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Abstract

The paper presents an integrated view of the population structure and its
role in establishing the ionization state of light elements in dynamic, finite
density, laboratory and astrophysical plasmas. There are four main issues, the
generalized collisional-radiative picture for metastables in dynamic plasmas
with Maxwellian free electrons and its particularizing to light elements, the
methods of bundling and projection for manipulating the population equations,
the systematic production/use of state selective fundamental collision data in
the metastable resolved picture to all levels for collisonal-radiative modelling
and the delivery of appropriate derived coefficients for experiment analysis.
The ions of carbon, oxygen and neon are used in illustration. The practical
implementation of the methods described here is part of the ADAS Project.

1. Introduction

The broad mechanism for radiation emission from a hot tenuous plasma is simple. Thermal
kinetic energy of free electrons in the plasma is transferred by collisions to the internal energy
of impurity ions,

A+e —> A" +e, (1)

where A* denotes an excited state and A the ground state of the impurity ion. This energy is
then radiated as spectrum line photons which escape from the plasma volume:

A* — A+ hv, 2)
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where v is the emitted photon energy and v its frequency. Similarly, ions in general increase
or decrease their charge state by collisions with electrons:

A+e —> At +e+e,
At +e > A+hv,

where A* denotes the next ionization stage of impurity ion .A. The situation is often referred
to as the coronal picture. The coronal picture has been the basis for the description of
impurities in fusion plasmas for many years. However, the progress towards ignition of
fusion plasmas and to higher density plasmas requires a description beyond the coronal
approximation. Models of finite density plasmas which include some parts of the competition
between radiative and collisional processes are loosely called collisional-radiative. However,
collisional-radiative theory in its origins (Bates et al 1962) was designed for the description
of dynamic plasmas, and this aspect is essential for the present situations of divertors, heavy
species, transport barriers and transient events. The present work is centred on generalized
collisional radiative (GCR) theory (McWhirter and Summers 1984) which is developed in the
following sections. It is shown that the consideration of relaxation time-scales, metastable
states, secondary collisions etc—aspects rigorously specified in collisional-radiative theory—
allow an atomic description suitable for modelling the newer areas above. The detailed
quantitative description is complicated because of the need to evaluate individually the many
controlling collisional and radiative processes, a task which is compounded by the variety of
atoms and ions which participate. The focus is restricted to plasmas which are optically thin and
not influenced by external radiation fields, and for which ground and metastable populations of
ions dominate other excited ion populations. The paper provides an overview of key methods
used to expedite this for light elements and draws illustrative results from the ions of carbon,
oxygen and neon. The paper is intended as the first of a series of papers on the application of
collisional-radiative modelling in more advanced plasma scenarios and to specific important
species.

The practical implementation of the methods described here is part of the ADAS (atomic
data and analysis structure) Project (Summers 1993, 2004). Illustrations are drawn from ADAS
codes and the ADAS fundamental and derived databases.

(€)

1.1. Time constants

The lifetimes of the various states of atoms, ions and electrons in a plasma to radiative or
collisional processes vary enormously. Of particular concern for spectroscopic studies of
dynamic finite density plasmas are those of translational states of free electrons, atoms and ions
and internal excited states (including states of ionization) of atoms and ions. These lifetimes
determine the relaxation times of the various populations, the rank order of which, together
with their values relative to observation times and plasma development times, determines the
modelling approach. The key lifetimes divide into two groups. The first is the intrinsic group,
comprising purely atomic parameters, and includes metastable radiative decay, t,,, ordinary
excited state radiative decay, t,, and auto-ionizing state decay (radiative and Auger), t,. The
intrinsic group for a particular ion is generally ordered as

T LT, L Ty 4)
with typical values
T, ~ 10'/2%s, 7, ~ 1078 /7% s, 7, ~ 10735, (3)

where z is the ion charge. The second is the extrinsic group, which depends on plasma
conditions—especially particle density. It includes free particle thermalization (including
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electron—electron t._., ion—ion t7;_; and ion—electron 7;_), charge-state change (ionization iy,
and recombination t,.) and redistribution of population amongst excited ion states (Tyq). The
extrinsic group is ordered in general as

Tion,rec > Tie D Tini D Tee (6)
with approximate expressions for the time constants given by

Tree ~ [10" = 10711/ (z + D)) KT, /1) *(cm™>/N,) s,

Tion ~ [10° — 101z + D)* (U /kT,)' 2/ ¥ (cm ™ /N,) s,

Tii ~ [7.0 x 1071(m; /m )" 2 (KT, /1) (1/z") (em ™ /Ny) s,

Tie ~ [1.4 x 10°1(m; /mp)' > (KT, /Ixy) + 5.4 x 1074 (kT; /1) (m,/m;))*/?
x (1/z%)(em™/N;)s,

Tee ~ [1.6 x 1081k T, /1)¥*(cm™3/N;) s.

@)

The ion mass is m;, the proton mass m,, the ionization potential x, the ion density N;, the
electron density N,, the ion temperature 7T;, the electron temperature 7, and the ionization
energy of hydrogen /. t.q may span across the inequalities of equation (6) and is discussed
in a later paragraph.

From a dynamic point of view, the intrinsic and extrinsic groups are to be compared with
each other and with timescales, Tplasma, representing plasma ion diffusion across temperature
or density scale lengths, relaxation times of transient phenomena and observation times. For
most plasmas in magnetic confinement fusion and astrophysics

Tplasma ™~ Tg ™~ T > Tp 2> Tee, (®)

where 7, represents the relaxation time of ground state populations of ions (a composite of
Tree and Tjoy) and it is such plasmas which are addressed in this paper. These time-scales
imply that the dominant populations of impurities in the plasma are those of the ground and
metastable states of the various ions. The dominant populations evolve on time-scales of
the order of plasma diffusion time-scales and so should be modelled dynamically, that is, in
the time-dependent, spatially varying, particle number continuity equations, along with the
momentum and energy equations of plasma transport theory. Illustrative results are shown in
figure 1(a).

The excited populations of impurities and the free electrons on the other hand may
be assumed to be relaxed with respect to the instantaneous dominant populations, that is,
they are in quasi-equilibrium. The quasi-equilibrium is determined by local conditions
of electron temperature and electron density. So, the atomic modelling may be partially
de-coupled from the impurity transport problem into local calculations which provide quasi-
equilibrium excited ion populations and emissivities and then effective source coefficients
(collisional-radiative coefficients) for dominant populations which must be entered into the
plasma transport equations. The solution of the transport equations establishes the spatial and
temporal behaviour of the dominant populations which may then be re-associated with the
local emissivity calculations for matching to and analysis of observations.

For excited populations, tq plays a special and complicated role due to the very large
variation in collisional excitation/de-excitation reaction rates with the quantum numbers of
the participating states. In the low density coronal picture T.q > 7, and redistribution plays
no part. Critical densities occur for tq ~ 7, and for 1.4 ~ 7, and allow division of the
(in principle) infinite number of excited populations into categories including low levels, high
singly excited levels and doubly excited levels for which important simplifications are possible.
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Figure 1. (a) Ratios of ground and metastable lifetimes to plasma timescales arising from the
transport of some ions of nitrogen and neon at the edge of fusion plasmas. For N° the ground state
to metastable state transfer time constant, t,,, is contrasted with t, = A /v with typical scrape-
off-layer thickness, As ~ 2cm, and mv?/2 < 1eV from chemical or physical sputtering and
with tgif = )Lfol /D where a typical diffusion coefficient D = 10* cm? s~L. For selected neon ions,
T4 = A7, N, /vdit is contrasted with the reciprocal of the sum of the inverses of the ionization and
recombination time constants for the ground state. The latter illustrative results are for a JET-like
tokamak H-mode radial plasma model with shaped diffusion and pinch terms. 7,(r = 0) = 1 keV
with a pedestal of 30eV at r = a and exponential decay (scale length = 0.01a) in the scrape
of layer at plasma minor radius, a = 100cm. vgir combines pinch and concentration diffusion
parts. (b) Critical densities, defined as N,(teq = To,4), for categories of excited populations of
some oxygen ions. The x-axis scale for curve [1] is the orbital angular momentum, /, of the outer
electron of doubly excited states; for curve [2] it is the principal quantum number, 7, of the singly
excited electron; for curve [3] it is a simple index to the three low-lying states illustrated. For low
levels of ions, Treq is markedly sensitive to the detailed atomic structure. n = 3 valence shells
populations are of special relevance to the light element spectroscopy in the visible.

These are examined in section 2. Light element ions in fusion plasmas are generally in the
singly excited state redistibutive case, approaching the doubly excited redistribution case at
higher densities. Highly ionized ions of heavy species in fusion plasmas approach the coronal
picture. Illustrative results on critical densities are shown in figure 1(b).
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Finally, because of the generally short 7., compared with other timescales (including
those of free—free and free—bound emission), it is usually the case that the free electrons have
close to a Maxwellian distribution. This assumption is made throughout the present paper, but
is relaxed in the next paper of the series (Bryans er al 2005).

1.2. Generalized collisional-radiative theory

The basic model was established by Bates et al (1962). The ion in a plasma is viewed
as composed of a complete set of levels indexed by i and j and a set of radiative and
collisional couplings between them denoted by C;; (an element of the collisional-radiative
matrix representing transition from j to i) to which are added direct ionizations from each
level of the ion to the next ionization stage (coefficient S;) and direct recombinations to each
level of the ion from the next ionization stage (coefficient r;). Thus, for each level, there is a
total loss rate coefficient for its population number density, N;, given by

- Ci = chi+NeSi- ©)
J#

Following the discussion in the introduction, it is noted that populated metastable states can
exist, and there is no real distinction between them and ground states. We use the term
metastables to denote both ground and metastables states. Metastables are the dominant
populations and so only recombination events which start with a metastable as a collision
partner matter. We consider the population structure of the z-times ionized ion, called the
recombined or child ion. The (z + 1)-times ionized ion is called the recombining or parent ion
and the (z — 1)-times ionized ion is called the grandchild. The metastables of the recombined
ion are indexed by p and o, those of the recombining ion by v and V' and those of the
grandchild by u and . Therefore the ion of charge state z has metastable populations N,
the recombining ion of charge (z + 1) has metastable populations N and the grandchild ion
of charge (z — 1) has metastable populations N, . We designate the remaining excited states
of the z-times ionized ion, with the metastables separated, as ordinary levels for which we
reserve the indices i and j and populations N; and N;. There are then, for example, direct
recombination coefficients, r; ,,, from each parent metastable into each child ordinary level and
direct ionization coefficients from each child ordinary level to each parent metastable, S, ;,
suchthat S; = ) S, ;. Also there are direct ionization coefficients, S, ,, to the metastables of
the child from the metastables of the grandchild. Then the continuity equations for population
number densities are

Ny, Cuw NeRyo O 0 N,
d | No| _ | NeSpw Cpo Coi Netpw || Ns (10,
dr | N; 0 Cio Cij Nerw || N;j |’

N} 0 NeSws  NeSy  Cor || N?

where the equations for the (z — 1)-times and (z + 1)-times ionized ions have been simplified
by incorporating their ordinary population contributions in their metastable contributions
(shown as script capital symbols) as the immediate focus is on the z-times ionized ion. This
incorporation procedure is shown explicitly in the following equations for the z-times ionized
ion through to equation (16) and may be done for each ionization stage separately. Note
additionally the assumption (made by omission of the (3,1) partition element, where 3 denotes
the row and 1 the column) that state-selective ionization from the stage (z — 1) takes place
only into the metastable manifold of the stage z.



268 H P Summers et al

1.2.1.  Derived source term coefficients. ~From the quasi-static assumption, we set
dN;/dt = 0, and then the matrix equation for the ordinary levels of the z-times ionized ion
gives

Nj=—-C;'CicNy — N.Cj;'riy N}, (11)
where we have used summation convention on repeated indices. Substitution in equation (10)
for the metastables of the z-times ionized ion gives
dn,

dr

The left-hand side is interpreted as a total derivative with time-dependent and convective
parts and the right-hand side comprises the source terms. The terms in square brackets in
equation (12) give the effective growth rates of each metastable population of the z-times
ionized ion driven by excitation (or de-excitation) from other metastables of the z-times ionized
ion, by ionization to the (z + 1)-times ionized ion and excitation to other metastables of the
z-times ionized ion (a negatively signed growth) and by recombination from the metastables
of the (z+ 1)-times ionized ion. These are called the GCR coefficients. Following Burgess and
Summers (1969), who used the name ‘collisional—dielectronic’ for ‘collisional-radiative’ when
dielectronic recombination is active, we use the nomenclature ACD for the GCR recombination
coefficients which become

= Ne[SpwIN, +[Cps — CpiC3;' CigINg + Nelrp — Cpi Cji'riv/ N, (12)

ACD, ., = Rpy =rpy — Cp;Cji'risy. (13)
The GCR metastable cross-coupling coefficients (for p # o) are
QCD,_,, = Cys /N, = [Cpo — C,;C};'Ci1/N.. (14)

Note that the on-diagonal element [C), — Cp; Cj_iICia] /N, with 0 = p is a total loss rate
coefficient from the metastable p. Substitution of equation (11) in equation (10) for metastables
of the z + 1-times ionized ion gives

dN?

5 = NelSio = 80 Cji! Cio INo +[Corr = NZ Sy riv ING- (15)
The GCR ionization coefficients resolved by initial and final metastable states are
SCD, .y = Sy5 = [S0o — 84 C' Ciol, (16)

and note that there is a contribution to cross-coupling between parents via recombination to
excited states of the z-times ionized ion followed by re-ionization to a different metastable,

XCDy oy = —Ne[S);C; riv]. (17)

Consider the sub-matrix comprising the (2,2), (2,3), (3,2) and (3,3) partitions of
equation (10). Introduce the inverse of this sub-matrix as

Woo W, 1!
vo Wi | _ [CP“ CW} , (18)
W,’ Wi i Cia Cij
and note that the inverse of the (1,1) partition
[Wyol™' = Cpo =[Cpo — C,;Cji' Cis . (19)

This compact representation illustrates that the imposition of the quasi-static assumption
leading to elimination of the ordinary level populations in favour of the metastable populations
may be viewed as a condensation in which the influence of the ordinary levels is projected
onto the metastable levels. The metastables can be condensed in a similar manner onto the
ground restoring the original (ground states only) collisional-radiative picture. The additive
character of the direct metastable couplings, C,,, means that these elements may be adjusted
retrospectively after the main condensations.
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1.2.2. Derived emission and power coefficients. There are two kinds of derived coefficients
associated with individual spectrum line emission in common use in fusion plasma diagnosis.
These are photon emissivity coefficients (PECs) and ionization per photon ratio (SXB). The
reciprocals of the latter are also known as photon efficiencies. From equation (11), the
emissivity in the spectrum line j — k may be written as

M
€jok == AjoikNeNj = Aji (Z FTONNy + Y f}fj”NeN;,) . (0
o v'=l1

This allows specification of the excitation photon emissivity coefficient

PECYY = Aj i Fia (21)
and the recombination photon emissivity coefficient
PECU) |, = Aj i Fid. (22)

The ionization per photon ratios are most meaningful for the excitation part of the emissivity
and are

M,—1
SXBLY = > SCDy,\ /A Fio®. (23)
v=1

Each of these coefficients is associated with a particular metastable o, v' or i’ of the A*?,
A or A*~!jons, respectively.

The radiated power in a similar manner separates into parts driven by excitation and by
recombination as

PLT, = Y AE; 4 Aj i Fio® (24)
J.k
called the low-level line power coefficient and
PRB, = Y AE; L Aj(Fiy) (25)
J.k

called the recombination-bremsstrahlung power coefficient where it is convenient to include
bremsstrahlung with PRB. Note that in the generalized picture, additional power for the z-times
ionized ions occurs in forbidden transitions between metastables as

> AE,.,Ass,Ns (26)

for the z-times ionized ion. In the fusion context, this is usually small. Radiated power is the
most relevant quantity for experimental detection. For modelling, it is the electron energy loss
function which enters the fluid energy equation. The contribution to the total electron energy
loss rate for the z-times ionized ion associated with ionization and recombination from the
(z + 1)-times ionized ion is

Z E, <Z Cpo Ny + Ne Z RWNV/> + Z E, (Z SwoNo+Ney CWNV)

+ZAE(,_>,,A<,_,pN +ZPLT NN, +ZPRB /NNy,

0,0

27

where E, and E, are absolute energies of the metastables p of the z-times ionized ion and
of the metastables v of the (z + 1)-times ionized ion, respectively. Thus the electron energy
loss is a derived quantity from the radiative power coefficients and the other generalized
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collisonal-radiative coefficients. Note that cancellations in the summations cause reduction to
relative energies and that in ionization equilibrium, the electron energy loss equals the radiative
power loss.

In the following sections, it is shown how the quasi-static assumption and population
categorization allow us to solve the infinite level population structure of each ion in a
manageable and efficient way. Such a solution is necessary for low and medium density
astrophysical and magnetic confinement fusion plasmas. This is unlike the simpler situation
of very dense plasmas where heavy level truncation is used, because of continuum merging.

2. Excited population structure

The handling of metastables in a generalized collisonal-radiative framework requires a detailed
specific classification of level structure compatible with both recombining and recombined ions.
For light element ions, Russell-Saunders (L—S) coupling is appropriate and it is sufficient to
consider only terms, since although fine structure energy separations may be required for high
resolution spectroscopy, relative populations of levels of a term are close to statistical. So the
parent ion metastables are of the form y,, L, S, with y, the configuration, and the recombined
ion metastables are of the form I', L ,S,, with the configuration I', = y, + n;/; and the excited
(including highly excited) terms are (y,L,S,)n;l;L;S;. n and [ denote individual electron
principal quantum number and orbital angular momentum, L and S denote total orbital and
total spin angular momenta of the multi-electron ion, respectively, in the specification of an
ion state in Russell-Saunders coupling. The configuration specifies the orbital occupancies
of the ion state. For ions of heavy elements, relative populations of fine structure levels can
differ markedly from statistical, and it is necessary to work in intermediate coupling with
parent metastables of the form y, J, and recombined metastables of the form I',J, with the
configuration I', = y, + n;/; and the excited (including highly excited) levels (y, J,)n;/; j; J;.
There is a problem. To cope with the very many principal quantum shells participating in
the calculations of collisional-dielectronic coefficients at finite density necessitates a grosser
viewpoint (in which populations are bundled ), whereas for modelling detailed spectral line
emission, a finer viewpoint (in which populations are fully resolved ) is required. In practice,
each ion tends to have a limited set of low levels principally responsible for the dominant
spectrum line power emission for which a bundled approach is too imprecise, that is, averaged
energies, oscillator strengths and collision strengths do not provide a good representation. Note
also that key parent transitions for dielectronic recombination span a few (generally the same)
low levels for which precise atomic data are necessary. In the recombined ion, parentage gives
approximate quantum numbers, that is, levels of the same n (and /) divide into those based
on different parents. Lifetimes of levels of the same n but different parents can vary strongly
(e.g. through secondary autoionization). Also the recombination population of such levels is
generally from the parent with which they are classified. We therefore recognize three sets of
non-exclusive levels of the recombined ion:

(i) metastable levels—indexed by p, o;

(ii) low levels—indexed by i, j in a resolved coupling scheme, being the complete set of
levels of a principal quantum shell range n : ng < n < ny, including relevant metastables
and spanning transitions contributing substantially to radiative power or of interest for
specific observations;

(iii) bundled levels—segregated according to the parent metastable upon which they are built
and possibly also by spin system—which can include bundle-nl and bundle-n.
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Figure 2. Schematic of population modelling and condensation procedures. It represents two
metastable parent states of non-zero spin, so that when an nl electron is added, each yields two
spin systems for the z-times ionized ion.

Viewed as a recombining ion, the set (i) must include relevant parents and set (ii) must span
transitions which are dielectronic parent transitions. Time dependence matters only for the
populations of (i), high precision matters only for groups (i) and (ii) and special very many
level handling techniques matter only for group (iii).

To satisfy the various requirements and to allow linking of population sets at different
resolutions, a series of manipulations on the collisional-radiative matrices are performed
(Summers and Hooper 1983). To illustrate this, suppose there is a single parent metastable
state. Consider the collisional-radiative matrix for the recombined ion and the right-hand side
in the bundle-n picture and a partition of the populations as [n,n] withn : np < n < n)
and n : n; < n. Elimination of the N; yields a set of equations for the N,. We call this a
‘condensation’ of the whole set of populations onto the n populations. The coefficients are the
effective ionization coefficients from the n, the effective cross-coupling coefficients between
the n and the effective recombination coefficients into the n, which now include direct parts
and indirect parts through the levels . Exclusion of the direct terms prior to the manipulations
yields only the indirect parts. Call these C"4" and rindr, We make the assumption that CI"*
and r™I' may be expanded over the resolved low level set (see section 2.2) to give the expanded
indirect matrix C}?*" and /3% where i and j span the resolved low level set (ij). These indirect
couplings are then combined with higher precision direct couplings ij” and r[dljr so that

G
Cij = Clr 4 cindr (28)

and

dir indir
Tiy =15, +1,0. 29)
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The procedure is shown schematically in figure 2. The process may be continued, condensing
the low level set onto the metastable set. The generalized collisional—dielectronic coefficients
are the result. The time dependent and/or spatial non-equilibrium transport equations which
describe the evolution of the ground and metastable populations of ions in a plasma use these
generalized coefficients. Following the solution, the condensations can be reversed to recover
the complete set of excited populations and, hence, any required spectral emission. The
progressive condensation described above can be viewed simply as one of a number of possible
paths which might be preferred because of special physical conditions or observations.

For light element ions, four types of bundling and condensation are distinguished in this
work:

(a) ground parent, spin summed bundle-n — lowest n-shell;

(b) parent and spin separated bundle-n — lowest spin system n-shell (the bundle-nS
population model);

(c) low LS resolved — metastable states (the low-level population model);

(d) parent and spin separated bundle-n — low LS resolved — metastable states.

Type (a) corresponds to the approach used in Summers (1974). Type (c) corresponds to the
usual population calculation for low levels in which (consistent) recombination and ionization
involving excited states are ignored. It establishes the dependence of each population on
excitation for various metastables only. Type (d), effectively the merging of (b) and (c) in the
manner described earlier, is the principal procedure to be exploited in this work for first quality
studies. Details are in the following subsections.

2.1. The bundle-nS model

Now let A**! denote the recombining ion and .A*?'~! the recombined ion so that 7 = z; — lis the
ion charge of the latter. z; is the effective ion charge and takes the place of the nuclear charge
in the reduction of hydrogenic rate coefficients to compact forms in the statistical balance
equations. Also introduce bundled populations

Nyps = NiL,s,)n8 = Z Ny, L,8,).0iLS (30)
L

and the assumption that

QL+ 1) QL+ 1)

_eL+h e CLrD 31
QI+ DQL, + D) ™S T 2eL, v 1) Gh

N, v,nlLS =
The bundling is based on the observation that the largest collision cross-sections are those for
whichn = n’ andl = I’ &= 1. For these cases the transition energy is small (effectively zero
for hydrogen or hydrogenic ions) and the cross-sections are so large for electron densities of
relevance for fusion that it is a very good approximation to assume relative statistical population
for the / L sub-states. The assumption is weakest for populations of states with core penetrating
valence electron orbitals and we expect spin system breakdown for high n/ states progressively
atlower n and/ for increasing ion charge z. Thus the above assumptions are appropriate for light
element ions with a more elaborate bundle-(J,)nlj model more suited to heavy element ions.
The latter will be the subject of a separate paper. In the bundle-nS model, only equilibrium
populations of complete n-shells for a given parent and spin system need be evaluated, which
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are the solutions of the statistical balance equations

Z [Ay—, + Neqn Son pq,ipln]Nv s+ Z €qn”~>n + Npqn”ﬁn]Nv n"S

n'=n+l1 n"=ngy
+ws, sIN.NTa” + N.Na@ + N2NFa ]

- (e) (p) — (e) (p) (32)

=1 >IN+ Npg 1+ D (A + Negy?, o+ Npg, P ]

n’'=n+l n"=nqy

F NG, 4 Nog?, + Z Ac HM} s,

N is the population of the parention A}, N, is the free electron density and N, the free proton
density, A is the usual Einstein coefficient, ¢ and ¢”’ denote collisional rate coefficients
due to electrons and protons, ar(l”, Ol,(ld) and Ol(3) denote radiative, dielectronic and three-
body recombination coefficients, respectively, A{ ¢, denotes secondary autoionization and
q\¥ . and qn « denote collisional ionization rate coefficients due to electrons and protons,
respectively, and ws,.s 18 a spin weight factor (see equation (33) below). For complex ions,
there are separate systems of equations for each parent and for up to two spin systems (in L-S
coupling) built on each parent and one such equation for each value of n from the lowest
allowed n-shell ng for the parent/spin system to co. The number of spin systems is labelled
Ngys and the lowest allowed n-shell ng = n0 , the lowest accessible shell by recombination
except for doublets built on the He-like 1s2s 3S parent. In general bare nuclei of other elements
are effective ion projectiles along with protons. We use the word protons here to represent
mean ze¢ ions with suitably scaled collisional rate coefficients. These equations are analogous
to the equations for hydrogen, and coupling-independent expressions may be used for the main
n — n’ coefficients provided a suitable spin system weight factor

s+
@58 = 508, +1) (33)

is introduced. Table 1 summarises these various parameters for first period iso-electronic
sequences up to fluorine/neon. There are a number of issues.

2.1.1. b-factors and lowest levels. For hydrogenic ions it was advantageous to write the
statistical equations in terms of Saha—Boltzmann deviation factors. This remains true for
complex ions but the definition must be generalized.The deviation b, , 5 is defined by

exp([v nS/kT )bv nS- (34)

wall n
Nv,nSZNeN:E;( ag H) Cl)v s

kT, 2w,

That is, b, ,s is specified with respect to the parent ion state .4}*', and the ionization potential
I, »s is also referred to that parent. ag is the Bohr radius. Note that w, ,5 = wsv,gnza)u
where w, = (25, + 1)(2L, + 1) is the parent statistical weight. It is convenient to introduce
cv.ns = by ns — 1 and scaled temperatures and densities

AR
e — IH Z%v

3
s [T may Ne

(35)

=2 iy
Pe 3@
with similar forms for the proton temperature and density. « is the fine structure constant. In
these terms the statistical balance equations become particularly suitable for calculation, and
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Table 1. Bundle-nS calculation pathways. The parent/spin system weight factor is defined in
equations (32) and (33). Npe; indicates the number of metastables of the recombined ion associated
with the parent/spin system. The parent index, sequentially numbering the different parents shown
in brackets, is used as the reference for tabulation of coefficients.

Rec. seq  Parentindex  Parent/spin system  wg, s  Lowest metastable  Npe

H-like 1 (1s28) n 0250 1s21s 1
(1s28) 3n 0.750  1s2s3S 1

He-like 1 (1s21S) 2n 1.000 15?2528 1
2 (1s2s38) %n 0333 1525228 1

(1s2s38) *n 0.667  1s2s2p *P 1

Li-like 1 (2s28) 'n 0250 2s2's 1
(2s28) 3n 0.750  2s2p 3P 1

Be-like 1 (252 18) 2n 1.000  2s22p 2P 1
2 (2s2p °P) 2n 0333 2s%2p %P 1

(2s2p 3P) *n 0.667  2s2p* *P 1

B-like 1 (2s22p 2P) 3n 0.750  2s22p* 'D 2
(2s22p 2P) 'n 0250  2s%2p? 3P 1

2 (2s2p% *P) 3n 0375 2s%2p? 3P 1

(252p% *P) n 0.625 2s2p> S 1

C-like 1 (2s22p2 3P) “n 0.667  2s22p> S 1
(2s22p? 3P) 2n 0333 2s%2p° 2D 2

2 (2s22p% 'D) 2n 1.000  2s%2p’ 2D 2

3 (2s22p2 'S) %n 1.000  2s%2p’ 2D 2

4 (2s2p® 3S) “n 1.000  2s22p®4S 1

N-like 1 (2s22p3 4S) 3n 0375 2s%2p* 3P 1
(2522p3 4S) on 0.625  2s22p3s°3S 1

2 (2s22p® 2D) 3n 0.750  2s%2p* 3P 1

(2s22p3 ?D) 'n 0250 2s%2p*'D 2

3 (2s22p3 2P) 3n 0.750  2s%2p* 3P 1

(2s22p3 2P) 'n 0250 2s%2p*'D 2

O-like 1 (2s22p* 3P) 2n 0250  2s%2p° 2P 1
(2s22p* 3P) “n 0250  2s22p*3s ‘P 1

2 (2s22p* 'D) 2n 1.000  2s%2p*3s 2D 2

3 (2s22p* 'S) %n 1.000  2s%2p*3s 2D 2

F-like 1 (2s22p° 2P) 'n 0250 2s%2p° 'S 1
(2s22p° 2P) 3n 0.750  2s22p3s 3P 1

resulting GCR coefficients (z-scaled), on a 6,/p, grid, can sustain interpolation of moderate
precision within an iso-electronic sequence.

The parent/spin system model does not distinguish recombined metastables within the
same spin system. For example, consider the 2s?2p 2P parent in a B-like like ion recombining
into the singlet system of the C-like ion. The parent/spin system has two metastables,
2522p? 'D and 2s?2p” 'S. We assign the effective ground state as the lowest energy metastable
(2s22p® 'D state in this example) and assign statistically weighted n-shell sub-populations to
resolve between the recombined metastables. There is often a substantial difference between
the quantum defect of the lowest state itself and the mean quantum defect arising from a
weighted average of the lowest n-shell terms. These choices improve the stepwise part of
the collisional-radiative ionization coefficient within the bundle-nS picture at low density
and allow the bundle-nS model to stand alone, albeit at some reduction in accuracy. A
precise solution, as adopted in this paper, is given by the condensation/projection/expansion
matrix transfer of the bundle-nS model onto the low level solution which distinguishes
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explicitly between the LS terms in the lowest few quantum shells from the beginning
(see section 2.2).

2.1.2. Auto-ionization and alternate parents. Let the metastable state which represents the
lowest level of recombined parent/spin system v, nS be labelled by p. With parent v, from a
stepwise collisional-radiative point of view, it is convenient to refer to v, n.S as an intermediate
state system and label it (v) ?S*Dn. Thus a recombination/stepwise/cascade pathway may
progress from a parent v through the intermediate state v, nS ending on the metastable p
with the effective GCR recombination coefficient written as ACD,,_, (, esw,., and likewise
a stepwise excitation/ionization pathway may progress from the lowest metastable p via the
intermediate state v, nS to the final ionized ion metastable v with the effective GCR ionization
coefficient SCD,_, () @sw,;,,. The population calculation for a given pathway involves the
excited state population structure connecting the recombining parent v and the metastable p.
However, an alternative parent, which is not the intermediate state parent, can be populated by
autoionization of excited states above the auto-ionization threshold. That is, if the parent v is a
metastable there exists a lower lying ground state (or possibly other metastable) of the parent,
say v'. The excited state populations of the v, nS system must include such auto-ionization
processes. Above the auto-ionization threshold, and at low electron densities, auto-ionization is
the dominant loss mechanism. However, the bundle-n auto-ionization transition probabilities
scale as n~> and are independent of electron density, whereas direct ionization loss rates
scale as n* and vary directly with electron density. For high n-shells, direct ionization is
the dominant loss process. As the electron density increases, direct ionization becomes the
dominant loss process for all n-shells and auto-ionization is quenched. The inclusion of auto-
ionization transition probabilities in the statistical balance equations leads to dramatic changes
in the population structure as shown in figures 3(a) and (). In the example, the populations
of C*1(2s?'S) 2n are built upon a ground state parent, so no auto-ionization pathways are
accessible from the excited states. If the populations are expressed in terms of the Saha—
Boltzmann b-factors then they show strong overpopulation of the high n-shells at low electron
density due to dielectronic recombination. As the electron density is increased, the dielectronic
recombination influence becomes less due to ionization of the high n-shell populations with
all the b-factors tending to 1. This behaviour is typical for a recombined system built on a
ground state parent. By contrast, the populations of C*!(2s2p 3P) ?#, built upon an excited
metastable parent, show powerful depopulation above the auto-ionization threshold. As the
electron density increases, the direct ionizing collisions from the excited states compete more
strongly and the b-factors tend to 1.

The definitions of generalized collisional-radiative ionization and recombination
coefficients are still relevant but give the recombination rate from v to p and the total loss rate
from p (i.e. with no resolution of final parent after ionization), respectively. The recombination
coefficient is already correctly parent/metastable resolved and needs no further adjustment.
The correct parent resolved (partial) ionization coefficients, SCD,,_, . @s+p.,, are derived by
constructing the loss vector from each level. Because the model considers the excited state
populations, N,, s, direct ionization only populates A}?'. The alternative parents are populated
by auto-ionization. The parent resolved loss vectors are thus given by

Lu,nS—>v = NeqvnS—v (36)
L r = A¢
v,nS—v v.nS—v'*

Tonization pathways and the expected (partial) GCR ionization coefficients for C*! + e —
C*? + e + e are summarized in table 2. From the point of view of recombination from v via
intermediate states v, nS towards p, autoionization allows exit into the alternative parent v’
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Figure 3. Bundle-nS population structure for O** recombining from and ionizing to O* at
T, = 1.7 x 10°K. (a) b 15) 2, factors for doublet bundle-n populations built on the ground
parent 25> 'S term. The enhanced b-factors at n ~ 10-300 are due to dielectronic recombination.
Curves show the progressive suppression of the high populations as the electron density increases.
(b) bagsp 3p) 2, factors for doublet bundle-n populations built on the metastable parent 2s2p 3p
term. The abrupt transition to underpopulations at n ~ 4 is due to secondary Auger transition
(LS coupling allowed breakdown type) to the 'S parent system.
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Table 2. Excited state structures and partial GCR ionization coefficients calculated for the Be-B
series. Ionization coefficient nomenclature is SCD_, ) @s+1), ,» Where p indexes the lowest
metastable of the parent/spin system, with v the parent of the spin system, and v’ indexes the
final metastable state. ‘d’ denotes direct ionization and ‘e-a’ denotes inner shell excitation—
autoionization contributions.

Final parent  Intermediate  Initial GCR ionization

metastable system metast.  coefficient Type

1 252 18)2n 1 SCD (2, d

1 (2s2p3P)2n 1 SCD|_ (32,1 e€a

2 1 SCD . 2) 242 d

1 (2s2p3P)*n 2 SCD, , 34,1  €-a(IC)
2 2 SCDy_, 2y 4n 2 d

before p is reached. This gives the new parent cross coupling coefficient XCD,_, () aswy 1
Note that in applications, it is the coefficients summed over intermediate states which are
required:

XCDysy = Y XCD, (y) @ssiy - (37)

v, S

Behaviours are illustrated in figures 4(a) and (b).

2.2. The low-level + projection model

Consider now the set of low levels of anion. For GCR studies, we are concerned with complete
sets of low levels associated with the valence electron in the ground and excited n-shells. The
span of the low levels is Ang, = n; — np with ng denoting the ground complex valence n-shell
and n; the highest resolved n-shell. For light elements and spectroscopy which extends up to
the visible range, we seek Angp; = 1 at minimum and 2 preferably.

The solution for the populations and effective coefficients follows the theory of
section 1.2.1 and is numerically straightforward, carried out in the population representation
(called the p-representation), rather than b-factor or c-factor representations (see equation (34)
and the following lines). The use of the c-factor representation, where ¢ = b — 1, is essential
for cancellation error avoidance in computation of the very high level population structure, but
is not necessary for the low levels. The construction of the C;; and r; , coefficients is by spline
interpolation in electron temperature of data extracted from archives. Expansion of indirect
projection data and its amalgamation with the resolved direct data is by weight matrices:

_ dir indir
lj - C + 2 :wz]vSCn n'w,S»

indir
V,U—I" +§ :wtvSrnvS’ (38)
_ gdir indir
Li= Li + 2 :a)i:v,SLn:v,S’
v,S

where i € n and j € n’. Introducing the term statistical weight fractions

@S, + DHQ2L; + 1)
Y28, + DQL; +1)

(39)

Wip:n,§ =
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Figure 4. Bundle-n S generalized collisional-radiative coefficients. 7, is the electron temperature
and N, the electron density. (a) C;l +e— Cf 2 e +e for different initial metastable, p, final
states, v, and intermediate parent/spin systems. Curves are labelled as SCD(p — (V') 25+ )
where p = 1 = (2522p?P), p = 2 = (22p**P), v,/ = 1 = (22 'S) and v,V = 2 =
(2s2p 3P). (b) O+3[2s2p2 Pl+e - O [2322p 2Pl +e parent cross-coupling coefficients. Both
O*z[(252p2 4P) 3n] and OJrz[(252p2 4P) 1] recombined systems are included. The autoionization
pathway for the former is allowed in LS-coupling, but for the latter proceeds only in intermediate-
coupling (see section 2.3). Such coefficients follow broadly the behaviour of recombination
coefficients.
then

¢ /
wijZV,S = ws, sWi:n:w,S for n 75 n
c —
Wjjy,s = Ws,.8 w0)
r _ f o
wi:v,S = Wj:n:v,S orn=n
wi:v,S = ws,,s

and wg, s is as defined in equation (33). Table 3 illustrates the C;; weighting.
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Table 3. Fractionizing of bundle-nS matrix projection onto low levels for B-like ions with two
resolved n-shells.

n-shell weights

Index Term Spin  Parent Shell n=2 n=3

1 25%2p 2P 2 1 2 025 —

1 25%2p 2P 2 2 2 025 —

2 2s2p” 4P 4 2 2 0.786 —

3 2s2p? 2D 2 1 2 045  —

3 2s2p?2D 2 2 2 0.45 —

4 2s2p? 28 2 1 2 005 —

4 2s2p” 28 2 2 2 0.05 —

5 2s2p* 2P 2 2 2 0.25 —

5 2s2p* 2P 2 2 2 0.25 —

6 25?35 28 2 1 3 — 0.0667

6 25235 28 2 2 3 — 0.0667

7 2s%3p 2P 2 1 3 — 0.3333

7 2s%3p 2P 2 2 3 — 0.3333

8 2p3 4P 4 2 3 0214 —

9 2s?3d’D 2 1 3 — 0.6

9 2s?3d’D 2 2 3 — 0.6
10 2s2p3s ‘P 4 2 3 — 0.1089
11 2s2p3p ‘D 4 2 3 — 0.1881
12 2s2p3p*S 4 2 3 — 0.0297
13 2s2p3p ‘P 4 2 3 — 0.1089
14 2s2p3d*F 4 2 3 — 0.2673
15 2s2p3d ‘D 4 2 3 — 0.1881
16 2s2p3d ‘P 4 2 3 — 0.1089

In the deduction of spectral emission coefficients between low levels there can be some
confusion. Following the definition of equation (21), in the resolved low level picture, the
emission coefficient is referred to a particular metastable. If metastables are neglected, so
that there is only a ground state and all other levels are viewed as excited, the reference
is to the ground state. On the other hand, a metastable treated as an ordinary excited
level will have a quasistatic population comparable to that of the ground so that ), N; =
Niot # Ny and PECyy j.x = PEC; jtNi/Ny, and this is the coefficient which should
be used with a ‘stage-to-stage’ (that is un-generalized picture) ionization balance. Figure 5
illustrates the behaviour of low level populations. The graph is of the parameter _E(lexc) from
equation (20).

2.3. Specific reactions

Energy levels for high bundle-nS levels and their A-values, Maxwell averaged collision
strengths, radiative recombination coefficients, dielectronic recombination coefficients and
ionization coefficients are generated from a range of parametric formulae and approximations
described in earlier works (Burgess and Summers 1976, Summers 1977, Summers and
Hooper 1983, Burgess and Summers 1987, Summers 2004). High quality specific data when
available are acccessed from archives and substituted for the default values. This is a systematic
procedure for dielectronic coefficients (see sections 2.3.1 and 5 below).
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Figure 5. Low level population structure of Ne*”. The excitation part driven by the 1s22s 2S
ground state is denoted by N;. Terms are labelled as 2: 2p 2p, 3: 3s 28, 4: 3p 2p, 5: 3d 2D, 6:
4s28,7: 4p 2P, 8: 4d >D. At low density, the population ratios N; /N, N1 become flat tending to the
coronal values. At high density the population ratios decrease inversely with the electron density,
N,, tending to the Saha-Boltzmann values. The intermediate region is the collisional-radiative
regime.

For low levels, a complete basis of intermediate coupling energy level, A-value and scaled
Born approximation collision data, spanning the principal quantum shell range ng < n < n;
is generated automatically using Cowan (1981) or Autostructure (Badnell, 1986) procedures.
This is called our baseline calculation. These data are merged with more restricted (in level
coverage) but similarly organized highest quality data from archives where available (e.g.
R-matrix data such as Ramsbottom et al (1995)).The data collection is compressed by
appropriate summing and averaging to form a complete LS term basis and augmented with
comprehensive high quality LS resolved dielectronic recombination, radiative recombination
and collisional ionization coefficients mapped from archives (see sections 2.3.1, 2.3.2 and 5
below). The radiative data have their origin in the work of Burgess and Summers (1987). The
final data collection is called a specific ion file (ADAS data format adf04). The detailed content
is examined in section 3. Details of state selective dielectronic recombination and ionization
coefficients are given in the following subsections.

2.3.1. State-selective dielectronic recombination. State selective dielectronic recombination
coefficients are required to all resolved low levels and to all bundle-nS shells for the various
initial and intermediate state metastable parents v for GCR modelling. These are very extensive
data and have been prepared for the present GCR work through an associated international
‘DR Project” summarized in Badnell et al (2003) (hereafter called DR - paper I') and detailed
in subsequent papers of the series . Based on the independent particle, isolated resonance,
distorted wave (IPIRDW) approximation, the partial dielectronic recombination rate coefficient
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al()d_))i from an initial metastable state v into a resolved final state i of an ion .A** is given by

2 3/2 a r
oD (4”%1H) ) Dp.j ~EJKT, 20 A vk A i @)

L= X
V—I r a )
kTe j Zwv Zh Ap,jeh + Zm,l Ap,j%m,Epl

where ), ; is the statistical weight of the (N + 1)-electron doubly-excited resonance state
J», w, is the statistical weight of the N-electron target state and the autoionization (A“) and
radiative (A”) rates are in inverse seconds. The suffix p is used here to denote a parent ion
state. E. is the energy of the continuum electron (with angular momentum /), which is fixed
by the position of the resonances. Note that the parent states p are excited, that is, they
exclude the metastable parents v'. The code AUTOSTRUCTURE (Badnell 1986, Badnell and
Pindzola 1989, Badnell 1997) was used to calculate multi-configuration LS and intermediate
coupling energy levels and rates within the IPIRDW approximation. The code makes use of
both non-relativistic and semi-relativistic wavefunctions (Pindzola and Badnell 1990) and is
efficient and accurate for both the resolved low level and high-n shell problems. Lookup tables
(see section 5, adf09) are prepared comprising state selective recombination coefficients at a
standard set of z-scaled temperatures, for each metastable parent, to all LS resolved terms of
the recombined ion with valence electron up to n-shell nﬁd) > n; (normally nid) = 5) and
to bundle-n S levels of a representative set of n-shells (usually spanning ngy to 999). These
bundle-nS coefficients are simple sums over orbital states / € n and so apply at zero density.
This provides an extensive, but still economical, tabulation.

In DR paper-I, we introduced an associated code, the ‘Burgess—Bethe general program’
BBGP. BBGP is used here as a support function in a model for the /-redistribution of doubly-
excited states which provide a correction to the accurate, but unredistributed, dielectronic data.
The redistributed data (regenerated in the same adf09 format) are normalized to IPIRDW at
zero density. The procedure is similar to that for singly excited systems. For LS-averaged
levels, the number densities expressed in terms of their deviations, b, ,; from Saha—Boltzmann,
and referred to the initial parent v/, are given by

nang 32
kT,

Thus, in the BBGP zero-density limit, with only a resonant capture from the v parent balanced
by Auger breakup and radiative stabilization back to the same parent, we have

a
b _ ZZ’ Ap,nl—>v’k/l’
p.nl = Z A4 + A" :
U % p,nl—vk'l’ p,nl—v' nl

In the extended BBGP model, we include resonant capture from initial metastables other
than the ground, dipole-allowed collisional redistribution between adjacent doubly-excited
[-substates of the same n by secondary ion- and electron-impact and losses by ‘alternate’
Auger break-up and parent radiative transition pathways. The population equations for the
[-substates of a doubly-excited n-shell become

- (qurgtl’)flenl + NZeffq(Zeff) )Np,nl—l

nl—1—nl

w
onl o EKTepy (42)
Wy

Np,nl = Ne :/8[

(43)

p—1 I+l p—1
§ (e) § (Zefr) § : § : a § : r
+ Neqnl%nl’ + NZeffqn]*)nl/ + Ap,nl—>p1,)(l/ + Ap,nl—>p|,nl N[’,nl
I'=l£1 I'=l£1 pi=10'=l—-1 pi=1

(e) (Zefr)
- (qunl+l—>nl + Nzeffqnzfl_mz)Np,an

M I+1 P
— c r
- Ne Z Z qv,xl’—>p,nlNV + pl,nl_>p,n1Np1,nl~ (44)

v=110'=l-1 p1=p+l
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Figure 6. O* dielectronic recombination. b p.ni factors as a function of outer electron orbital
angular momentum, /, for doubly-excited states of O3* relative to O** 2s? 'S for p = 2s2p 'P and
283p'P,n =20, T, = 10°K, N, = Nj,, Zegr = 1. Cases: 1. N, = 100 em™3;2. N, = 102em3;
3. N, =103 cm™3; 4. N, = 10 cm—3; 5. N, = 101 cm™3. Note the alternative Auger channel
reduction for the p = 2s3p 'P graphs.

q°¢ denotes resonance capture coefficients, M denotes the number of parent metastables which
are the starting point for resonance capture whereas P denotes the number of true excited parent
states. Ion impact redistributive collisions are effective and are represented in the equations as
Zeff 10n contributions. The density corrected bundle-nS recombination coefficients are then

(d,BBGP)
(d.IPIRDW) (n; y o (d.IPIRDW) ) 2 oy (Ne) 45
VvV —=v'.nS ( e)_av’—w’,nS ( e - ) (d,BBGP) : ( )
Zl av’av’,nl (Ne = O)

Details are given in DR paper-1. Figure 6 shows the effects of redistribution of the doubly
excited b, ,; factors in the recombination of o,

Autoionization rate calculations in LS coupling exclude breakup of non-ground metastable
parent based ‘singly excited’ systems by spin change. Such breakup occurs only in intermediate
coupling but cannot be ignored for a correct population assessment even in light element ions.
These rates are computed in separate intermediate coupling dielectronic calculations. These
rates are main contributors to the parent metastable cross-coupling identified earlier (cf the
O*2[(2s2p? *P) °n] intermediate states in figure 4(b) leading back to the O*3(2s22p 2P) parent).

2.3.2.  State-selective ionization.  Direct ionization coefficients for excited n-shells
in bundle-nS population modelling are evaluated in the exchange-classical-impact
parameter (ECIP) approximation (Burgess and Summers 1976). The method which merges
a symmetrized classical binary encounter model with an impact parameter model for distant
encounters is relatively simple and of moderate precision, but has a demonstrated consistency
and reliability for excited n-shells in comparison with more eleborate methods. There is a
higher precision requirement for state selective ionization from metastable and low levels. Such
an ionization includes direct and excitation/autoionization parts, but the latter only through true
excited parents. Stepwise ionization is handled in the collisional-radiative population models.
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There are extensive ionization cross-section measurements, but these are in general unresolved
and so are of value principally for renormalizing of resolved theoretical methods. The most
powerful theoretical methods used for excitation, namely R-matrix with pseudostates (RMPS)
(Bartschat and Bray 1996, Ballance et al 2003) and convergent-close-coupling (CCC) (Bray
and Stelbovics 1993), have some capability for ionization, but at this stage are limited to
very few electron systems as is the time-dependent-close-coupling (TDCC) (Pindzola and
Robicheaux 1996, Colgan et al 2003) ionization method. For GCR calculations, we have
relied on the procedures of Summers and Hooper (1983) for initial and final state resolution
of total ionization rate coefficients and on the distorted wave approximation. The distorted
wave method is our main method for extended GCR studies for many elements and most
stages of ionization. RMPS and TDCC studies are directed mostly at the neutral and near
neutral systems where the distorted wave method is least reliable (Loch ef al 2005). We
use the configuration average distorted wave (CADW) approach of Pindzola et al (1986).
It has reasonable economy of computation while allowing access to complex, multi-electron
ions, highly excited states, excitation/autoionization and radiation damping. It expresses the
configuration averaged excitation cross-section for

()" (nalo) 2 gl; — (yl)? (nala) 2kl (46)
as

_ 8

Foxci = (@1 + D@L +3 — 42) D @i+ D@Ly + )My (47)

i*f lily

and the configuration averaged ionization cross-section for

(i) kil — (il kelok gl (48)
as
_ 327
Gions = Z==— (@1 + 1) D Qli+ D@L+ DL+ DMepini (49)
i el f

lisle,ly

where M .y; are squared two-body Coulomb matrix elements, o denotes the average cross-
section and k;, ]Ef and k, denote average initial, final and ejected electron momenta, respectively,
in the configuration average picture. The configuration average direct ionization cross-sections
and rate coefficients may be unbundled back to the resolved form using angular factors
obtained by Sampson and Zhang (1988). Note that the excitations described here are to auto-
ionizing levels, and so resolved Auger yields may be used which are the same as those in the
dielectronic calculations of section 2.3.1 above. In fact the ionization coefficient calculation
results are structured and archived in ADAS (format adf23) in a manner very similar to the
state selective dielectronic recombination. Extensive studies have been carried out on light
and heavy elements (Colgan et al 2003, Loch et al 2003).

3. Fundamental atomic data for low levels of ions

For bundle-n S modelling, the expected fundamental data precision is <30% for excitation and
ionizing collisional rate coefficients, <10% for A-values and state selective recombination
coefficients and <1% for energies.

For low level modelling many sources are used. A rating is given for the classes of
fundamental data for the ions of carbon, oxygen and neon in table 4 which is based on
the following considerations. For energy levels, categories are a spectroscopic, b < 0.5%
and ¢ < 1.0%. Category c is anticipated from ab initio multi-configuration structure
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Table 4. Fundamental data precision categorizing for the ions of carbon, oxygen and neon.
The definition of the categories and justification of the categories for Ne*0 are given in the text.
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calculations, b from such calculations with extended optimizing and a reflects direct inclusion
of experimental energies from reference sources. For A-values, categories are a < 5%,
b < 10% and ¢ < 25%. Category c is anticipated from our baseline calculations, b from
optimized multi-configuration structure calculations with extended optimizing and a from
specific studies in the literature. For electron impact Maxwell averaged collision strengths,
Y, the categories are a < 10%, b < 20% and ¢ < 35%. Category c is from our baseline
calculations, b from distorted wave calculations and a from specific R-matrix calculations,
equivalent methods or experiment. For radiative recombination, the categories are a < 5%,
b < 10% and ¢ < 50%. Category c is from scaled methods using hydrogenic matrix
elements, b from distorted wave one-electron wave functions in an optimized potential using
spectroscopic energies and a from specific R-matrix calculations and experiment. Category b
is the baseline in ADAS. For dielectronic recombination, the categories area < 20%, b < 30%
and ¢ < 45%. Category c is from BBGP approximations, b from LS-coupled calculations using
Autostructure from the DR Project and a from IC-coupled calculations using Autostructure
with parent and lowest resonance energy level adjustments from the DR Project. Category b is
the baseline in ADAS. It is to be noted that the theoretical relative precision which is consistent
with the variation between the three categories is 15% better, but dielectronic recombination
comparisons with experiment still show unexplained discrepancies at the 20% level, so the
present categories are safe. Forionization, the categoriesarea < 10%,b < 25% andc¢ < 40%.
Category c is from ECIP approximations, b from configuration average with angular factor term
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resolution and a from RMPS, TDCC calculations and experiment. Category b is the baseline
in ADAS.

As indicated in section 2.3, these various data are assembled in an adf04 file which is
sufficient to support the primary low-level population calculation. The tabulations are at a set
of temperatures arising from a fixed set of z-scaled temperatures (see section 2.1.1) which spans
the full range to asymptotic regions of reaction data. Collision data are converted to these ranges
using C-plots (Burgess and Tully (1992) and this procedure also flags data errors or queries. The
precision of the specific ion file determines the achievable precision of all derived populations,
emissivities and collisional-radiative coefficients (Whiteford et al 2005, O’Mullane et al
2005). The assembling of data in the adf04 is systematic and orderly. A comment section at
the end of the file details the assembly steps, implementer, codes used and dates. This includes
baseline and supplementation files, merging, LS compression, dielectronic recombination data
inclusion etc. Also there is extended detail of orginal data sources and a history of updates.
A given adf04 file represents a ‘snapshot’ of the state of available knowledge at the time. It
is subject to periodic review and ADAS codes (see section 5) are designed to enable easy
reprocessing of all derived data following fundamental data update. The grading for each ion
given in table 4 is justified and supported by the comments from its adf04 file. A summary
from Ne*® is given in the following paragraphs in illustration. For Ne*®, the low levels span 44
terms, including up to the n = 5 shell built on the parent 1s?2s 'S and n = 3 shell built on the
1s?2p 'S. Only the 1s22s 'S parent is treated as a metastable from the GCR point of view. The
intermediate coupled baseline dataset is copmmit10-ic#ne6.dat with preferred supplementary
energy A-value and Y data merged from copjl#be-ic#ne6.dat. lonization potentials and energy
levels are from the NIST standard reference database apart from 2p3p 'S (Kelly 1987) and
2p3d 3F levels by Ramsbottom e al (1995). The categorization is a. A-values were drawn
from the Opacity Project (Opacity Project Team 1995, Tully et al 1991) as justified (for N
IV and O V) by Wiese et al (1996) and supported/adjusted by <3% by Fleming et al (1996a
and 1996b), Jonsson et al (1998), Froese Fischer et al (1997a, 1997b), Nussbaumer and Storey
(1979), Sampson et al (1984) and Ramsbottom ez al (1995). Category b is safe. Y's are taken
from Ramsbottom et al (1995). These are for a 26 LS eigenstate multichannel R-matrix
calculation. The categories assigned are a and b. Radiative and dielectronic recombination
and ionization all follow the baselines in ADAS, that is, categories b, although the summed
and averaged ionization rate coefficient (over metastables) is normalized to experiment.

4. Illustrative results

Figure 7 shows PEC coefficients for the C1 858 A spectrum line. The coefficients depend
on both electron temperature and electron density in general. A common practice in spectral
analysis is to observe principally the strongest resonance line of an ion. Such an emission
is driven largely from the ground state (figure 7(a)) and because of the large A-value, the
density sensitivity occurs at relatively high density. Thus such a resonance line emission
at moderate to low densities mostly reflects temperature and the distribution of the ionization
stages. Comparison in near equilibrium ionization balance plasmas of line ratios from the same
ion, by contrast, is mostly directed at electron density and relies on the presence of metastables
and spin changing collisional processes to confer the sensitivity. As shown earlier, the balance
of the dominant ground and metastable populations is disturbed in dynamic plasmas, and so
density sensitivity may be modified by the dynamic state. The distinction of the metastable
driven PEC in GCR modelling, as illustrated in figure 7(b), allows a more complete diagnostic
study and the possibility of separation of the two effects. In strongly recombining plasmas
(most commonly photo-ionized astrophysical plasmas) the direct contribution of recombination
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Figure 7. Excitation and recombination photon emissivity functions,PECs, driven by the ground
metastables, are shown for the C 1 858 A spectrum line. The coefficients depend on both the
electron temperature and the electron density. The (exc) part decreases at high electron density
principally due to stepwise ionization losses from the upper level of the transition. The behaviour
of the (rec) part shows both the suppression of dielectronic recombination at moderate density and
then the enhancement due to three-body recombination at high density and low temperature.

to the emission may dominate the excitation part. The PEC®™, as illustrated in figure 7(c),
is then required. In the fusion context, multi-chordal spectral observations are important for
the study of impurity transport especially near sources. Visible and quartz UV observations
are convenient and this places a requirement for PECs from higher quantum shells. It is this,
primarily, which defines the span of our low-levels for population modelling. Emission from
higher n-shells is significantly affected by cascading from yet higher levels. The full machinery
of projection as described in section 2.1 is necessary for our global ambition of 20% precision
for emissivity coefficients.

Figure 8 illustrates the GCR recombination coefficients. Atlow electron density, radiative
and dielectronic recombination dominate. For capture from metastables, alternate Auger
branching can largely suppress the dielectronic part of the surfaces. Thus figure 8(a) shows
the characteristic exponential rise at the temperature for excitation of the main parent (core)
transition of dielectronic recombination and then the subsequent fall-off (as ~T;3/ 2), in
contrast with 8(c). At moderate densities, suppression of the high n-shell populations,
principally populated by dielectronic recombination, through re-ionization occurs and the
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Figure 8. Generalized collisional-radiative recombination coefficients for O** + ¢ — O*3
(a) ACD(2s% 'S — 2522p 2P) (b) ACD(2s> 'S — 2s2p® *P) (c) ACD(2s2p *P — 2s2p? *P).

coefficient falls in the dielectronic recombination region. At a very high density, three-body
recombination becomes effective, preferentially beginning at the lower electron temperatures.
It is evident that recombination is less effective from the metastable at relevant ionization
balance temperatures. Models which ignore the role of capture from the metastable parent
(which may be the dominant population) can lead to substantial errors in recombination
coefficients, while simply excluding all capture from the metastable cannot deliver the precision
sought for current modelling. For light elements in astrophysical plasmas, the zero-density
coronal assumption for the recombination coefficient is still frequently made. This cannot be
justified even at solar coronal densities.

Figure 9 illustrates the GCR ionization coefficients. Atlow electron density, the coefficient
is dominated by direct ionization, including excitation/auto-ionization, from the driving
metastable. Relatively high electron densities are required before the stepwise contribution
begins. It is primarily the excitation to, and then further excitation and ionization from, the
first excited levels which controls this. The ground and metastable resolved coefficients both
show the same broad behaviour as the usual (stage to stage) collisional-radiative coefficient,
tending to a finite limit at very high density. It is to be noted that the XCD coefficients are
required to be able to construct a meaningful stage-to-stage collisional-radiative ionization
coefficient from the generalized progenitors. It remains the case that most plasma modelling
(certainly in the fusion area) is not adjusted to the use of the generalized coefficients as source
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Figure 9. Generalized collisional-radiative ionization coefficients for 0*> +e — O** +e+e
(a) SCD(2s22p 2P — 252 1S) (b) SCD(2s22p 2P — 2s2p 3P).

terms. Reconstruction of stage to stage source terms (at the price of a reduction in modelling
accuracy) from the generalized coefficients is still a requirement and is addressed more in
detail in section 5.

The generalized coefficients may be used to establish the equilibrium ionization balance
for an element in which the dominant ground and metastable populations are distinguished,
that is the fractional abundances

NgZ]
<N_[t()t]>:0—21""’M1;Z:0""7Z(]9 (50)

where M, is the number of metastables for ionization stage z and

20

Nlod — f: NE = Z %: N(EZ] (51
z=0

z=0 0=0

in equilibrium. Writing N¥! for the vector of populations N7, the equilibrium population
fractions are obtained from a solution of the matrix equations.

Q[O’O] N, E[1—>0] 0 . ﬁ[OJ
Ne§|0~>1| Q[l,l] Ne E[Zﬁl] . M[l]
0 N S'A g2 I NRI <o, (52)
0 0 N S>3 || N8
equil

These in turn may be combined with the PLT and PRB to obtain the equilibrium radiated power
loss function for the element as

o1 _ 3 plat (N s (2] ey (( Ne

tot] __ Z — V4 Z g

Pt =3 () =S eersgh (1) 2
equi

7=0 z=0 0=0

equi



Tonization state: I 289

T 10724

GCR (zero density) GCR (1013 cm3)
ot 1+ ot gt gtgt 6+ 7+ g+

T — T T — T

(a) ] (b)
L o* 1+ 2t 3tatst e6t7t 8t |

1.000
1026

1028

0.100

1030

PR |

Fractional abundance
Radiated Power (W cm3)

1032
0.010

P |

10734

e adal ) PRI

0.001 i g EI I L .
100 1000 1 10 100 1000

103

(©

-1
GTN; ok (cmas )

S
S
o
N

";"
o]

l"ﬂ/
AN

L]
3
277>

ZZZ

2

L77 %
552

52
s

%
ZZ
7

2,
%
7
s
L7
7
22

7
7

7
1%
5

7
o
//"f
4
222

Figure 10. Equilibrium ionization balance of oxygen. (a) Equilibrium fractional abundances of
metastables from the generalized collisonal-radiative () The total radiated power function showing
the components driven by the different metastables (¢) The GTN function for the O 629.7 A line
showing the contributions parts from the different metastables of the z-times and (z + 1)-times
ionized ions.

The equilibrium fractional abundances and equilibrium radiated power function are illustrated
in figure 10. It is useful at this point to draw attention to emission functions which combine
emission coefficients with equilibrium fractional abundances. They are commonly used in
differential emission measure analysis of the solar atmosphere (Lanzafame et al 2002)
where they are called G(T,) functions. In solar astrophysics, it is assumed that the G(T,)
are functions of the single parameter 7, (either from a zero-density coronal approximation
or by specification at fixed density or pressure) and usually the abundance of hydrogen
relative to electrons Ny /N, is incorporated in the definition. For finite density plasmas,
in the generalized collisonal-radiative picture, we define GTN functions, parametrized by
T, and N, as

(2] (zlexe) { NF e [Ny
— g V
GTNE, = 3" pECEIee (N[tm]> + > oPEC (o) (54)
= equi o

equil
These are strongly peaked functions in 7,. The precision of the present modelling and data,
including the full density dependence, is in principle sufficient to allow bivariate differential
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Figure 11. Schematic of computational steps in the production of generalized collisional-radiative
data. Data sets are shown by circles and program elements by rectangles. The key members have
been incorporated and assigned names in the ADAS system.

emission measure analysis (Judge et al 1997) although this remains to be carried out. The
general behaviour of a GTN function is illustrated in figure 10(c).

5. Computations and archiving derived data for applications

The organization of the main calculations and data flow is shown in figure 11. The calculations
executed for the paper have been implemented in general purpose codes and attention has
been given to the precise specification of all data sets and the machinery for accessing and
manipulating them. This includes initial data, intermediate and driver data as well as the final
GCR products and follows ADAS Project practice. Population structure modelling requires
an initial input dataset of energy levels, transition probabilities and collisional rates of ADAS
data format adf04 which is complete for an appropriate designated set of low levels. For
the light elements, best available data were assembled and verified as described in section 3.
These data are substitutes for more moderate quality, but complete, baseline data prepared
automatically (see GCR—paper III). The adf04 files are required for LS-terms. In practice, we
find it most suitable to prepare the data for LSJ levels and then bundle back to terms. For GCR
modelling, state selective recombination and ionization coefficients must be added to form
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the fully specified adf04 file. The LS-coupled dielectronic coefficients are mapped in from
very large comprehensive tabulations of data format adf09 prepared as part of the DR Project
(Badnell et al 2003). The resulting adf04 files are the ADAS preferred data sets and are
available for elements helium to neon.

The two population codes, called ADAS204 and ADAS208, work together. ADAS204
is the bundle-nS model. Data on the metastable parent structure, quantum defects, auto-
ionization thresholds and autoionsation rates are required. These data may be extracted from
the adf04 files, and it has been helpful to make the driver dataset preparation automatic. High
quality shell selective dielectronic data are essential, and this is part of the provision in the
adf09 files described in the previous paragraph. ADAS204 provides complete population
solutions, but extracts from these solutions the condensed influence on the low n-shells, as
projection matrices, for connection with the calculations of ADAS208. It is to be noted that
the main on-going development is the refinement of atomic collision rates between the key
low levels. The projection matrices are not subject to frequent change and so are suitable
for long-term archiving (adf17). ADAS208 is the low-level resolved population model which
delivers the final data for application. It draws its key data from the fully configured adf04 file
and supplements these with projection data. The evaluation of the population structure takes
place at an extended set of z-scaled electron temperatures and densities (see section 2), and this
means that the resulting GCR coefficient data are suited to interpolation along iso-electronic
sequences. Thus the initial tabulation of GCR coefficients is in iso-electronic datasets. It is
convenient to implement the gathering and mapping from iso-electronic to iso-nuclear in a
separate step, which also supports the merging back to the unresolved stage-to-stage picture
if required. The production of PEC and SXB coefficients is directly to iso-nuclear oriented
collections. The number of PECs from the population calculations can, in principle, be very
large. We restrict these by a threshold magnitude and to particular important spectral regions.
It is straightforward to rerun ADAS208 to generate PEC or SXB coefficients alone in spectral
intervals of one’s choice. The separation of the ADAS204 and ADAS208 tasks and the ease
of modifying data within an adf04 file means that ‘what-if” studies on the sensitivity of the
derived data to fundamental data uncertainty can readily be carried out. Special ADAS codes
enable a detailed study of cumulative error and dominating sources of uncertainty such that
error surfaces, for example for a PEC as a function of electron temperature and density, may
be generated. Such error (uncertainty) analysis for theoretical derived coefficients and its
utilization in the confrontation with diagnostic experiments is the subject of a separate work
(see O’Mullane et al (2005)).

6. Conclusions

The requirements for precise modelling of spectral emission and the relating of ionization
stages in thermal plasmas have been considered. Collisional-radiative methodologies have
been developed and extended to enable the full role of metastables to be realized, so that
this generalized (GCR) picture applies to most dynamically evolving plasmas occurring in
magnetic confinement fusion and astrophysics.

The procedures are valid up to high densities. The studies presented in the paper explore
the density effects in detail within the GCR picture and show that the density dependences of
excited ion populations and of effective rate coefficients cannot be ignored.

Specific results are presented for light elements up to neon, and the computations are
carried out in an atomic basis of terms (LS-coupled). Such modelling will remain sufficient
up to about the element argon, beyond which a level basis (intermediate coupling) becomes
necessary. Heavier elements will be examined in further papers of this series.
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Considerable attention has been given to the generation and assembly of high quality
fundamental data in support of the GCR modelling. Also datasets of fundamental and derived
data have been specified precisely, and codes have been organized following the principles of
the ADAS Project. The product of the study is the preferred ADAS data for the light element
ions at this time.
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