > 3. We also performed a distorted-wave (DW) calculation by using the FAC code with the same configuration interactions as in our 134-level ICFT *R*-matrix calculation. For this 1–6 transition, the DW data is lower than the background value obtained from *R*-matrix by 25% at 8 Ryd.

Generally speaking, Maxwell-averaged effective collision strengths ( $\Upsilon$ ) have a more extensive application than the ordinary collision strengths ( $\Omega$ ), in addition to the advantage of a much smaller storage size. Test calculations show that the effective collision strengths have converged (to within 1% for 87% of transitions) down to a temperature of  $5.12 \times 10^4$  K on using an energy mesh step of  $2 \times 10^{-6}z^2$  Ryd. At high temperatures, effective collision strengths have converged on using a much coarser mesh step of  $5 \times 10^{-6}z^2$  Ryd. So, in our following work, we adopt an energy step of  $2 \times 10^{-6}z^2$  Ryd, which is smaller than that adopted by AK08, by a factor of 2.

#### 4. Results and discussions

## 4.1. Comparison of undamped results: the ICFT R-matrix versus DARC

We make comparison with the results of AK08 calculated by using DARC. We make contrasting comparisons at a low



**Figure 6.** Comparison of the effective collision strengths for the  $2s^22p^63s^2S_{1/2}-2s^22p^53p^2 ^4P_{5/2}$  transition (1–28). The ICFT *R*-matrix and FAC DW are present results. AK08 denotes the DARC results of Aggarwal and Keenan (2008).

**Table 3.** Excitation energies (Ryd) used for dipole transitions with large differences at low temperatures between the ICFT and DARC effective collision strengths.

| i | j  | <b>ICFT</b> <sup>a</sup> | DARC <sup>b</sup> | ICFT-DARC |
|---|----|--------------------------|-------------------|-----------|
| 1 | 6  | 52.60745                 | 52.31155          | 0.29589   |
| 1 | 7  | 53.51871                 | 53.22823          | 0.29048   |
| 2 | 8  | 51.74576                 | 51.51313          | 0.23263   |
| 2 | 11 | 52.05286                 | 51.83545          | 0.21741   |
| 2 | 12 | 52.15916                 | 51.95366          | 0.20550   |
| 2 | 15 | 52.53278                 | 52.28154          | 0.25124   |
| 2 | 17 | 52.96107                 | 52.73537          | 0.22570   |
| 2 | 22 | 53.32558                 | 53.01148          | 0.31410   |
| 2 | 23 | 53.92686                 | 53.69872          | 0.22814   |
| 2 | 24 | 54.12749                 | 53.85740          | 0.27009   |
| 3 | 8  | 51.55486                 | 51.33900          | 0.21586   |
| 3 | 9  | 51.79511                 | 51.57144          | 0.22367   |
| 3 | 11 | 51.86196                 | 51.62987          | 0.23209   |
| 3 | 13 | 52.08980                 | 51.86496          | 0.22485   |
| 3 | 14 | 52.07754                 | 51.86496          | 0.21259   |
| 3 | 15 | 52.34188                 | 52.10219          | 0.23969   |
| 3 | 17 | 52.77017                 | 52.55290          | 0.21727   |
| 3 | 19 | 52.91628                 | 52.67441          | 0.24187   |
| 3 | 22 | 53.13468                 | 52.82709          | 0.30759   |
| 3 | 23 | 53.73596                 | 53.50953          | 0.22643   |
| 3 | 24 | 53.93659                 | 53.66709          | 0.26949   |
| 4 | 6  | 46.45183                 | 46.11676          | 0.33507   |
| 4 | 7  | 47.36309                 | 47.04529          | 0.31780   |
| 5 | 6  | 46.42536                 | 46.09344          | 0.33192   |
|   |    |                          |                   |           |

<sup>a</sup> Present work.

<sup>b</sup> Aggarwal and Keenan (2008).

temperature  $(5.12 \times 10^4 \text{ K})$  and a high one  $(1.58 \times 10^7 \text{ K})$  as shown in figure 4, in which transitions from the lowest 5-lying levels to all higher levels (total 655 transitions) are plotted for dipole allowed (211) and non-dipole allowed (426) transitions. In intermediate coupling, spin–orbit mixing means that very few transitions that were forbidden in *LS*-coupling remain so. Instead, they have small but non-zero line strengths or infinite energy Born limits. Indeed, only 18 transitions from the lowest 5-lying levels are strictly forbidden according to this definition (and are not shown in figure 4).

<sup>&</sup>lt;sup>4</sup> Of course, n = 3 Auger damping is still present here as it is intrinsic to the close-coupling expansion.



**Figure 7.** Left-hand panels: scatter plots showing the ratio of the effective collision strengths ( $\Upsilon$ ) with Auger-plus-radiation damping (Upsilon(A+R)) to without damping (Upsilon<sub>U</sub>) as a function of (a) line strength, (c) infinite temperature Born limit, (e) undamped  $\Upsilon$  at the highest tabulated temperature ( $5.12 \times 10^7$  K), for dipole, non-dipole allowed and forbidden transitions, respectively. Right-hand panels: percentage of corresponding transitions where the effect of damping exceeds 5%, 10%, 15%, 20% and 30%.

For most transitions, our undamped ICFT *R*-matrix results agree with the DARC ones of AK08, to within 20% over the entire temperature range. At the low temperature  $(5.12 \times 10^4$  K), there are 35.5% of dipole and 20.7% of non-dipole allowed transitions with a difference of over 20%. This difference decreases to 25.1% of dipole and 13.8% of non-dipole allowed transitions at the high temperature  $(1.58 \times 10^7 \text{ K})$  and at the low temperature  $(5.12 \times 10^4 \text{ K})$ . Here, for dipole transitions, we find that there is a strong correlation between the ratio of the ICFT to DARC  $\Upsilon$  values and the ratio of the AS to GRASP line strengths. The ICFT/DARC agreement for non-dipole allowed transitions should also be strongly correlated with the atomic structure—this time for the infinite energy Born limit, but we do not have such results for GRASP.

In figure 4, we identify a group of dipole and nondipole allowed transitions (see table 3) for which the ratio of line strengths (electric dipole only) is close to unity but the DARC effective collision strengths are systematically larger than those obtained from ICFT, at the lower temperature. This is probably due to the smaller excitation energies used by AK08 (recall, we adjusted to observed) which means that there are additional resonances present at lower energies/temperatures

**Table 4.** Undamped (U) and Auger-plus-radiation damped (A+R) effective collision strengths  $\Upsilon_{i,j}$ , at the given temperatures.

|   |    | $5.12 \times 10^4 \text{ K}$ |          | 5.12 ×   | 10 <sup>5</sup> K | $5.12 \times 10^6 \text{ K}$ |          |
|---|----|------------------------------|----------|----------|-------------------|------------------------------|----------|
| i | j  | U                            | A+R      | U        | A+R               | U                            | A+R      |
| 1 | 2  | $1.38(+0)^{a}$               | 1.37(+0) | 1.22(+0) | 1.22(+0)          | 1.51(+0)                     | 1.51(+0) |
| 1 | 3  | 2.28(+0)                     | 2.30(+0) | 2.40(+0) | 2.40(+0)          | 2.99(+0)                     | 2.99(+0) |
| 1 | 4  | 1.27(-1)                     | 1.27(-1) | 1.28(-1) | 1.28(-1)          | 1.46(-1)                     | 1.43(-1) |
| 1 | 5  | 1.90(-1)                     | 1.90(-1) | 1.92(-1) | 1.92(-1)          | 2.19(-1)                     | 2.14(-1) |
| 1 | 6  | 1.56(-1)                     | 5.25(-2) | 8.28(-2) | 3.08(-2)          | 1.64(-2)                     | 9.04(-3) |
| 1 | 7  | 8.20(-2)                     | 3.67(-2) | 4.12(-2) | 1.79(-2)          | 8.38(-3)                     | 4.87(-3) |
| 1 | 8  | 5.58(-2)                     | 3.08(-2) | 2.17(-2) | 1.43(-2)          | 6.27(-3)                     | 5.29(-3) |
| 1 | 9  | 5.32(-2)                     | 2.88(-2) | 2.06(-2) | 1.21(-2)          | 5.56(-3)                     | 4.39(-3) |
| 1 | 10 | 5.39(-2)                     | 3.69(-2) | 2.12(-2) | 1.54(-2)          | 6.28(-3)                     | 5.48(-3) |
| 1 | 11 | 3.14(-2)                     | 1.67(-2) | 1.34(-2) | 7.34(-3)          | 4.12(-3)                     | 3.26(-3) |
| 1 | 12 | 1.74(-2)                     | 7.07(-3) | 7.60(-3) | 3.75(-3)          | 2.13(-3)                     | 1.60(-3) |
| 1 | 13 | 3.84(-2)                     | 1.47(-2) | 1.45(-2) | 7.08(-3)          | 4.02(-3)                     | 3.03(-3) |
| 1 | 14 | 4.00(-2)                     | 1.85(-2) | 1.67(-2) | 9.85(-3)          | 4.99(-3)                     | 4.08(-3) |
| 1 | 15 | 4.19(-2)                     | 2.27(-2) | 1.75(-2) | 1.12(-2)          | 7.94(-3)                     | 7.04(-3) |
| 1 | 16 | 1.38(-2)                     | 7.14(-3) | 6.78(-3) | 3.60(-3)          | 1.73(-3)                     | 1.25(-3) |
| 1 | 17 | 2.66(-2)                     | 1.39(-2) | 1.32(-2) | 6.97(-3)          | 3.73(-3)                     | 2.82(-3) |
| 1 | 18 | 1.51(-2)                     | 6.32(-3) | 7.76(-3) | 3.53(-3)          | 2.21(-3)                     | 1.60(-3) |
| 1 | 20 | 2.67(-2)                     | 1.39(-2) | 1.46(-2) | 7.66(-3)          | 3.66(-3)                     | 2.61(-3) |
| 1 | 19 | 3.71(-2)                     | 2.09(-2) | 1.70(-2) | 1.02(-2)          | 5.99(-3)                     | 5.00(-3) |
| 1 | 21 | 4.38(-2)                     | 2.24(-2) | 1.94(-2) | 9.99(-3)          | 5.69(-3)                     | 4.34(-3) |
| 1 | 22 | 3.45(-2)                     | 1.46(-2) | 1.59(-2) | 7.09(-3)          | 3.53(-3)                     | 2.26(-3) |
| 1 | 23 | 3.86(-2)                     | 2.63(-2) | 3.22(-2) | 2.30(-2)          | 1.90(-2)                     | 1.75(-2) |
| 1 | 24 | 2.42(-2)                     | 1.10(-2) | 1.02(-2) | 5.86(-3)          | 3.22(-3)                     | 2.62(-3) |
| 1 | 38 | 7.23(-3)                     | 3.76(-3) | 2.95(-3) | 1.83(-3)          | 1.41(-3)                     | 1.27(-3) |
| 1 | 39 | 4.26(-3)                     | 2.46(-3) | 2.36(-3) | 1.76(-3)          | 1.73(-3)                     | 1.65(-3) |
| 1 | 25 | 9.07(-2)                     | 8.37(-2) | 8.61(-2) | 8.08(-2)          | 8.35(-2)                     | 8.26(-2) |
| 1 | 43 | 7.58(-3)                     | 4.53(-3) | 2.15(-3) | 1.13(-3)          | 2.98(-4)                     | 1.71(-4) |
| 1 | 42 | 6.52(-3)                     | 3.70(-3) | 3.23(-3) | 2.05(-3)          | 1.23(-3)                     | 1.08(-3) |
| 1 | 44 | 7.51(-3)                     | 3.65(-3) | 3.01(-3) | 1.79(-3)          | 1.44(-3)                     | 1.30(-3) |
| 1 | 46 | 6.50(-3)                     | 3.02(-3) | 2.49(-3) | 1.31(-3)          | 6.90(-4)                     | 5.45(-4) |
| 1 | 48 | 5.04(-3)                     | 1.88(-3) | 1.35(-3) | 4.82(-4)          | 1.84(-4)                     | 7.99(-5) |
| 1 | 53 | 3.10(-3)                     | 1.27(-3) | 1.13(-3) | 6.25(-4)          | 5.14(-4)                     | 4.53(-4) |
| 1 | 49 | 5.05(-3)                     | 2.67(-3) | 1.65(-3) | 8.32(-4)          | 3.54(-4)                     | 2.52(-4) |
| 1 | 52 | 5.34(-3)                     | 2.47(-3) | 1.70(-3) | 7.64(-4)          | 3.08(-4)                     | 1.93(-4) |
| 1 | 54 | 3.65(-3)                     | 1.47(-3) | 1.21(-3) | 6.31(-4)          | 4.50(-4)                     | 3.82(-4) |
| 1 | 58 | 5.18(-3)                     | 2.01(-3) | 1.81(-3) | 9.03(-4)          | 5.36(-4)                     | 4.29(-4) |
| 1 | 55 | 6.96(-3)                     | 5.05(-3) | 4.61(-3) | 4.11(-3)          | 2.80(-3)                     | 2.74(-3) |
| 1 | 59 | 1.17(-2)                     | 9.16(-3) | 8.58(-3) | 7.80(-3)          | 5.53(-3)                     | 5.44(-3) |
| 1 | 56 | 5.52(-3)                     | 2.43(-3) | 2.39(-3) | 1.38(-3)          | 8.74(-4)                     | 7.50(-4) |
| 1 | 57 | 4.91(-3)                     | 1.66(-3) | 1.94(-3) | 8.33(-4)          | 5.58(-4)                     | 4.21(-4) |
| 1 | 60 | 1.27(-2)                     | 9.56(-3) | 9.18(-3) | 8.14(-3)          | 5.29(-3)                     | 5.16(-3) |
| 1 | 63 | 1.31(-2)                     | 1.04(-2) | 9.78(-3) | 8.92(-3)          | 5.89(-3)                     | 5.79(-3) |
| 1 | 61 | 1.01(-2)                     | 7.06(-3) | 6.92(-3) | 6.00(-3)          | 4.13(-3)                     | 4.02(-3) |
| 1 | 66 | 1.65(-3)                     | 5.00(-4) | 5.56(-4) | 1.51(-4)          | 7.43(-5)                     | 2.45(-5) |
| 1 | 70 | 9.28(-3)                     | 5.77(-3) | 5.58(-3) | 4.62(-3)          | 3.36(-3)                     | 3.25(-3) |
| 1 | 67 | 5.48(-3)                     | 1.67(-3) | 1.82(-3) | 8.44(-4)          | 5.88(-4)                     | 4.73(-4) |
| 1 | 74 | 5.77(-3)                     | 3.10(-3) | 3.20(-3) | 2.45(-3)          | 1.71(-3)                     | 1.62(-3) |

<sup>a</sup> (m) denotes  $\times 10^m$ .

in the AK08 data. This can be tested indirectly by looking at excitations to higher levels, which also have strong resonant contributions. For example, for the 1–28 transition (not shown) with a threshold energy difference of 0.041 Ryd, the  $\Upsilon$  values are  $7.58 \times 10^{-3}$  and  $7.61 \times 10^{-3}$ , respectively, at the low temperature.

AK08 selected the 1–15 and 1–21 transitions to reveal inadequacies of term-coupling via the JAJOM code, as used by Bautista (2000), which results in the sudden increase and/or decrease of background collision strengths when relativistic effects are included for some transitions (see figure 3 in Bautista (2000) and the bottom two panels in figure 5). This

is exactly the same inadequacy demonstrated originally by Griffin *et al* (1998) when they introduced the ICFT *R*-matrix method to solve the problem, without resorting to a full Breit–Pauli (or Dirac) calculation. AK08 conclude that this inadequacy is the reason for the large discrepancies between the results of their two calculations. In order to illustrate the inadequacy of the JAJOM method and the overestimation of AK08 at the lower temperature for some transitions (see filled circles in figure 4(a)), we compare the underlying collision strengths for 1–15 and 1–21 transitions in figure 5. We see that the background does not shift down and no sudden jumps appear in the present ICFT results, in contrast to that seen from

JAJOM—see the bottom two panels of figure 5. The background of ICFT  $\Omega$ -values show excellent agreement with the DARC ones. Our DW results obtained from FAC are also overlapped, showing an excellent agreement with the background result of the two *R*-matrix calculations. Additionally, the resonance structures in the two *R*-matrix calculations basically agree with each other. However, because the energy of  $2s^22p^53s3p^2S_{1/2}$ (15-) and  $^2D_{5/2}$  (21-) levels of the AK08's data are lower than the observed values which we use, by  $\approx 0.2$  Ryd, resonances around this region appear in the work of AK08, as shown in figure 5. So, their results are probably somewhat of an overestimate of the effective collision strengths at lower temperatures.

# 4.2. Comparison of the ICFT R-matrix results: damped versus undamped

Figure 6 shows the results of several calculations of the effective collision strength ( $\Upsilon$ ) for the  $2s^22p^63s^2S_{1/2}-2s^22p^53p^{2\,4}P_{5/2}$  transition (1–28). They demonstrate the physics we seek to describe: firstly, on comparing *R*-matrix results with our DW ones obtained with FAC, we see that the resonant enhancement is about a factor of 8 at  $2 \times 10^4$  K (typical of where Fe<sup>15+</sup> is abundant in photoionized plasmas); secondly, there is a close agreement between our present undamped ICFT *R*-matrix results and the DARC *R*-matrix ones of AK08; finally, Auger-plus-radiation damping lowers the resonance enhanced results by nearly a factor of 2, again at  $2 \times 10^4$  K.

The widespread effect of Auger-plus-radiation damping is illustrated via a scatter plot of the ratios of damped to undamped  $\Upsilon$  values for dipole (figure 7(a)), non-dipole allowed (figure 7(c)) and forbidden (figure 7(e)) transitions. We see that the reduction at the low temperature  $(5.12 \times 10^4 \text{ K})$ can be up to a factor of 3 for a few (1.3%) dipole transitions. The effect reduces with increasing of temperature and is less than 10% for 97.5% of these transitions at the high temperature  $(5.12 \times 10^7 \text{ K})$ . An illustrative way to quantify the information in the scatter plot is to count how many transitions differ by more than a given amount. In figure 7(b), we show the percentage of each class of transition where the damping effect is at least 5%, 10%, 15%, 20% and 30%. About 20% of dipole transitions show a damping effect of more than 30% at  $5.12 \times 10^4$  K. At higher temperatures, the damping becomes a smaller effect—less than 6% of dipole transitions show a >30% effect at  $2.56 \times 10^6$  K, for example. For non-dipole allowed transitions (see figure 7(c)), the damping effect can be up to a factor 3 for some transitions (2.1%) with a Born limit between  $10^{-4}$  and  $10^{-2}$  at the low temperature (5.12 × 10<sup>4</sup> K). The effect reduces to less than 10% for 88.7% of these transitions at the high temperature  $(5.12 \times 10^7 \text{ K})$ . Counting statistics (see figure 7(d)) reveals that  $\approx 25\%$  of non-dipole allowed transitions show a reduction of more than 30% at the low temperature. There are only a few forbidden transitions (1.6% of the 8911 transitions in total). The damping effect is stronger for weaker excitations, see figure 7(e). About 44% of forbidden transitions show a damping effect over 30% at the low temperature  $(5.12 \times 10^4 \text{ K})$ —see figure 7(f). At the high temperature, the percentage is still 40% of forbidden transitions with damping over 10%. This value is significantly higher than that for dipole (2.5%) and non-dipole allowed (11.3%) transitions. We also note that the forbidden transitions are affected over a wider range of electron temperatures.

Finally, in table 4, the undamped and damped effective collision strengths are given for excitations from the ground level at three temperatures of  $5.12 \times 10^4$ ,  $5.12 \times 10^5$  and  $5.12 \times 10^6$  K. The full set of data (energy levels, radiative rates and effective collision strengths) are made available through different archives and databases (the Oak Ridge Controlled Fusion Atomic Data Center (CFADC)<sup>5</sup> in the ADAS *adf04* format (Summers 2004), ADAS<sup>6</sup> and CHIANTI<sup>7</sup>).

#### 5. Conclusions

The level-resolved inner-shell electron-impact excitation of Fe<sup>15+</sup> has been studied via the intermediate coupling frame transformation *R*-matrix method which can allow for the inclusion of Auger-plus-radiation damping of such resonantly-excited states. The 134 levels belonging to the configurations  $2s^22p^63l$ ,  $2s^22p^53s3l$  (l = s, p and d),  $2s^22p^53p^2$  and  $2s^22p^53p^3d$  were included in both the target configuration and close-coupling expansions. A comparison of energy levels and radiative rates with those of AK07 reveals the target structures to be comparable, and so form the basis for comparison with the excitation data of AK08.

The results of our undamped ICFT *R*-matrix calculation agree well with the undamped DARC effective collision strengths of AK08 for most excitations. For a few transitions, their results are higher than ours by a factor of two at low temperatures. This is probably due to their use of smaller theoretical transition energies than ours, which were adjusted to the observed values. When Auger-plus-radiation damping is included, our results are systematically smaller than those of AK08. Moreover, the reduction can be up to a factor of 3 for some transitions. The number of transitions where the reduction of  $\Upsilon$  exceeds 20% occupies 30.2%, 37.7% and 70.7% of dipole, non-dipole allowed and forbidden transitions, respectively, at the low temperatures typical of where Fe<sup>15+</sup> is abundant in photoionized plasmas.

In summary, Auger-plus-radiation damping plays an important role on the electron-impact excitation of inner-shell transitions. Thus, for many transitions, the results of previous undamped inner-shell calculations overestimate the effective collision strengths significantly.

#### Acknowledgments

The work of the UK APAP program is funded by the UK STFC under grant no. PP/E001254/1 with the University of Strathclyde. One of us (GYL) would like to thank M C Witthoeft for some helpful discussions.

- <sup>6</sup> http://www.adas.ac.uk/
- <sup>7</sup> http://www.chianti.rl.ac.uk/

<sup>&</sup>lt;sup>5</sup> http://www-cfadc.phy.ornl.gov/data\_and\_codes

#### References

- Aggarwal K M and Keenan F P 2007 Astron. Astrophys. 463 399
- Aggarwal K M and Keenan F P 2008 J. Phys. B: At. Mol. Opt. Phys. **41** 015701
- Badnell N R 1986 J. Phys. B: At. Mol. Phys. 19 3827
- Badnell N R and Griffin D C 1999 J. Phys. B: At. Mol. Opt. Phys. 32 2267
- Badnell N R and Griffin D C 2001 J. Phys. B: At. Mol. Opt. Phys. 34 681
- Bautista M A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 71
- Bautista M A, Mendoza C, Kallman T R and Palmeri P 2004 Astron. Astrophys. Suppl. **418** 1171
- Berrington K A, Ballance C P, Griffin D C and Badnell N R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 1667
- Berrington K A, Eissner W and Norrington P N 1995 Comput. Phys. Commun. 92 290
- Bryans P, Badnell N R, Gorczyca T W, Laming J M, Mitthumsiri W and Savin D W 2006 Astrophys. J. Suppl. 167 343
- Burgess A 1974 J. Phys. B: At. Mol. Phys. 7 L364
- Cornille M, Dubau J, Faucher P, Bely-Dubau F and Blancard C 1994 Astron. Astrophys. Suppl. **105** 77
- Dere K P, Landi E, Young P R and Del Zanna G 2001 Astrophys. J. Suppl. **134** 331
- Eissner W, Jones M and Nussbaumer H 1974 Comput. Phys. Commun. 4 270

- Gorczyca T W and Badnell N R 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L283
- Gorczyca T W and Robicheaux F 1999 Phys. Rev. A 60 1216
- Gorczyca T W, Robicheaux F, Pindzola M S and Badnell N R 1995 *Phys. Rev.* A **52** 3852
- Griffin D C, Badnell N R and Pindzola M S 1998 J. Phys. B: At. Mol. Opt. Phys. **31** 3713
- Gu M F 2003 Astrophys. J. 582 1241
- Kallman T and Bautista M 2001 Astrophys. J. Suppl. 133 221
- Norrington P H and Grant I P 1987 J. Phys. B: At. Mol. Phys. 20 4869
- Phillips K J H, Greer C J, Bhatia A K, Coffey I H, Barnsley R and Keenan F P 1997 Astron. Astrophys. **324** 381
- Robicheaux F, Gorczyca T W, Pindzola M S and Badnell N R 1995 Phys. Rev. A **52** 1319
- Savin D W et al 2002 Astrophys. J. Suppl. 138 337
- Summers H P 2004 The ADAS User Manual version 2.6 (http://adas.phys.strath.ac.uk)
- Whiteford A D, Badnell N R, Ballance C P, O'Mullane M G, Summers H P and Thomas A L 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3179
- Whiteford A D, Badnell N R, Ballance C P, Loch S D, O'Mullane M G and Summers H P 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3729
- Witthoeft M C and Badnell N R 2008 Astron. Astrophys. 481 543
- Witthoeft M C, Whiteford A D and Badnell N R 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2969