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Abstract
We describe the development of the Dirac R-matrix with pseudo-states (DRMPS) method for
electron and photon collisions with arbitrary atoms and ions. An N-electron atom is
represented by an anti-symmetrized product of single-particle spinors comprising the usual
four-component Dirac spinors as well as paired two-component Laguerre spinors (L-spinors).
The convergent L-spinor basis forms a discretization of the electron and positron continua.
This representation has been implemented quite generally within the general relativistic
atomic structure package (GRASP) specifically GRASP0. An (N + 1)th ‘scattering’ electron is
represented by the exact same L-spinor basis plus the usual R-matrix box-state spinors which
are chosen so as to form a combined complete finite linearly independent orthogonal basis.
The (non-diagonal) Buttle correction is determined consistently. This representation has been
implemented quite generally within the Dirac atomic R-matrix code (DARC). Results of some
simple model problems are presented which demonstrate the correctness of the
implementation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The R-matrix approach to scattering (Burke and Robb 1975)
is one of the most powerful and widespread. Its use of
non-relativistic wavefunctions suffices up to about zinc and
relativistic effects can be treated as a perturbation in the
Hamiltonian if need be. This is encapsulated by the Breit–Pauli
R-matrix (BPRM) method (Berrington et al 1995) and variants
thereof such as the intermediate coupling frame transformation
(Griffin et al 1998). Beyond zinc it becomes increasingly
necessary to consider the use of relativistic wavefunctions.
This is encapsulated by the use of the general relativistic atomic
structure package (GRASP; Grant et al 1980) specifically the
GRASP0 code (Norrington 2004) and the Dirac atomic R-matrix
code (DARC; Ait-Tahar et al 1996, Norrington 2004). We note
that the theoretical foundations of the Dirac R-matrix method
have been re-examined recently by Grant (2008) and found to
be secure.

The R-matrix method is fundamentally a close-coupling
one. The total wavefunction is formally expanded in terms of a
complete basis of atomic states which includes the continuum.
The traditional close-coupling method truncates this expansion
to a small set of physical bound states thereby neglecting
coupling to the continuum. It had long been known that
such an effect was not necessarily negligible (Castillejo et al
1960). It was Bray and Stelbovics (1992) who showed that the

continuum could be discretized by the use of Laguerre pseudo-
states which form a quadrature for the continuum and that such
a basis is convergent for practical purposes with relatively
few terms. Their convergent close-coupling (CCC) method is
implemented within the Lippmann–Schwinger representation
which is not ideal for describing the resonances which so often
dominate scattering processes.

The R-matrix method is ideally suited to describing
resonances. Bartschat et al (1996) introduced the R-matrix
with pseudo-states (RMPS) method. They encountered
spurious poles in the R-matrix because of overcompleteness
since their Laguerre basis was simply added to the usual box-
state basis representation for the scattering electron. The
problem was overcome by Gorczyca and Badnell (1997)
and Badnell and Gorczyca (1997). They formed a new
combined linearly independent basis and transformed the
Buttle correction to the new representation. These works all
took place within the non-relativistic wavefunction R-matrix
suite of codes.

Accurate electron-impact excitation cross sections for
heavy neutral atoms and low-charged ions are required for
the spectral diagnosis of magnetic fusion (ITER Physics Basis
1999), technical (Smith 2004) and some astrophysical plasmas
(Sterling et al 2007). Numerous studies with CCC and RMPS
have demonstrated the large reduction over non-pseudo-state
cross sections due to the ionization loss represented by
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continuum coupling. A Dirac R-matrix with pseudo-states
(DRMPS) treatment is clearly necessary. It is the purpose
of this paper to describe such a development. We note that
very recently Fursa and Bray (2008) have reported a similar
development of their CCC approach.

2. Theory

It is deceptively simple to write the scattering problem to be
solved:

� = A�

∫
ν

ψνφ. (1)

The antisymmetric total wavefunction for the target-plus-
colliding particle � is expanded in terms of a known complete
basis of target states ψν . The expansion coefficients φ

representing the colliding particle (projectile) are then to be
freely determined. We discuss each in turn.

2.1. Target basis

The RMPS and CCC approaches approximate the sum over
high Rydberg states and the integration over continuum states
by a quadrature over Laguerre (Sturmian) states. The choice
of the Dirac spinor analogue of the non-relativistic Laguerre
states is not straightforward and it is discussed in detail by
Grant and Quiney (2000) for the one-electron problem. This is
our starting point. The reader is also referred to the excellent
reference work by Grant (2007) for any of the usual details
which we omit to mention. The main point to note is that
the use of so-called L-spinors is fundamental to avoiding
pathologies such as ‘finite-basis disease’ and ‘variational
collapse’.

Proto-type L-spinors are described by large and small
components:

ψEκm(r) = 1

r

[
PEκ(r)χκm(θ, ϕ)

iQEκ(r)χ−κm(θ, ϕ)

]
. (2)

χκm(θ, ϕ) denote the usual spin-angle 2-spinors while the
radial parts satisfy1(

d

dr
+

κ

r

)
PEκ = α

2

[
E +

4z

λNnrκr
+

2

α2

]
QEκ (3)

and (
d

dr
− κ

r

)
QEκ = −α

2

(
E +

λzNnrκ

r
− 2

α2

)
PEκ (4)

for a point charge z. The apparent principal quantum number
Nnrκ is given by

N2
nrκ

= n2 − 2nr(|κ| − γ ), (5)

where nr = n − |κ|, γ 2 = κ2 − z2α2/4 and n and κ

are the principal and combined angular quantum numbers,
respectively. (κ = l for j = l − 1/2 and κ = −l − 1
for j = l + 1/2, where l, j are the orbital and total angular

1 We use Rydberg atomic units: the speed of light is related to the fine-
structure constant by c = 1/α and the unit of energy is e2/(2a0).

momenta quantum numbers respectively.) E denotes the total
energy and so the non-rest-mass energy ε is given by

ε = E − 2

α2
= 2

α2

[(
1 − α2λ2z2

4

)1/2

− 1

]
. (6)

We note that the λ used here corresponds to that used in our
non-relativistic Laguerre pseudo-states formulation (Badnell
and Gorczyca 1997). If we expand (6) for α small then
we obtain ε ≈ −λ2z2/4. This is not the λ used by Grant
and Quiney (2000). The two are related via λ = 2λGQ/z,
where λGQ denotes Grant and Quiney’s. The reason for this
choice is to factor-out the ‘z-dependence’ and make λ ≈ 1 the
usual choice. ‘Physical’ relativistic Coulomb functions are
recovered on setting λ = 2/Nnrκ .

Analytic solutions f ±
nrκ

can be written in terms of Laguerre
polynomials Ln

m:

f ±
nrκ

(x) = Nnrκx
γ e−x/2

×
[
−(1 − δnr 0)L

2γ

nr−1(x) ± Nnrκ − κ

nr + 2γ
L2γ

nr
(x)

]
, (7)

where x = λzr and Nnrκ is a normalization constant. If Nnrκ

is chosen such that f ±
nrκ

are both normalized to unity on r then
taking

PEκ(r) =
(

1 +
α2E

2

)1/2

f +
nrκ

(λzr)

(8)

QEκ(r) =
(

1 − α2E

2

)1/2

f −
nrκ

(λzr)

satisfies2 the small-r relative normalization condition of the
Dirac equation, namely,

QEκ(r)

PEκ(r)

∣∣∣∣
r=0

= λNnrκ(κ + γ )

αz
. (9)

We note that these large and small components are
kinetically matched:

f −
nrκ

(x) ∼
c→∞C

(
d

dx
+

κ

x

)
f +

nrκ
(x), (10)

and so the large component f + satisfies the Schrödinger
equation in the non-relativistic limit. This is a key property
which we will require next.

Consider the Rayleigh quotient

E(φ) = 〈φ|H |φ〉
〈φ|φ〉 . (11)

A Ritz variational leads to

δE = 0 ⇐⇒ (H − E)φ = 0, (12)

and so stationary values of E correspond to eigenstates of
H. If H is the non-relativistic Schrödinger Hamiltonian then
the stationary value is a minimum and the eigenstates form
an electron representation. If H is the relativistic Dirac
Hamiltonian then the eigenstates can represent electrons or
positrons. In normal atomic structure calculations, it is

2 Strictly speaking the equality is exact only for the Coulomb case λ =
2/Nnr κ . Otherwise there are higher-order terms in α2m contributing to the
energy factor in (8). Their effect is small though. Our final solution explicitly
determines the correct relative normalization and so it is actually irrelevant as
far as the initial basis is concerned.
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sufficient to start with an electron basis representation so as
to ensure an electron eigenstate representation since there are
no corresponding positron solutions for −2c2 < E < 0. In a
pseudo-state structure problem, we try to represent the electron
continuum and we cannot help but describe the positron
continuum at the same time. Indeed, we must treat electrons
and positrons on an equal footing.

Trial wavefunctions are taken to be linear combinations
of paired two-component basis sets:

ψEκm(r) =
[

ψ+
Eκm(r)

iψ−
Eκm(r)

]

= 1

r

[ ∑N
nr=1 c+

nr
f +

nrκ
(r)χκm(θ, ϕ)

i
∑N

nr=1 c−
nr

f −
nrκ

(r)χ−κm(θ, ϕ)

]
. (13)

For N basis functions we seek 2N solutions—N-electron and
N-positron.

Application of the Rayleigh–Ritz method to the Dirac–
Coulomb Hamiltonian

cα · p + βmec
2 + U(r) (14)

leads to the Galerkin equation for c±
i which can be written in

the matrix form as[
(c2 − E/2)S++ + U++ cΠ+−

cΠ−+ −(c2 + E/2)S−− + U−−

] [
c+

c−

]
= 0.

(15)

The Gram overlap terms are given by

S±±
mn =

∫ ∞

0
f ±

m (r)f ±
n (r) dr. (16)

The potential terms are given by

U±±
mn =

∫ ∞

0
f ±

m (r)f ±
n (r)U(r) dr. (17)

The kinetic terms are given by

�±∓
mn = ∓

∫ ∞

0
f ±

m (r)

(
d

dr
∓ κ

r

)
f ∓

n (r) dr. (18)

We note that S±±
mn and U±±

mn are symmetric whilst �−+
mn = �+−

nm.
The preceding formulation ensures that ψ+

Eκm(r) satisfies
the Schrödinger equation in the non-relativistic limit (Grant
2007). Consider equation (15) in the limit c → ∞.
Eliminating c− leads to the kinetic operator acting on c+ being
of the form

T++ = Π+−(S−−)−1Π−+. (19)

Since each basis function is kinetically matched Π−+ = S−−

and so

T++ = S−−. (20)

It follows readily that S−− = p2 and so ψ+
Eκm(r) does indeed

satisfy the Schrödinger equation in the limit.
The integrals in (16) and (18) can be evaluated analytically

as can (17) for U(r) = −z/r and expressions have been
given by Grant and Quiney (2000).3 The matrix equation (15)
constitutes a generalized eigenvalue problem which can be

3 The last term in line 2 of Grant and Quiney’s (2000) equation (42) should
be prefaced by a plus sign and not a minus. They do not appear to define Gnm.
It can be defined by Gnm(a) = (n + a)Gn(a − 1)δnm in terms of quantities
which are given by them.

solved using standard numerical packages such as LAPACK.
This completes the solution of the one-electron problem, and
sample results have been presented and discussed by Grant
and Quiney (2000). We have implemented this exact same
procedure as a standalone code so as to be able to benchmark
the general approach which we discuss next.

2.1.1. Multi-electron atoms. We require a solution
for an arbitrary multi-electron atom and one which can
be incorporated readily into an existing general multi-
configuration relativistic structure code such as GRASP0. We
discuss our implementation and the additional constraints
imposed on the problem by this approach.

The main point to our advantage is that general codes
such as GRASP0 build-up a trial multi-electron wavefunction as
an anti-symmetrized product of one-electron wavefunctions.
The whole machinery developed for the one-electron problem
is readily applicable to the multi-electron one.

We start by generating a trial basis of one-electron
wavefunctions as defined by equation (13). The component
basis f ±

nrκ
is tabulated on a radial grid by evaluating the

analytic expression (7). The radial integrals (16)–(18) are then
evaluated numerically. This enables us to include an arbitrary
effective central potential in (17) if we so desire rather than just
the pure λ-scaled Coulomb one. In the non-relativistic case
we have only used the scaled-Coulomb to-date but relativistic
heavy atoms contain a much larger number of electrons and it
will be of future interest to see if the use of a central potential
improves basis convergence. It is also possible to mix-in
ordinary four-component spinors which represent low-lying
electron states. Ultimately we require numerically tabulated
radial functions so as to be able to determine the two-electron
integrals etc that arise when evaluating the multi-electron
Hamiltonian and so using the analytic approach of Grant and
Quiney (2000) gains us little here. The solution of the Galerkin
equation provides us with N-eigenenergies and N-eigenvectors
each for both electron and positron states. We have no further
use for the positron solutions currently other than to check that
all absolute energies lie below −2c2 Ryd. This provides us
with the initial one-electron basis required for the solution of
the multi-electron problem.

The main restriction we encounter with a general code
such as GRASP0 is that our one-electron basis orbitals must
be orthogonal with unit weight. The underlying Laguerre
polynomials form a linearly independent orthogonal basis
with non-unit weight. This means that we can carry-out
a simple Schmidt orthogonalization procedure to produce
a linearly independent basis that is orthogonal on unit
weight. The components of our one-electron basis satisfied
the kinetic matching condition prior to the application of this
procedure. We show now that this is still the case following
orthogonalization. This is necessary since kinetic matching is
central to avoiding the pathologies noted previously.

We start with our kinetically matched basis
{
f ±

i

}
(the

radial part of ψ±
Eκm)

f −
i ∼

c→∞C

(
d

dr
+

κ

r

)
f +

i (21)
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and note that the normalization constant C is independent
of i for fixed κ in this limit. Consider an arbitrary step in
the Schmidt orthogonalization procedure at which all basis
functions are kinetically matched up to this point. Then form

f
±
j = f ±

j − βijf
±
i , (22)

where

βij =
∫ ∞

0

(
f +

i f +
j + f −

i f −
j

)
dr. (23)

Then

f
−
j ∼

c→∞C

(
d

dr
+

κ

r

)
f +

j − βijC

(
d

dr
+

κ

r

)
f +

i (24)

= C

(
d

dr
+

κ

r

)
f

+
j (25)

is also kinetically matched and the subsequent (overall)
renormalization step does not alter the relative normalization.

We now have a linearly independent orthogonal L-
spinor basis which we can use in the construction of the
Hamiltonian for an arbitrary multi-electron atom which is
then diagonalized to form the final eigensolutions for use
in subsequent applications. The user would normally only
specify one L-spinor per electronic configuration. The
usual (GRASP0) strategy is to decide on some z-charged core
representation and then couple-on a single electron pseudo-
state to represent the continuum of the atom. The core orbitals
are determined via a multi-configuration Dirac–Fock operation
as usual and then ‘fixed’, and a configuration interaction
(CI) calculation is carried-out with the additional electron
(L-spinor) representation attached to this core. The user can
specify different λ-values for each relativistic nlj orbital. The
only time when this may be of interest is to try and ensure
an even distribution of eigenenergies both above and below
the ionization limit so as to minimize the need for projection
when determining ionization cross sections by summing-over
excitation cross sections to eigenstates above the limit.

2.1.2. Example. When there is only one electron then we
should recover the original eigenenergies of the Galerkin
equation since orthogonalization and re-diagonalization can
have no effect on them in this instance. In table 1, we present
s-state results for the case of z = 50, λ = 2 considered by
Grant and Quiney (2000). The results labelled ‘Galerkin’
are from our standalone re-implementation of the ‘analytic’
solution of the one-electron problem of Grant and Quiney
(2000). The default value of the speed of light used by
GRASP0c = 137.035 999 76 au differs slightly from that used
by Grant and Quiney (2000) c = 137.035 9895 au. If we use
their value then our ‘Galerkin’ results agree with theirs for s-,
p-, d-state levels to all significant figures that they give (p- and
d-states not shown). We see that the s-state results from the
numerical implementation within GRASP0 utilizing the general
three-step strategy described above also agree to eight or more
significant figures. We have also run some test calculations
on multi-electron atoms so as to check that the algorithms
implemented function correctly in such cases.

Table 1. S-state energies (au) for z = 50, λ = 2.

n Galerkin GRASP0

1 −1.294 626 148(3)a −1.294 626 148(3)
2 −3.264 948 039(2) −3.264 948 039(2)
3 −1.438 293 524(2) −1.438 293 524(2)
4 −7.957 309 342(1) −7.957 309 327(1)
5 −3.513 916 636(1) −3.513 916 674(1)
6 2.816 045 671(1) 2.816 045 799(1)
7 1.175 877 451(2) 1.175 877 440(2)
8 2.378 653 467(2) 2.378 653 502(2)
9 3.968 369 662(2) 3.968 369 639(2)

10 6.065 196 125(2) 6.065 196 202(2)
11 8.851 427 284(2) 8.851 427 238(2)
12 1.260 835 482(3) 1.260 835 500(3)
13 1.778 332 027(3) 1.778 332 019(3)
14 2.511 698 362(3) 2.511 698 410(3)
15 3.590 017 968(3) 3.590 017 954(3)
16 5.253 618 934(3) 5.253 619 093(3)
17 7.991 649 083(3) 7.991 649 058(3)
18 1.293 859 064(4) 1.293 859 143(4)
19 2.336 639 160(4) 2.336 639 152(4)
20 5.416 045 880(4) 5.416 047 074(4)

a(m) denotes ×10m.

2.2. Projectile basis

We now discuss the extension of the work of Gorczyca and
Badnell (1997) to forming a linearly independent R-matrix
basis for relativistic wavefunctions and its implementation
within DARC.

We assume that we have an orthonormal target basis
{Pi,Qi} which can be a mixture of ‘physical’ Dirac spinors
and ‘unphysical’ L-spinors. We assume that we have an initial
orthonormal ‘continuum’ basis for the projectile {Fi,Gi}
which normally consists of R-matrix box-state spinors. We
require a linearly independent basis {Vi,Wi} which consists of
{Pi,Qi} plus that part of {Fi,Gi} necessary for {Vi,Wi} to be
complete.

Define an overlap matrix M by

Mij =
∫ ∞

0
(PiFj + QiGj) dr ≈

∑
k

ωk(PikFkj + QikGkj )

(26)

with quadrature weights ωk and k such that rk = kh etc. Then
absorb ωk into (P,Q)ik etc and rewrite as

M = PFT + QGT. (27)

We require {Vi,Wi} such that

VVT + WWT = 1. (28)

Let

V =
(

P
aP + bF

)
and W =

(
Q

aQ + bG

)
. (29)

Then we require the off-diagonal block to satisfy

PPTaT + PFTbT + QQTaT + QGTbT = 0, (30)

i.e.,

a = −bM (31)
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as in the non-relativistic RMPS case. We require the lower
diagonal block to satisfy

b(1 − MMT)bT = 1. (32)

For numerical stability we form

OT(1 − MMT)O = d, (33)

where d is diagonal. We then take

b = 1√
d

OT (34)

which satisfies

VVT + WWT = 1. (35)

Any linear dependence is eliminated by discarding the
eigenvectors bi corresponding to eigenvalues dii < δ. We
take δ = 10−3. We find that this value gives good numerical
stability.

The Buttle correction for a non-RMPS Dirac continuum
basis {Fi,Gi} is given by

Rc(E) = R0(E) − uT(ε − E)−1u (36)

where u is the vector of basis surface amplitudes and ε are
the corresponding eigenergies. R0 is the zero-order R-matrix
determined at a non-pole energy E . It is given by

R0(E) = u0

[
2v0

α
−

(
b +

κ

a

)
u0

]−1

. (37)

Here (u0, v0) are the corresponding surface amplitudes, b is
an arbitrary constant (the surface logarithmic derivative of the
Fi) and a is the R-matrix boundary radius. We note that ε is
diagonal in this basis.

The DRMPS Buttle correction for the basis {Vi,Wi} is
given by

Rc(E) = R0(E) − uT

[
(V W)L

(
VT

WT

)
− E

]−1

u, (38)

where

L =
(

0 −2c

2c 0

)
d

dr
+

(−V(r) 2cκ/r

2cκ/r −V(r) − 4c2

)
(39)

and so L no longer constitutes a diagonal representation. (V
denotes the effective potential used for the generation of the
R-matrix box-states.)

In practice we diagonalize the matrix representation of
L and transform the Buttle correction back to a diagonal
representation. This has the advantage of being able to work
within the framework of the existing DARC. It also provides us
with a check on our implementation since we should recover all
of the original box-state eigenenergies and surface amplitudes
as well as an additional contribution from the L-spinor basis.
If we were to transform our new basis with this representation
it would correspond to the opposite problem of fixing the box-
state basis and retaining only that part of the original target
basis necessary to make the box-state basis complete. In such
a representation the target continuum is largely represented
by box-states and gives rise to a dense pseudo-resonance
spectrum as the target states no longer vanish on the R-matrix
boundary. It has similarities with the intermediate energy
R-matrix method in this respect and its drawbacks.

 0

 0.05

 0.1

 0.15

 0.5  1  1.5  2  2.5  3

C
ol

lis
io

n 
S

tr
en

gt
h

Energy (Ryd.)

Figure 1. Electron-impact excitation of the 1s − 2s transition in H
in the Poet–Temkin model. Solid (red) lines, DARC; dashed (blue)
lines, BPRM. Upper pair, 5CC; lower pair, 20PS. See the text for
details. All this work.

The above procedure has been implemented within DARC.
Specifically it is fully contained within the orbital generation
module (STG1D ORBS). It should be noted that we ‘only’ use
the original DARC to set-up the (N + 1)-electron Hamiltonian
and any corresponding dipole matrices. Thereafter (Badnell
et al 2004) we use our common suite of serial and parallel
diagonalization (Mitnik et al 2003) and dipole transformation
(Ballance and Griffin 2004) routines that also feed-off
LS-coupling and Breit–Pauli R-matrix set-ups. This completes
the solution in the R-matrix inner region. The outer-region
solution is non-relativistic (Norrington and Grant 1987). It
uses the efficient suite of routines originally written by
Mike Seaton (see Berrington et al (1987) for some details).
These routines (STGB, STGF, STGBB, STGBF, STGFF and their damped
versions, Robicheaux et al 1995) describe a wide range of
electron and photon collision processes.

2.2.1. Examples. We consider s-wave scattering of s-states
in hydrogen—the so-called Poet–Temkin model. We have
carried-out both RMPS (using the BPRM code) and DRMPS
(using DARC) calculations including pseudo-states up to n = 20
(20PS). We also carried-out standard non-RMPS calculations
including spectroscopic 1s through 5s states (5CC). All
calculations utilized 80 box-state basis orbitals. In figure 1, we
compare the results of the four sets of calculations for the 1s–2s
transition. In both cases (non-pseudo-state and pseudo-state)
the DARC results are in very close agreement with those from
BPRM. It is particularly gratifying that the DRMPS results
map-out the exact same pseudo-resonance structure as the
RMPS results. It should be noted that this example tests the
correctness of the implementation for both the large and small
components even though z = 1. The reason for this is that the
way the Dirac Hamiltonian problem is formulated means that
the small component contributes explicitly to order cQ ∼ P

at various points.
The Poet–Temkin model can also be applied to electron-

impact ionization. We simply sum-over the collision strengths
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Figure 2. Electron-impact ionization of a z − 1 = 49 hydrogenic
ion in the Poet–Temkin model. Solid (red) line, DRMPS; dashed
(blue) line, RMPS. See the text for details. All this work.

to positive energy pseudo-states. We do not attempt
any projection of positive energy pseudo-states back onto
the true bound nor negative energy pseudo-states onto the
continuum. We consider only the z = 50 pseudo-state target of
section 2.1.2. (Our RMPS and DRMPS results for z = 1 are
indistinguishable again.) In figure 2, we compare our RMPS
and DRMPS results for z = 50. The DRMPS results become
increasingly larger than the RMPS with increasing energy.
This is typical of highly relativistic systems. The pseudo-
resonance structure is more pronounced than for z = 1 because
of the high charge state. This is typical of the pseudo-state
approach.

3. Summary

We have described the development of the Dirac R-matrix
with pseudo-states method and its general implementation
within GRASP0 and DARC. Together with previous developments
(Badnell et al 2004) this opens-up the Dirac R-matrix
procedure to the full range of electron and photon collision
processes for heavy atoms which include coupling to the
continuum.
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