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Abstract
We have carried-out a series of multi-configuration Breit–Pauli AUTOSTRUCTURE

calculations for the dielectronic recombination of Fe13+. We present a detailed
comparison of the results with the high-energy-resolution measurements
reported recently from the Heidelberg heavy-ion Test Storage Ring by Schmidt
et al. Many Rydberg series contribute significantly from this initial 3s23p M-
shell ion, resulting in a complex recombination ‘spectrum’. While there is much
close agreement between theory and experiment, differences of typically 50%
in the summed resonance strengths over 0.1–10 eV result in the experimentally
based total Maxwellian recombination rate coefficient being a factor of 1.52–
1.38 larger than theory over 104–105 K, which is a typical temperature range of
peak abundance for Fe13+ in a photoionized plasma. Nevertheless, the present
theoretical recombination rate coefficient is an order of magnitude larger than
that used by modellers to date. This may help explain the discrepancy between
the iron M-shell ionization balance predicted by photoionization modelling
codes, such as ION and CLOUDY, and that deduced from the iron M-shell
unresolved-transition-array absorption feature observed in the x-ray spectrum
of many active galactic nuclei. Similar data are required for Fe8+ through Fe12+

in order to remove the question mark hanging over the atomic data though.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dielectronic recombination (Burgess 1964) is the dominant electron–ion recombination
process in both photoionized and electron-collisional plasmas. Extensive theoretical data
are available for all K- and L-shell ions of all elements up to Zn, and selected heavy elements
beyond, following the work of Badnell et al (2003), and are available online1. These data,
including radiative recombination (RR), have been used to provide new ionization balances
for both electron-collisional (Bryans et al 2006) and photoionized plasmas (Ferland 2006).

1 Webpage http://amdpp.phys.strath.ac.uk/tamoc/DATA.
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Extensive benchmarking has taken place against experiment for both low-Z (C, N, O) and
higher-Z (Fe, Ni) elements—see e.g. Fogle et al (2005) and Savin et al (2006), and references
therein. Work on the M-shell is sparse (beyond the simple Na-like sequence, Linkemann et al
(1995), Fogle et al (2003)). Yet, M-shell Fe ions are ubiquitous in astrophysics.

It has become clear recently that dielectronic recombination (DR) rate coefficients for Fe
3pq(q = 1–6) ions (Fe8+–Fe13+) are highly questionable at temperatures where these ions form
in photoionized plasmas (104–105 K, say, Kallman and Bautista (2001)). This stems from
the inability of photoionized plasma modelling codes, such as ION (Netzer 2004) and CLOUDY

(Kraemer et al 2004), to model the iron M-shell unresolved-transition-array absorption feature
observed in the x-ray spectrum of many active galactic nuclei. The situation can be improved
by changing the ionization balance for these Fe ions at such temperatures, as first suggested
by Netzer et al (2003), and which is achieved by increasing the dielectronic recombination
rate coefficients by large factors (e.g., 2–4).

That this is a plausible approach has been verified experimentally for Fe13+ by Schmidt et al
(2006) who carried-out high-energy-resolution DR measurements at the Heidelberg heavy-ion
Test Storage Ring (TSR). They deduced a Maxwellian recombination rate coefficient which is
up to an order of magnitude larger than that recommended by Arnaud and Raymond (1992),
and (again) by Mazzotta et al (1998), at photoionized plasma temperatures. The latter is
currently used to determine the ionization balance of iron in ION and CLOUDY, as well as
in other photoionized plasma modelling codes such as XSTAR (Kallman and Bautista 2001).
The reason for this difference is that the existing (recommended) theoretical dielectronic
recombination contribution (Jacobs et al 1977) to the total recombination rate coefficient falls-
off exponentially below ∼10 eV and the total is dominated by direct radiative recombination.
A similar problem was noted by Müller (1999) for Fe15+ and it is prevalent also for L-shell
ions, following the pioneering work of Savin et al (1997).

The approach of Jacobs et al (1977) is based upon the ‘no-coupling’ scheme, allows only
for dipole core-excitations in the dielectronic capture process and pays no detailed attention
to the positioning of near-threshold resonances. It should be noted that the work of Jacobs
et al (1977) was motivated by applications to high-temperature electron-collision-dominated
plasmas and, for such, their approach is quite reasonable.

Since then, Nahar (2000) has carried-out LS-coupling R-matrix photoionization
calculations for several Si-like ions, including Fe12+, and presented total (DR+RR) rate
coefficients for the corresponding Fe13+ ion. Such an approach can be expected to include
a contribution from low-lying dielectronic resonances. However, even at electron-collisional
plasma temperatures, her total recombination rate coefficients are a factor of 3–4 smaller than
those (for DR+RR) recommended by Arnaud and Raymond (1992).

Thus, it is clear that the DR of Fe13+ needs to be re-examined, especially for application
to photoionized plasmas. Such a re-examination, including a comparison with the results of
the measurements by Schmidt et al (2006), will provide a benchmark for other Fe 3pq(q =
2–6) ions, and the M-shell more generally.

The outline of the rest of this paper is as follows: in section 2 we describe our theoretical
approach; in section 3 we make a detailed study of the structure of Fe13+; in section 4 we
compare our velocity-convoluted DR cross sections with those from the experiment by Schmidt
et al (2006); and in section 5 we compare various Maxwellian recombination rate coefficients.

2. Theory

We have used AUTOSTRUCTURE (Badnell 1987, 1997) to carry-out a series of multi-configuration
Breit–Pauli calculations of dielectronic recombination cross sections and rate coefficients. The
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method implemented within AUTOSTRUCTURE is the independent processes, isolated resonances
using distorted waves (IPIRDW) approach to DR. A detailed discussion of the validity of this
approach is given by Pindzola et al 1992) while its advantages from a (collisional–radiative)
modelling perspective are discussed by Badnell et al (2003).

2.1. The IPIRDW approach

Let σ j

f ν(E) denote the partial dielectronic recombination cross section, as a function of centre-
of-mass energy E, from an initial metastable state ν of an ion X+z, through an autoionizing
state j , into a resolved final state f of an ion X+z−1. Then

σ
j

f ν(E) = σ̂
j

f νL
j (E), (1)

where Lj(E) is the Lorentzian line-shape of the resonance with energy Ej and width �j (in
the units of energy) given by (when energy-normalized to unity)

Lj(E) = �j/(2π)

(E − Ej)2 + �2
j

/
4
. (2)

Here, σ̂ denotes the integrated (partial) dielectronic recombination cross section, which is
given by

σ̂
j

f ν(Ec) = (2πa0IH)2

Ec

ωj

2ων

τ0
∑

l A
a
j→ν,Ecl

Ar
j→f∑

h Ar
j→h +

∑
m,l A

a
j→m,Ecl

, (3)

where ωj is the statistical weight of the (N + 1)-electron doubly-excited resonance state j, ων

is the statistical weight of the N-electron target state (so, z = Z − N , where Z is the nuclear
charge) and the autoionization (Aa) and radiative (Ar) rates are in inverse seconds. Here, Ec is
the energy of the continuum electron (with orbital angular momentum l), which is fixed by the
position of the resonance j relative to the continuum ν, IH is the ionization potential energy of
the hydrogen atom (both in the same units of energy) and (2πa0)

2τ0 = 2.6741 × 10−32 cm2 s.
A powerful aspect of the IPIRDW approach is that the use of equation (1) enables an

analytic integration over the resonance profiles to be carried-out. This is in contrast to an
R-matrix calculation which must map-out the detailed resonance structure numerically. This
in itself is more demanding for DR than for electron-impact excitation since a much finer
energy mesh is needed to map-out all resonances which contribute significantly to the cross
section—see Gorczyca et al (2002) for a detailed study and discussion of the issue.

So, let σ̄ j

f ν denote the corresponding energy-averaged (partial) dielectronic recombination
cross section, then

σ̄
j

f ν(Ec) ≡ 1

�E

∫ Ec+�E/2

Ec−�E/2
σ

j

f ν(E
′) dE′. (4)

Here, �E denotes the bin width energy, which is chosen so as to be large compared to the
resonance width and small compared to the characteristic width of any subsequent convolution;
otherwise, the choice of �E is arbitrary and it is usually taken to be a constant. Then,

σ̄
j

f ν(Ec) = 1

�E
σ̂

j

f ν(Ec). (5)

Thus, for a fixed j and ν, the energy-averaged partial DR cross section takes-on a nonzero
value at a single energy, Ec, including when summed-over final states f . Most applications
involve a sum over resonance levels j and it is convenient to ‘bin’ the cross section via

σ̄ν(Em) =
∑
f,j

σ̄
j

f ν(Ec) ∀ Ec ∈ [Em,Em+1), (6)
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where Em+1 = Em + �E. The sum over f is over all final states which lie below the
ionization limit and which may include cascade through autoionizing levels, although a single
cascade (i.e., a two-step radiative stabilization) is usually more than sufficient. For total rate
coefficients, applicable to low-density plasmas, the sums over f and j are taken to convergence
but for application to laboratory measurements the sum over f (and hence, in practice, j ) is
truncated.

2.1.1. Interference between DR and RR. This is considered in detail by Pindzola et al (1992).
Briefly, it manifests itself in two ways. The first-order interference effect (which is inversely
proportional to the Fano q-factor, or generalization there-of) arises as an asymmetry in the
line-profile. This is clearly seen in photoionization experiments and R-matrix calculations, for
example. Diagnostic modelling involving line-shapes must take account of this interference.
But, when averaged-over the resonance line-profile, this first-order effect vanishes identically
(see also Badnell and Pindzola (1992) and Behar et al (2000)). It is the second-order
interference term (proportional to 1/q2) which is the leading correction to the plasma rate
coefficient. This is also the reason why recombination measurements have found it almost
impossible to unambiguously observe interference effects—the relative energy-spread of the
merged-beams leads to an integration over resonances and so one is looking for a second-
order interference effect, as opposed to the first-order one in photoionization experiments.
Furthermore, since the resonance strength is typically proportional to q2, one only obtains
large (second-order) effects, i.e., small q-values, on relatively weak resonances.

2.2. Application to merged-beams measurements

Merged-beams measurements utilizing an electron-cooler determine a rate coefficient for the
dielectronic recombination process. To compare with a measurement at an electron–ion
centre-of-mass energy E0, we determine a corresponding theoretical rate coefficient, α(v0),
formally given by

α(v0) = 〈vσ 〉 =
∫

σ(v)vf (v0, v) dv, (7)

where f (v0, v) is the merged-beams electron velocity distribution in the centre-of-mass frame
of the ions and v0 = √

2E0/me, since the electrons are moving non-relativistically with mass
me 
 mX, the mass of the ion X.

The experimental velocity distribution, f (v0, v), is a ‘flattened Maxwellian’ (Dittner et al
1986) which is characterized by two parameters, a ‘parallel’ temperature T‖ and ‘perpendicular’
temperature T⊥, with T‖ 
 T⊥:

f (v0, v) =
(

me

2πkT‖

)1/2

exp

[
−me(v‖ − v0)

2

2kT‖

]
me

2πkT⊥
exp

(
−mev

2
⊥

2kT⊥

)
, (8)

where v‖ and v⊥ denote the parallel and perpendicular components of v, respectively. Note,
at high energies, E0 
 kT⊥, and f (v0, v) reduces to an effective Gaussian distribution with a
full-width at half-maximum of 2(ln 2E0kT‖)1/2.

For a bin width that is much smaller than the energy-resolution of the experiment, and
on using the distribution given by equation (8), we can write equation (7) in terms of the
energy-averaged cross sections and bin energies, Em = mev

2
m

/
2:

αν(v0) =
∑
m

�Eσ̄ν(Em)vm

2kT⊥
√

(1 − T‖/T⊥)
exp

(
E0

(kT⊥ − kT‖)
− Em

kT⊥

)
[erf(z1 − z2) + erf(z1 + z2)],

(9)
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where

z1 =
[
Em(kT⊥ − kT‖)

kT⊥kT‖

]1/2

(10)

and

z2 =
[

E0kT⊥
kT‖(kT⊥ − kT‖)

]1/2

. (11)

Recall, σ̄ν has units of cm2. Writing vm/2 = √
Em/IH

√
IH/(2me), we have that

√
IH/(2me) =

1.0938 × 108 cm s−1 is the relevant remaining constant which defines the rate coefficient.
In measurements carried-out at storage rings, the ions are circulated long enough, and

the densities are low enough, for the ion population to be concentrated in the ground state,
normally. In single-pass measurements, it is necessary to calculate DR cross sections for
metastable levels as well and then to combine them using experimental metastable fractions,
if possible, or, typically, to use fractions for which the resulting cross section best matches the
measured.

2.2.1. Survival of the species. Recombined ions with high principal quantum numbers
are re-ionized by the strong electric field present in the charge-state analyser which is used to
separate the recombined ions from the original ion beam, and so are not counted as recombined
ions. A ‘hard’ cut-off at nc, given by the hydrogenic expression (Bethe and Salpeter 1957)

nc = (
6.2 × 108z3

/
F

)1/4
, (12)

where F (V cm−1) is the field strength, often suffices. Sometimes, however, recombined ions
with n > nc have time to radiatively stabilize to n < nc during the time-of-flight (τF) from
the cooler to the analyser and so survive to be counted. This is modelled theoretically through
the use of a ‘soft’ or ‘delayed’ cut-off (Zong et al 1998, Schippers et al 2001). A soft cut-off
simply imposes a higher effective nc based-upon the lifetime of the Rydberg states. The
delayed cut-off approach determines, for n > nc, the lifetime of each Rydberg state (usually
hydrogenic), τnl , and multiplies each nl partial DR cross section by a survival probability,
given by

Pnl = 1 − τnl

τL
exp

(−τF

τnl

) [
exp

(
τL

2τnl

)
− exp

(−τL

2τnl

)]
, (13)

where τL is the time-of-flight for the passage through the merged-beams section of the cooler.
It is often the case that τL 
 τnl for the contributing nl and so, to a good approximation,

Pnl = 1 − exp

(−τF

τnl

)
, (14)

i.e., independent of the cooler time-of-flight. The shortest lifetimes are for the lowest n > nc

and lowest l since the latter can radiate (n → n′) to the lowest possible n′-states. Thus, the
final result is relatively insensitive to the range of n > nc considered, provided that there no
other magnets resulting-in significant cut-offs.

A more elaborate, experimental set-up dependent, approach is described by Schippers et al
(2001) which takes account of the cooler geometry and the position of the various magnets
and their fields as they impinge upon the recombined ions along their path to ultimate survival
to be counted as recombined, or not. In addition, field ionization rates, due to Damburg and
Kolosov (1979), are calculated explicitly.
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2.3. Application to Maxwellian plasmas

The usual expression for the Maxwellian partial DR rate coefficient (e.g. Badnell et al
(2003)) can be obtained simply from the corresponding integrated DR cross section, given by
equation (3):

α
j

f ν(T ) =
(

4πa2
0IH

kT

)3/2
Ec

(2πa0IH)2τ0
σ̂

j

f ν(Ec) exp

(−Ec

kT

)
, (15)

where
(
4πa2

0

)3/2 = 6.6011 × 10−24 cm3. Trivially, it can also be determined from the energy-
averaged DR cross section, σ̄ , for kT 
 �E, on substituting for σ̂ in equation (15) from
equation (5).

Total DR-plus-RR rate coefficients are required for plasma modelling. We determine
the RR contribution using AUTOSTRUCTURE also, following Badnell and Seaton (2003) and
Badnell (2006a).

2.3.1. Fits to totals. It is convenient often for modelling purposes to fit the total (Maxwellian)
DR rate coefficient, αDR

ν (T ), to the following functional form:

αDR
ν (T ) = T −3/2

∑
i

ci exp

(−Ei

T

)
, (16)

where the Ei are in the units of temperature, T, (eV or K) and the units of ci are then cm3 s−1

[eV or K]3/2.
The same is also true for RR, for which we use the usual (Verner and Ferland 1996)

functional form:

αRR
ν (T ) = A


(

T

T0

)1/2
(

1 +

(
T

T0

)1/2
)1−B (

1 +

(
T

T1

)1/2
)1+B




−1

, (17)

where T0, T1 are in the units of temperature (eV or K) and the units of A are cm3 s−1, while B
is dimensionless. A more accurate representation (Gu 2003), especially for low-charge ions,
replaces B as

B → B + C exp

(
−T2

T

)
, (18)

where, again, C is dimensionless and T2 has the units of temperature.

3. The Fe13+ target

The DR reactions which we take account of are defined by the N-electron target configuration
interaction expansion which we use. All possible (N + 1)-electron configurations are then
constructed by adding a continuum or bound orbital to them. All possible autoionization
and (electric dipole) radiative rates are determined from these configurations, and are applied
subsequently so as to determine partial and total DR cross sections, following the theory of
section 2.

It is still the case, for Fe13+ at least, that it is convenient and meaningful to consider
separately the �n = 0 and �n = 1 core-excitation contributions to DR since, as we shall
see, our highest n = 3 target level lies below our lowest n = 4 level. Indeed, ‘�n = 0’ DR
completely dominates over �n = 1 at photoionized plasma temperatures, and can be expected
to be the largest contribution too at collisional plasma temperatures, at least where Fe13+ is
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normally abundant (Mazzotta et al 1998, Bryans et al 2006). This separation enables us to
restrict the sum over Rydberg states to n = 1000, l = 15 and to n = 100, l = 5, for �n = 0
and �n = 1, respectively.

3.1. �n = 0

We consider two different target configuration interaction expansions because carrying-out
two DR calculations enables us to contrast the level of accuracy/difference in the N-electron
targets with that of differences between theory and experiment for cross sections and assess
the accuracy of total rate coefficients, i.e. quantify the uncertainty in the (N + 1)-electron
problem.

We define a basis A consisting of the following configurations (assuming a closed-shell
Ne-like core):

1 : 3s23p, 2 : 3s3p2, 3 : 3s23d, 4 : 3p3,

5 : 3s3p3d, 6 : 3p23d, 7 : 3s3d2

and a basis B, which consists of basis A plus

8 : 3p3d2.

Thus, 3d3 is the only configuration from the n = 3 complex which is omitted, by basis
B. Configurations 1–3, plus 5, form the minimal set which allows for all (�n = 0) one-
electron promotions during the dielectronic capture process from the ground configuration.
Configuration 4 mixes strongly with 5, whilst 6 and 7 (which are strongly mixed themselves)
provide the leading even parity configuration interaction. Configuration 8 (basis B) provides
a check on that for the odd parity.

Basis A gives rise to 37 target terms whilst basis B gives rise to 56 terms. In both
cases, the radial functions were determined using the Slater-type-orbital model potential of
Burgess et al (1989). The (3s, 3p, 3d) radial scaling parameters, λnl , were determined
by minimizing the equally-weighted-sum of eigenenergies of the 18 lowest terms, which
correspond to all of those which arise from the first five configurations of the basis
expansions. For basis A: λ3s = 0.931 73, λ3p = 0.992 55 and λ3d = 0.890 06. For basis
B: λ3s = 0.948 49, λ3p = 1.023 16 and λ3d = 0.868 84. All other radial scaling parameters
were taken to be unity.

Basis A gives rise to 84 target levels whilst basis B gives rise to 129 levels. Our
Breit–Pauli calculations include the one-body non-fine-structure and fine-structure operators,
including the effective one-body Blume and Watson operator for the mutual-spin–orbit and
spin–other-orbit interactions between valence electrons and the Ne-like closed-shells (Badnell
1997). The effect of the two-body fine-structure operators representing interactions between
valence electrons (including spin–spin now) is small—of the order 10−4 Ry—and since they
are time consuming to determine in the DR calculation we omit them, along with the two-body
non-fine-structure operators which are of the same order effect.

In table 1, we compare our lowest 40 calculated level energies obtained from using
bases A and B with those obtained from the NIST (2006) database and those calculated with
SUPERSTRUCTURE by Storey et al (2000) using the Thomas–Fermi model potential. These levels
are all of those which arise from the lowest five configurations, i.e., it includes all levels
which contribute to �n = 0 DR in the absence of configuration mixing. We note a distinct
improvement in the agreement with the results of (basis 2 of) Storey et al (2000), and with the
observed energies, on going from basis A to basis B. Basis 2 of Storey et al (2000) included all
configurations from the n = 3 complex as well as n = 4 configurations of the form 3s24l and
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Table 1. Level energies (Ry) for Fe13+.

Level Config. (2S + 1)a L 2J Basis Ab Basis Bb Basis 2c Observedd

1 1 −2 1 1 0.000 00 0.000 00 0.000 00 0.000 00
2 1 −2 1 3 0.160 12 0.158 17 0.168 50 0.171 80
3 2 4 1 1 2.010 96 2.028 37 2.027 29 2.051 39
4 2 4 1 3 2.075 65 2.092 13 2.095 68 2.121 33
5 2 4 1 5 2.159 15 2.174 64 2.182 29 2.208 79
6 2 2 2 3 2.711 44 2.727 42 2.730 82 2.726 89
7 2 2 2 5 2.728 78 2.744 44 2.749 89 2.747 19
8 2 2 0 1 3.328 05 3.339 49 3.362 57 3.323 33
9 2 2 1 1 3.549 92 3.561 80 3.583 71 3.540 36

10 2 2 1 3 3.623 33 3.635 06 3.657 13 3.613 28
11 3 2 2 3 4.369 90 4.374 79 4.386 76 4.312 33
12 3 2 2 5 4.392 02 4.397 60 4.408 89 4.330 36
13 4 −2 2 3 5.259 86 5.250 43 5.254 64 5.252 39
14 4 −2 2 5 5.288 24 5.281 26 5.287 80 5.287 47
15 4 −4 0 3 5.417 28 5.356 36 5.376 40 5.367 38
16 5 −4 3 3 5.867 40 5.87474 5.876 85
17 4 −2 1 1 5.945 70 5.864 87 5.883 62 5.853 16
18 4 −2 1 3 5.963 95 5.890 96 5.910 09 5.881 40
19 5 −4 3 5 5.902 86 5.911 36 5.913 32 5.886 68
20 5 −4 3 7 5.954 50 5.962 89 5.9659 0 5.940 97
21 5 −4 3 9 6.025 72 6.033 78 6.038 78 6.016 76
22 5 −4 1 5 6.330 30 6.316 38 6.335 38 6.290 51
23 5 −4 2 3 6.348 70 6.332 24 6.356 18 6.312 00
24 5 −4 2 1 6.362 53 6.342 47 6.370 66 6.325 72
25 5 −4 2 7 6.448 27 6.425 79 6.456 19 6.409 79
26 5 −4 1 1 6.434 41 6.422 58 6.445 98 6.413 04
27 5 −4 2 5 6.449 13 6.428 96 6.457 59 6.416 36
28 5 −4 1 3 6.443 22 6.427 49 6.453 42 6.417 22
29 5 −2 2 3 6.674 29 6.567 24 6.592 49 6.535 56
30 5 −2 2 5 6.676 11 6.573 30 6.597 85 6.541 63
31 5 −2 3 5 6.909 10 6.862 20 6.882 92 6.788 62
32 5 −2 3 7 7.036 25 6.988 36 7.013 33 6.923 93
33 5 −2 1 3 7.495 02 7.419 84 7.469 65 7.354 95
34 5 −2 1 1 7.547 17 7.489 92 7.543 20
35 5 −2 3 7 7.670 57 7.550 01 7.573 52 7.450 46
36 5 −2 3 5 7.694 03 7.572 86 7.598 29 7.477 87
37 5 −2 1 1 7.972 68 7.751 85 7.791 03 7.650 01
38 5 −2 2 3 7.922 98 7.748 67 7.801 63 7.661 71
39 5 −2 1 3 8.00254 7.78798 7.829 00 7.687 96
40 5 −2 2 5 7.958 56 7.776 61 7.830 24 7.695 44

a >0 denotes even parity, <0 odd parity.
b This work.
c Storey et al (2000).
d NIST (2006).

3s3p4l, for l = 0–3. We note little improvement in the agreement with the observed energies
resulting from the use by Storey et al of their larger target basis 2, compared to basis B. Some
high-lying levels (37–40) are now in observed order but, on the other hand, many of the levels
of configuration 5 (3s3p3d) are distinctly higher, compared to the observed, than are those
from basis B.
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Nevertheless, differences of up to 0.07 Ry (mostly up to 0.03 Ry for basis B) between the
calculated and observed low-lying level energies mean that it is important to use the observed
target energies to position the DR resonances, so as to eliminate sensitivity to the exponential
factor in equation (15) at photoionized plasma temperatures. This is done simply by moving
each (N +1)-electron autoionizing level by the difference between the calculated and observed
excitation energies between the initial and parent N-electron level energies.

Generally, Ar 
 Aa for �n = 0 DR and so σ̂ ∝ Ar (see equation (3)). Excepting DR via
the fine-structure core-excitation (3p1/2–3p3/2), Ar is dominated by the inner-electron (dipole)
radiative rate. Thus, it is instructive to study radiative rates for Fe13+ in some detail. In table 2,
we compare our radiative rates obtained from using bases A and B with those determined by
Storey et al (2000) from the ‘extended’ basis 2 of Storey et al (1996). This ‘extended’ basis
2 includes the configurations of basis 2 (Storey et al 2000) but adds further configurations
involving n = 4 orbitals. In addition, all of the n = 4 orbitals are now pseudo-orbitals (they
were physical in the vanilla basis 2)—see Storey et al (1996) for further details. As far as
(total) DR cross sections are concerned, the distribution of radiative rates over the final states
is irrelevant, in general, so long as they are all bound. Thus, we have summed over the
fine-structure levels of the lower term to make the comparison shown in table 2.

Overall, we observe no drastic difference between the results obtained on using bases
A and B compared to those of Storey et al (2000). The results of basis B tend to be closer
to those of Storey et al (2000), than for basis A, for the strong radiative rates (∼1010 s−1),
especially from configuration 5 (3s3p3d). A general point is illustrated by the results for the
spin-quartet level 16. This level mixes with the nearby doublet level 18 (both J = 3/2, odd
parity). Consequently, rates from level 16 to lower-lying spin-doublets are very sensitive to
the precise mixing. Of course, as far as DR is concerned, if the autoionization rates associated
with these parents are such that Aa 
 Ar then the DR cross section is simply redistributed
from one peak to another, the parents being less than 0.5 eV apart.

3.2. �n = 1

�n = 1 core-excitation contributions to DR come into play at high temperatures, i.e., in
electron-collision-dominated plasmas. Like the case of 1–2 core-excitations in Li-, Be- and
B-like ions, we expect the contribution from ‘inner-shell’ 2–3 core-excitations to rapidly
decrease as we progress through Na-, Mg- and Al-like due to the increasing number of
core-rearrangement autoionization channels. We consider both 2–3 and 3–4 �n = 1 core-
excitations so as to get a precise assessment of their relative importance and an indication of
whether, or not, 2–3 core-excitations need to be considered beyond Al-like. The �n = 1
contribution to a Maxwell rate coefficient is not sensitive to resonance positions, and so the
ab initio calculated energies were used throughout.

3.2.1. 3–4. Again, we used two different configuration basis sets for 3–4 core-excitations so
as to gain insight into the uncertainty of the theoretical results. The first (basis C) consisted of
basis A, plus 3s24l, 3s3p4l, 3p24l, for l = 0–3. These 19 configurations give rise to 250 target
levels. The scaling parameters for the Slater-type-orbital model potential were determined
from a subset of these configurations: 3s2nl, for n = 3, 4 and all l. The reason for this is to
ensure that the optimization procedure for the n = 4 orbitals was tightly linked to the n = 4
term energies. The 3p and 3d scaling parameters were determined first by minimizing on
the lowest two terms. These were then fixed and the 4l scaling parameters determined by
minimizing the equally-weighted sum of n = 4 term energies (still in the presence of the
n = 3 states). The result: λ3p = 0.695 56, λ3d = 0.716 07, λ4s = 0.796 59, λ4p = 0.7903,
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Table 2. Radiative transition rates, Ar(s−1), for Fe13+.

j f Basis Aa Basis Ba Basis 2
b j f Basis Aa Basis Ba Basis 2
b

3 1−2 3.25(07)c 3.25(07) 3.66(07) 25 7 2.75(08) 2.53(08) 3.26(08)
4 1−2 6.07(06) 6.28(06) 6.78(06) 26 4 3.09(10) 2.97(10) 2.79(10)
5 2 2.19(07) 2.28(07) 2.65(07) 26 6 3.94(07) 3.67(07) 4.29(07)
6 1−2 2.56(09) 2.73(09) 2.46(09) 27 4−5 4.08(10) 3.92(10) 3.71(10)
7 2 2.07(09) 2.23(09) 1.91(09) 27 6−7 4.61(07) 1.27(08) 1.82(08)
8 1−2 1.95(10) 1.95(10) 1.89(10) 28 4−5 3.59(10) 3.40(10) 3.19(10)
9 1−2 3.80(10) 3.90(10) 3.43(10) 28 6−7 1.14(08) 1.41(08) 1.93(08)

10 1−2 4.36(10) 4.47(10) 4.05(10) 29 3−4 3.29(08) 4.33(08) 5.38(08)
11 1−2 4.71(10) 4.65(10) 4.36(10) 29 6−7 3.95(10) 3.54(10) 3.33(10)
12 2 4.32(10) 4.28(10) 3.97(10) 29 8 3.93(08) 2.87(08) 3.49(08)
13 3−5 4.85(08) 1.14(09) 1.24(09) 29 9−10 1.76(09) 1.49(09) 1.36(09)
13 6−7 3.27(09) 3.50(09) 2.99(09) 29 11 5.28(08) 4.82(08) 4.07(08)
13 8 3.08(08) 3.41(08) 3.80(08) 30 4−5 3.57(08) 5.30(08) 6.09(08)
13 9−10 5.97(08) 6.04(08) 5.00(08) 30 6−7 3.96(10) 3.51(10) 3.28(10)
13 11 7.11(06) 6.13(06) 6.51(06) 30 10 1.20(09) 9.72(08) 8.45(08)
14 5 7.58(07) 8.23(07) 9.50(07) 30 11−12 5.96(08) 5.21(08) 4.45(08)
14 6−7 3.46(09) 3.76(09) 3.25(09) 31 4−5 9.95(07) 8.55(08) 1.10(08)
14 10 7.02(08) 7.30(08) 6.67(08) 31 6−7 1.96(10) 1.71(10) 1.55(10)
14 12 7.47(06) 6.82(06) 7.71(06) 31 11−12 1.45(09) 1.80(09) 1.54(09)
15 3−5 4.06(10) 3.78(10) 3.41(10) 32 5 4.04(08) 3.68(08) 4.36(08)
15 6 4.54(07) 1.10(08) 1.09(08) 32 7 2.10(10) 1.81(10) 1.62(10)
15 10 5.18(07) 6.00(07) 6.45(07) 32 12 1.55(09) 2.03(09) 1.95(09)
16 3−4 9.87(07) 1.85(08) 1.53(08) 33 3 2.82(08) 2.56(08) 2.87(08)
16 6−7 1.52(08) 1.16(09) 4.53(08) 33 8 4.69(10) 4.13(10) 4.03(10)
16 8 6.11(06) 1.92(08) 5.54(07) 33 9−10 1.00(10) 1.19(10) 1.00(10)
16 9−10 4.11(07) 2.34(08) 5.75(07) 33 11−12 6.70(08) 8.76(08) 9.77(08)
16 11 1.51(06) 4.13(06) 3.24(06) 34 3 1.28(08) 1.18(08) 1.28(08)
17 3−4 3.81(07) 4.03(07) 4.17(07) 34 6 3.81(08) 9.49(07) 2.54(08)
17 6 1.44(10) 1.35(10) 1.21(10) 34 8 2.11(10) 1.60(10) 1.44(10)
17 8 1.56(08) 2.16(08) 9.18(07) 34 9−10 3.02(10) 3.30(10) 3.09(10)
17 9−10 4.19(09) 4.47(09) 3.90(09) 34 11 1.13(09) 1.01(08) 2.80(08)
18 3−5 7.87(08) 6.98(08) 8.37(08) 35 5 2.80(08) 2.60(08) 3.23(08)
18 6−7 1.29(10) 1.10(10) 1.04(10) 35 7 2.84(10) 2.90(10) 2.81(10)
18 8 1.84(09) 1.90(09) 1.69(09) 35 12 2.98(10) 2.61(10) 2.22(10)
18 10 2.85(09) 2.80(09) 2.56(09) 36 6−7 2.97(10) 2.98(10) 2.87(10)
19 4−5 2.06(08) 2.21(08) 2.48(08) 36 10 2.61(08) 4.70(08) 3.76(08)
19 6−7 5.98(07) 7.70(07) 8.57(07) 36 11−12 3.10(10) 2.73(10) 2.24(10)
19 10 6.38(05) 6.57(05) 5.65(05) 37 8 1.43(10) 1.78(10) 1.57(10)
19 11 3.42(06) 4.22(06) 4.99(06) 37 9−10 3.22(10) 1.98(10) 1.98(10)
20 5 2.38(08) 2.57(08) 2.94(08) 37 11 3.66(10) 3.26(10) 2.75(10)
20 7 5.21(05) 5.28(05) 1.06(06) 38 6−7 2.67(08) 2.38(08) 2.78(08)
20 12 4.24(06) 5.05(06) 6.25(06) 38 8 3.20(09) 1.11(09) 8.17(07)
22 4−5 3.05(10) 3.00(10) 2.82(10) 38 9−10 6.41(10) 5.92(10) 4.53(10)
22 6−7 4.68(08) 9.44(08) 1.13(09) 38 11−12 2.56(10) 2.15(10) 2.21(10)
22 10 2.35(07) 3.30(07) 3.73(07) 39 6−7 4.02(08) 4.76(08) 4.65(08)
22 12 1.71(07) 2.73(07) 3.00(07) 39 8 2.65(09) 6.13(09) 6.13(09)
23 3−5 3.74(10) 3.74(10) 3.55(10) 39 9−10 3.99(10) 2.82(10) 3.56(10)
23 6 2.48(08) 3.86(08) 5.04(08) 39 11−12 3.85(10) 3.39(10) 2.65(10)
24 3−4 4.40(10) 4.35(10) 4.05(10) 40 10 7.07(10) 6.25(10) 5.81(10)
25 5 4.43(10) 4.29(10) 4.04(10) 40 11−12 2.42(10) 2.13(10) 1.95(10)

a This work.
b Extended basis 2, Storey et al (2000).
c 3.25(07) denotes 3.25 × 107.

λ4d = 0.7821 and λ4f = 0.8563. The 3s parameter is not well determined by such a procedure,
on the other hand, opening-up the 3s sub-shell would not be consistent with the procedure
for the other orbitals. Hence, we simply set λ3s = 0.7 for consistency with the other scaling
parameters. Such a procedure is optimal for 3p → 4l promotions, which can be expected to
dominate the 3–4 core-excitations.
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Table 3. Some n = 4 level energies (Ry) for Fe13+, relative to the ground level.

Config. (2S + 1)a L 2J Basis Cb Basis Dc Observedd

4s 2 0 1 12.9023 13.2113 13.0769
4p −2 1 1 13.9497 14.2595 14.2963
4p −2 1 3 14.0114 14.3204 14.3434
4d 2 2 3 15.3886 15.6841 15.4549
4d 2 2 5 15.4007 15.6965 15.4668
4f −2 3 5 16.2484 16.5705 16.2969
4f −2 3 7 16.2518 16.5738 16.2993

a >0 denotes even parity, <0 odd parity.
b This work.
c Recalculated from Storey et al (1996).
d NIST (2006).

Table 4. Symmetric oscillator strengths (gf ) for Fe13+.

Basis Cb Basis Dc

Transition Length Velocity Length Velocity

3p–4s 0.2043 0.2963 0.3707 0.3757
3p–4d 0.9886 1.3858 1.5037 1.5432
3d–4p 0.1766 0.2492 0.2670 0.2493
3d–4f 6.0729 7.3666 7.4848 7.2178

b This work.
c Recalculated from Storey et al (1996).

The second basis that we use (basis D) is the scattering target basis used by Storey et al
(1996) for the electron-impact excitation of Fe13+. It includes all configurations belonging
to the n = 3 complex, plus 3s24l, 3s3p4l, for l = 0–3. Thus, it includes the 3p3d2 and 3d3

configurations omitted by basis C but excludes the 3p24l configurations. The focus of their
work was excitation within the n = 3 complex, including resonances attached to n = 4.
Resonances attached to n = 4 are our primary concern here. Storey et al (1996) used nl-
dependent Thomas–Fermi model potentials, and the relevant values of the scaling parameters
are listed in their table 1. There are 227 levels associated with this 17 configuration basis.

In table 3, we compare energies for the n = 4 levels which result from the dominant
3p → 4l promotions. We note that the 3p → 4d, 4f excitation energies are better represented
by basis C, while basis D is somewhat better for the lower l. In table 4, we compare symmetric
oscillator strengths for the 3l–4l′ array, we use the LS-coupling values for simplicity. We
note 20–30% differences between the results for the two bases—nearly a factor of 2 for
3p–4s. There is also much closer agreement between the length and velocity results for basis
D compared to basis C. Thus, it is of interest to see how this translates into differences in
the DR cross sections. These differences affect not only the radiative stabilization rates but
also the (dipole) dielectronic capture and autoionization rates, including autoionization into
excited states.

3.2.2. 2–3. We considered 2p → 3l promotions only. The contribution from 2s → 3l

is <5% of the 2p by Ne-like ions. We used a target basis which comprised the first five
configurations of basis A, plus 2p53s23p2, 2p53s23p3d and 2p53s3p3; the latter so as to allow
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Figure 1. Velocity-convoluted DR cross sections for the fine-structure core-excitation in the ground
term of Fe13+.

for the strong configuration mixing with the prior. These configurations give rise to 178 target
levels. In addition, we now need to allow for core-rearrangement autoionization transitions of
the form: 2p53l4nl′ → 2p63l2nl′ + e−, i.e., where the Rydberg electron is a spectator. These
transitions strongly suppress DR since they are ‘additional’ autoionization pathways (those
which have no reverse dielectronic capture process to balance them) and are independent of
n, while the populating dielectronic capture rate scales as n−3.

4. Velocity-convoluted DR cross section results

In order to make a comparison between our theoretical DR cross sections and those measured
by Schmidt et al (2006) at TSR, we convolute them according to equation (7) using the
experimentally determined kT⊥ = 1.2 × 10−2 eV and kT‖ = 9.0 × 10−5 eV, and initially
apply a hard cut-off (see equation (12)) at nc = 45.2 It is assumed that there is no significant
metastable fraction in the ion beam when it comes to the comparison with experiment, and so
we consider only DR from the ground level of Fe13+.

4.1. Parental contributions

Since many Rydberg series contribute to the final observed ‘spectrum’, we first show results
for various core-excitations, labelled according to parent level (see table 1) or configuration.
We also compare results obtained using target bases A and B. Note the caveat, parentage is
not a good quantum number.

In figure 1, we show the convoluted theoretical DR results, which have the dimension of
a rate coefficient, for the fine-structure core-excitation, i.e., parent level 1 to parent level 2, as
listed in table 1. This opens-up at n = 32 and falls-off rapidly in n, as radiative stabilization
takes place via an outer-electron transition n → n′, for n′ < 32, and which is dominated by
n′ < 10. The results from bases A and B are indistinguishable in the figure.

In figure 2, we illustrate the complexity which arises from the 3s → 3p core-excitation to
parent configuration 2. The lowest spectrum is the sum of contributions from the 4PJ , 2DJ , 2SJ

2 The value of nc = 55 given by Schmidt et al (2006) is incorrect (Schmidt, private communication).
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Figure 2. Velocity-convoluted DR cross sections for the 3s → 3p core-excitation to parent
configuration 2. Bottom curve, summed-over all parent levels, i = 3–10. Offset by
1 × 10−9 + (i − 3)5 × 10−10, the contributions from the individual parent levels, i.
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Figure 3. Velocity-convoluted DR cross sections for the 3p → 3d core-excitation to parent
configuration 3. Bottom curve, summed-over all parent levels, i = 11−12. Offset by
(i − 10)2 × 10−9, the contributions from the individual parent levels, i.

and 2PJ levels. Offset above are the individual parent level, i, contributions for i = 3–10. The
results from bases A and B are barely distinguishable in the total spectrum.

In figure 3, we present results for the 3p → 3d core-excitation. There are only two
parent levels and the 2D5/2 parent level 12 contributes only weakly as the J = 5/2 → 1/2
core-radiative transition is electric-dipole-forbidden. Again, the results from bases A and B
are indistinguishable in the figure.

In figure 4, we compare the results from bases A and B for excitation of the parent
3p3 configuration 4, summed-over all five parent levels. This excitation only takes place
through configuration mixing and we note (i) that it is weak, especially above 10 eV, and (ii)
that we now see some small differences between the results of bases A and B . The lowest
autoionizing states have n = 6. Core-radiative stabilization is allowed to parent configuration
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Figure 4. Velocity-convoluted DR cross sections for excitation of the parent 3p3 configuration.
Solid (red) curve, basis A; dashed (green) curve, basis B.
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Figure 5. Velocity-convoluted DR cross sections for the 3s → 3d core-excitation of parent
configuration 5. Solid (red) curve, basis A; dashed (green) curve, basis B.

2 via 3p → 3s. These ‘recombined’ levels then first autoionize at n = 7 or 8, for the
spin-doublet parents.

In figure 5, we compare the results from bases A and B for the 3s → 3d core-excitation of
parent configuration 5, summed-over all 23 parent levels. Again, there are small differences,
below 15 eV. The lowest autoionizing states have n = 5 or 6, depending on the parent. There
are two main core-radiative stabilization pathways: 3d → 3p, to parent configuration 2, and
3p → 3s, to parent configuration 3. These then first autoionize at n = 7 for the latter, and,
again, between n = 7 and 8 for spin-doublet parents of the former. So, just a few n-values
contribute strongly, but they are spread out in energy because of the 25 eV spread of levels of
configuration 5.

In figures 6 to 8, we present results for core-excitations to parent configurations 6–8,
which are only accessible via configuration mixing. Again, there is an allowed core-radiative-
stabilization pathway for limited n-values. We see that the DR cross sections are progressively
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Figure 6. Velocity-convoluted DR cross sections for excitation of the parent configuration 6. Solid
(red) curve, basis A; dashed (green) curve, basis B.
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Figure 7. Velocity-convoluted DR cross sections for excitation of the parent configuration 7. Solid
(red) curve, basis A; dashed (green) curve, basis B.

weaker as we go to higher-energy parent configurations. The main difference now between
the results of bases A and B (see figures 6 and 7) is an energy shift, due to the fact that we
only adjusted to the lowest 40 observed level energies.

We conclude that the use of observed energies mitigates against differences in the DR
cross section due to the different level energies of bases A and B while differences in the
radiative rates either occur for transitions which do not contribute strongly to the DR, or the
rates themselves are simple redistributed amongst near-by levels.

4.2. Comparison with experiment

We consider the �n = 0 and �n = 1 core-excitations separately. (Low-lying resonances
which arise from n = 3–4 capture to n = 4 do overlap the �n = 0 energy range, but the
peaks are so small as to be ‘lost in the noise’ when comparing with experiment.)
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Figure 8. Velocity-convoluted DR cross sections for excitation of the parent configuration 8. Solid
curve, basis B.
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Figure 9. Velocity-convoluted recombination cross sections for Fe13+ near threshold. Solid (red)
curve, experimental results of Schmidt et al (2006); long-dashed (green) curve, theoretical DR
results obtained on using basis A; short-dashed (blue) curve, theoretical results obtained on using
basis B; dotted (purple) curve, theoretical RR results (basis A). The theoretical results are all this
work.

4.2.1. �n = 0. In figure 9, we compare our theoretical DR results, obtained using bases
A and B , with the experimental measurements of Schmidt et al (2006). The comparison is
made very close to threshold (10−4–1 eV), utilizing a log–log scale. Schmidt et al (2006)
note a relatively small anomalous enhancement below 10−3 eV and so estimate the ‘true’
DR-plus-RR contribution to tend towards 1 × 10−7 cm3 s−1 at 10−4 eV. The two sets of
theoretical results are in accordance above ∼0.01 eV while at lower energies the results of
basis B are in somewhat better agreement with experiment, down to ∼0.001 eV. Below the
dip at about 0.04 eV, Schmidt et al show fits to 5 DR resonances. We find 14 resonances,
of the form 3s23p3/232l(l = 0, 1), 3s3p2 4P3/29f and 3s3p3d5g. Of course, our convoluted
cross sections only exhibit three (basis A) or four (basis B) obvious peaks in this energy
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Figure 10. Velocity-convoluted �n = 0 recombination cross sections for Fe13+ over 0–2.5 eV.
Solid (red) curve, experimental results of Schmidt et al (2006); long-dashed (green) curve,
theoretical DR results obtained on using basis A; short-dashed (blue) curve, theoretical results
obtained on using basis B. The theoretical results are all this work.

region. We have looked at the bound-states just below threshold but they are well below the
apparent uncertainties in resonance energy positioning seen in figure 9. There is substantial
disagreement between theory and experiment between about 0.03 and 0.35 eV. Resonances
in this region are higher members of the aforementioned series, as well as those attached to
parent configurations 6 and 7. However, the differences below 0.2 eV have negligible effect
on any differences in the Maxwellian rate coefficient at 2 eV. Only the differences up to
0.35 eV start to impact upon the Maxwellian rate coefficient at 2 eV. We also illustrate the RR
contribution in this energy region, having applied a hard cut-off at nc = 45 again.

In figure 10, we compare the results of theory and experiment near threshold again, this
time using a linear plot. We see more clearly now that the theoretical results from bases A
and B are in close agreement over ≈0.05–0.4 eV, but differ substantially from the measured.
Overall, in this energy range, the differences between the two sets of theoretical results are
not large enough to suggest an uncertainty which could account for the difference with the
measured. Although, where there are more noticeable differences, the results from basis B are
perhaps somewhat of an improvement over basis A. The DR cross section drops substantially
(by a factor of 10, or so) above 2.34 eV because autoionization into the excited fine-structure
level 2 becomes energetically allowed. This means that resonances below 2.34 eV contribute
‘disproportionately’ at higher temperatures—see, e.g., figure 4 of Schmidt et al (2006). If we
sum-up the resonance strengths over 0.35 to 2.5 eV we find that the result for basis A is 3%
smaller than for basis B but the measured is 33% larger.

In figure 11, we compare the results of theory and experiment over 2–10 eV. Although this
is the typical temperature range of peak abundance for Fe13+ in a photoionized plasma, only
above a temperature corresponding to about 5 eV is the Maxwellian rate coefficient dominated
by the resonances above 2 eV. Again, the differences between the results of bases A and B
are not too significant, but the agreement with the measured is rather poor. If we sum-up the
resonance strengths over 2.5 to 10.5 eV we find that the result for basis A is 8% smaller than
for basis B but the measured is 40% larger. Thus, over 2–10 eV we expect the experimentally
deduced Maxwellian rate coefficient to be roughly 40% larger than the theoretical
one.
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Figure 11. As figure 10, but over 2–10.5 eV.
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Figure 12. As figure 10, but over 10–20 eV.

In figure 12, we compare results over 10–20 eV. As we move up in energy we start to
see more of a convergence between the theoretical results and the measured: the summed
resonance strengths from bases A and B differ by less than 1% whilst the measured is
21% larger. However, if we now look at the energy range 20–30 eV (figure 13) we see
that the measured rate coefficient appears to be sitting on a much larger ‘background’ over
23–29 eV—the theoretical results drop much closer to zero between the main resonance peaks,
i.e., there is little ‘fill-in’ due to other small resonance contributions. Over 30–40 eV (figure 14)
the much better agreement between theory and experiment is resumed, except over 36–37 eV.
Here, there is a noticeable contribution from capture to high-n states and the comparison with
experiment is dependent on (the modelling of) their survival to be detected. We illustrate with
the results from two models (both for basis A) and discuss them in detail next.

In figures 15 and 16, we compare results over 40–50 eV and 50–60 eV, respectively. The
resonances arise from 3s → 3p and 3p → 3d core-excitations for the former, but the second
only for the latter—see figures 2 and 3. The results of bases A and B are indistinguishable on
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Figure 13. As figure 10, but over 20–30 eV.
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Figure 14. As figure 10, but over 30–40 eV; plus: dotted (purple) curve, delayed cut-off time-of-
flight 166.5 ns; dot-dashed (light blue) curve, utilizing the survival probabilities of Schippers et al
(2001).

this scale, and so only basis A results are shown and considered further. In these two energy
regions, we address the issue of the survival of the recombined states as the ions travel from
the cooler to the charge-state analyser. Recall figure 2, there are high-n DR contributions from
parent levels 8–10 of configuration 2 which span 44–49 eV. (Those attached to parent level 6
affect the 36–37 eV range.) The situation, as illustrated by figure 3, is simpler for the peak
at 58 eV. It is in these two energy ranges for which a hard cut-off at nc = 45 results-in large
discrepancies between theory and experiment. The discrepancy is reduced on implementing
a delayed cut-off (equation (14)) utilizing the appropriate time-of-flight for this experiment
of 166.5 ns and imposing a hard cut-off at nc = 95 due to the correction magnet close to the
cooler (Schippers, private communication). Further improvement in agreement is obtained on
utilizing the survival probabilities of Schippers et al (2001), but for the DR of Fe13+. These
latter two sets of results are only shown at energies where they differ from the ‘hard cut-off’
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Figure 15. As figure 14, but over 40–50 eV.
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Figure 16. As figure 14, but over 50–60 eV.

results. Clearly, the final agreement between theory and experiment is sensitive to the precise
contribution, i.e. survival, of recombined states with n > 45. While this largely accounts for
the discrepancies over 44–49 eV between experiment and theory utilizing only a hard cut-off,
as well as the mismatch in the final position of the Rydberg peak at 58.5 eV, it has no effect on
the puzzling discrepancy between about 56 and 58 eV. Here, the experimental result actually
lies at a fairly uniform 4 × 10−10 cm3 s−1 below (all of) the theoretical one(s).

We close the discussion of the �n = 0 results with a small observation: the noticeable
drop in the DR cross section just below 56.5 eV (in figure 16) is due to the final-state of the
3d3/2 → 3p3/2 core-radiative-stabilization pathway in fact opening-up at this point (n = 32)

to autoionization to the 3p1/2 continuum. (We obtain 0.220 for the ratio of the 3d3/2 → 3p3/2

to 3d3/2 → 3p1/2 radiative rates compared to 0.225 obtained by Storey et al (2000)—see also
table 2). Thus, there appears to be close qualitative agreement between theory and experiment
for this effect. This is in stark contrast to the poor quantitative agreement for the absolute
cross section.
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Figure 17. Velocity-convoluted DR cross sections for 3–4 core-excitations in Fe13+. Bottom curve,
summed-over all parent configurations. Offset (increasing) are the contributions from 3p → 4s, 4d;
3s → 4p, 4f; 3p → 4p, 4f; and 3s → 4s, 4d core-excitations.
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Figure 18. Velocity-convoluted �n = 1 (3–4) DR cross sections for Fe13+ over 60–100 eV. Solid
(red) curve, experimental results of Schmidt et al (2006); long-dashed (green) curve, theoretical
DR results obtained on using from basis C; short-dashed (blue) curve; theoretical results from basis
D. The theoretical results are all this work.

4.2.2. �n = 1. In figure 17, we present an overview of the different contributions to the
complete 3–4 ‘spectrum’. The first point to note is that the resonance strengths are now a
factor of 10, or more, smaller than those we have seen associated with the �n = 0 core-
excitations. Only the 3p → 4s, 4d core-excitations exhibit the classic DR spectrum. The
dipole core-excitations dominate, along with 3s → 4d. We see that the final total spectrum is
complex, which makes it difficult to identify individual peaks in the measured spectrum.

In figures 18–21, we make comparisons between the results of our calculations with those
of the experimental measurements by Schmidt et al (2006) for DR in the energy region in
which the 3–4 core-excitations contribute.

In figure 18, it is capture to n = 4 which dominates, and we did not make a separate
calculation using basis D since the orbitals were based on the Thomas–Fermi potential
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Figure 19. As figure 18, but over 100–140 eV.
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Figure 20. As figure 18, but over 140–180 eV.

optimized for the Al-like core. In the case of basis C, although we used the same scaling
parameters for capture to n = 4 as for n > 4, the Slater-type-orbital model potential depends on
configuration (actually, the complex) and so is inherently ‘optimized’ differently for capture
to n = 4 and n > 4 (see Burgess et al (1989) for specific details). Hence, we added the
basis C n = 4 results to those of basis D. In the 60–90 eV range, the theoretical cross sections
are much weaker than the measured.

In contrast, in figures 19 and 20 we see that the theoretical DR cross sections are more
strongly peaked than the measured, especially so for basis D which has the larger 4 → 3
radiative rates. Despite basis C apparently giving rise to a worse structure for Fe13+ than basis
D, based upon the agreement between the length and velocity forms for the relevant oscillator
strengths (see table 4), it does appear that basis C gives rise to distinctly better agreement with
experiment for the DR cross sections than basis D. Although the agreement is worse than for
�n = 0 core-excitations, the sensitivity of the atomic structure to the overlap of the n = 3 and
n = 4 orbitals means that the differences are ‘less serious’, i.e., there is still enough uncertainty
in the atomic structure so that the agreement might be improved upon. We note that there is no
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Figure 21. As figure 18, but over 180–230 eV.

simple identification of the various peaks in these figures as many different core-excitations
contribute in this energy region, but they are dominated by a few low-n resonances because
�n = 0 autoionization of the final states opens-up at n < 10 for all parents, except 3s23p. In
addition, the 3p → 4s series Rydberg accumulation contributes to the peak at 175 eV.

In figure 21, we can unambiguously identify the peaks around 210 and 220 eV as being
associated with the limit of the 3p → 4d and 3s → 4p core-excitations, but the theoretical
cross sections are much smaller than measured for these peaks, especially so for the latter.
The sum over n is fairly well converged by n = 45 and even applying no cut-off (or infinite
time-of-flight) does not increase the size of the theoretical peaks by much. We do see the
‘overshoot’ of the basis D results here—as expected from the use of the unadjusted energies
of table 3.

Summing over all DR resonance strengths for the 3–4 core-excitations we find the basis
D result to be 50% larger than that for basis C, which is comparable with the excess of the
3p–(4s + 4d) oscillator strength seen in table 4. The sum of the measured DR resonance
strengths in the 60–240 eV range is 21% larger than that from basis C. Of course, we have
noted significant disagreements between the calculated and measured DR resonances, both
over- and under-estimates.

Finally, in figure 22 we present our results for the 2–3 core-excitations. These resonances
lie above the highest energy considered by Schmidt et al (2006). It should be noted, however,
that the sum of DR resonance strengths associated with this 2–3 core-excitation is a factor
of 2.5 larger than that associated with the 3–4. Thus, apart from contributing at a higher
temperature, this core-excitation is likely to be more important than the 3–4 for application to
collisional plasmas.

5. Maxwellian rate coefficients

In figure 23, we present our theoretical results for Maxwellian rate coefficients: RR-plus-
DR from 3–3, 3–4 and 2–3 core-excitations, and compare the sum-total of these with that
determined by Schmidt et al (2006), based primarily upon their measured DR (cooler) rate
coefficients. Over 104–105 K, a typical temperature range for photoionized plasmas where
Fe13+ is abundant, the experimentally-based total is between a factor of 1.52–1.38 larger
than our theoretical total—this is inline with what we expect following our earlier detailed
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Figure 22. Velocity-convoluted �n = 1 (2–3) recombination cross sections for Fe13+. Solid
curve, present theoretical results.
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Figure 23. Maxwellian rate coefficients for Fe13+. Solid (red) curve, total DR-plus-RR; short-
dashed (blue) curve, RR; long-dashed (green) curves, DR for 3–3, 3–4 and 2–3 core-excitations.
All this work. Dot-dashed (light blue) curve, DR of Arnaud and Raymond (1992). Dotted (purple)
curve, experimentally based total of Schmidt et al (2006). PP and CP denote typical photoionized
and electron-collisional plasma temperature ranges, respectively, for Fe13+ (Kallman and Bautista
2001 and Mazzotta et al 1998).

comparison of the DR resonances contributing at these temperatures. Nevertheless, it is clear
that the total recombination rate coefficient of Fe13+ in photoionized plasmas is an order of
magnitude larger than has been used to-date, as first pointed-out by Schmidt et al (2006) on
the basis of their measurements for this ion. We show also only the low temperature fall-off
of the recommended DR rate coefficient of Arnaud and Raymond (1992) and not any of the
ad hoc changes proposed by Netzer (2004) and by Kraemer et al (2004).

At temperatures of a few times 106 K, typical of electron-collision-dominated plasmas
where Fe13+ is abundant, the experimentally-based total is only 5% smaller than our calculated
one, while the recommended data of Arnaud and Raymond (1992) lie only about 10% higher.
(The data of Arnaud and Raymond (1992) are based principally upon the results of Jacobs
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Figure 24. Total Maxwellian rate coefficients for the ground and metastable initial levels
(m = 1–5) of Fe13+ (see text for details). Solid (red) curves, DR; dashed (green) curves, RR. All
this work. PP and CP, as figure 23.

et al (1977), but include an estimate of the contribution from 2p–3d inner-shell transitions as
well, which were not included by Jacobs et al.) We see also that both �n = 1 contributions
contribute only modestly to the total, both equally about 6% at 3 × 106 K. Far-off equilibrium,
this rises to about 20% at 107 K with three-quarters coming from the 2–3 core-excitation.
Given the modest contribution from �n = 1 core-excitations, then, since such calculations
are more demanding than for �n = 0, the use of LS-coupling may suffice, even with the 30%
difference from intermediate coupling which we note (not shown).

The LS-coupling R-matrix total recombination rate coefficients of Nahar (2000, not
shown) are a factor of 3–4 smaller than the present ones across the temperature range
104–107 K, which spans all temperatures of practical interest. The discrepancy at collisional
plasma temperatures is puzzling and was noted by Nahar (2000) in her comparison with the
results of Jacobs et al (1977). Her results were not considered by Netzer (2004) or by Kraemer
et al (2004) in their modelling.

Our rate coefficients are for the 3s23p 2PJ=1/2 ground-level of Fe13+. In photoionized
plasmas, the ion population may not be concentrated in the ground level, while in electron-
collisional plasmas there may be signification population of levels of the 3s3p2 4P term.
The rate coefficients for the various metastable levels can be quite different. In figure 24, we
compare and contrast total DR (i.e., summed-over all core-excitations) and RR rate coefficients
from the ground and metastable levels. We index the target metastable levels by m, where
m = 1 for the (J = 1/2) ground level, m = 2 for the other (J = 3/2) fine-structure level and
m = 3, 4, 5 for the (J = 1/2, 3/2, 5/2) levels of the metastable term, as per table 1.

At photoionized plasma temperatures we see that the m = 2 metastable DR rate coefficient
is an order of magnitude smaller than for the (m = 1) ground level—this is due primarily, of
course, to the absence of the fine-structure DR pathway. The DR rate coefficients for higher
metastables exhibit irregular behaviour (at low temperatures) due to the positioning close to
threshold of the lowest autoionizing states, relative to these excited Fe13+ thresholds, although
the m = 3 and 4 metastable levels again have fine-structure dielectronic capture pathways
and the enhancement for m = 3 appears to be quite noticeable. At collisional-plasma
temperatures, the DR rate coefficients split primarily into two groups which are based upon
term, not level, as the influence of fine-structure DR and threshold effects is diminished.
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Table 5. DR fitting coefficients ci (cm3 s−1 K3/2) and Ei (K) for the ground and metastable initial
levels (m = 1–5) of Fe13+.

m c1 c2 c3 c4 c5 c6 c7 c8

1 1.090(−3) 7.801(−3) 1.132(−2) 4.740(−2) 1.990(−1) 3.379(−2) 1.140(−1) 1.250(−1)
2 3.176(−4) 1.097(−3) 1.451(−2) 4.623(−2) 1.424(−1) 3.105(−2) 1.173(−1) 1.579(−1)
3 9.230(−4) 4.787(−3) 7.598(−3) 1.538(−2) 1.512(−2) 1.711(−2) 9.083(−3) 4.875(−1)
4 6.837(−4) 3.386(−3) 8.737(−3) 2.334(−2) 2.819(−2) 1.282(−2) 9.735(−3) 2.670(−1)
5 5.606(−4) 3.306(−3) 9.372(−3) 1.635(−2) 1.674(−2) 1.783(−2) 9.195(−3) 3.689(−1)

m E1 E2 E3 E4 E5 E6 E7 E8

1 1.246(3) 1.063(4) 4.719(4) 1.952(5) 5.637(5) 2.248(6) 7.202(6) 3.999(9)
2 1.204(3) 1.214(4) 5.689(4) 1.983(5) 5.340(5) 2.414(6) 7.302(6) 4.245(9)
3 9.887(2) 1.075(4) 4.542(4) 1.832(5) 5.506(5) 1.692(6) 6.994(6) 2.789(9)
4 1.824(3) 1.101(4) 4.775(4) 2.131(5) 1.109(6) 5.479(6) 1.365(9) 2.517(9)
5 1.288(3) 1.171(4) 4.780(4) 1.828(5) 5.530(5) 1.697(6) 6.960(6) 2.666(9)

Table 6. RR fitting coefficients for the ground and metastable initial levels (m = 1–5) of Fe13+.

m A (cm3 s−1) B T0 (K) T1 (K) C T2 (K)

1 4.321(−10) 0.6091 2.255(03) 4.962(07) 0.0356 1.006(05)
2 2.031(−11) 0.5464 2.669(05) 5.310(07) 0.0277 9.907(08)
3 1.591(−09) 1.0274 1.196(01) 2.038(07) 0.0449 1.764(08)
4 1.591(−09) 1.0274 1.196(01) 2.038(07) 0.0449 1.764(08)
5 4.803(−11) 0.3781 1.920(04) 4.025(07) 0.5220 5.410(03)

The difference in RR rate coefficients is much less pronounced, at all temperatures. At
low temperatures, the stability against autoionization for all n distinguishes RR of the ground
level. There is little difference for metastables levels of the excited term because the highest
stable recombined n is (almost) independent of the fine-structure parent.

In tables 5 and 6, we present separately the fitting coefficients for our total DR and RR
rate coefficients for the ground and metastable levels (indexed by m), which are based upon
the functional forms given by equations (16) and (17), respectively. The fits are accurate to
better than 1% over z2(101–107) K, where z = 13 here.

6. Summary

We have carried-out a series of multi-configuration Breit–Pauli calculations for the dielectronic
recombination of Fe13+. Whilst there is much agreement between the theoretical velocity-
convoluted cross sections and those determined experimentally by Schmidt et al (2006),
differences over 0.1–10 eV lead to the experimentally-based total Maxwellian recombination
rate coefficient being upwards of 50% larger than the theoretical one over the temperature
range 104–105 K, which is typical of photoionized plasmas where Fe13+ is abundant. Such
a difference lies well outside of the theoretical uncertainty, based-upon the accuracy of the
radiative rates and sensitivity to resonance positions. It is also well outside of the experimental
uncertainty of ±18% (Schmidt et al 2006).

It is difficult to see how to resolve this difference. Simply carrying-out a larger
(configuration interaction) calculation would not be expected to result in a change much
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beyond the difference, already noted, between the basis A and basis B results, especially given
the level of agreement for radiative rates which we have observed between bases A and B and
the extended basis 2 of Storey et al (1996). Furthermore, the good agreement between theory
and experiment at higher �n = 0 energies is interrupted twice by disconcerting differences
spanning several electron volts. Such differences are also outside of the range of higher-order
effects such as interacting resonances and the interference between DR and RR. Perhaps the
results of a separate, independent, calculation will shed some light on the matter.

Nevertheless, the theoretical recombination rate coefficient determined here for Fe13+ is an
order of magnitude larger than has been used by modellers in the past at photoionized plasma
temperatures. This may help explain the discrepancy between the iron M-shell ionization
balance predicted by photoionization modelling codes and that deduced from the iron M-shell
unresolved-transition-array absorption feature observed in the x-ray spectra of many active
galactic nuclei.

New data are clearly required for the other Fe 3pq ions, especially q = 2–6, in order to
eliminate the uncertainty in the DR atomic data used by CLOUDY, ION and XSTAR and to enable
them to focus on the ‘bigger picture’. Such work has been undertaken recently (Badnell 2006b)
and similar results have been obtained as seen here for Fe13+. This in turn demonstrates the need
for similar multi-configuration Breit–Pauli calculations for other M-shell ions of astrophysical
interest, e.g. Si, S, Ar, Ni, as well as a move into the 3d sub-shell of lower-charge Fe ions.
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