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Abstract
For high temperatures and densities, stellar opacities obtained from the Opacity
Project (OP) were smaller than those obtained from the OPAL project. Iglesias
and Rogers (1995 Astrophys. J. 443 469) suggested that the discrepancy was due
to the omission by OP of important atomic inner-shell processes,and considered
in detail results for a mixture of six elements: H, He, C, O, S and Fe. Extensive
new inner-shell data have now been computed using the code AUTOSTRUCTURE. It
is shown that the inclusion of these data in the OP work gives opacities for the
six-element mix which are in much closer agreement with those from OPAL.
We also discuss a number of problems relating to the calculation of opacities
and of equations of state for dense plasmas.

1. Introduction

Energy is produced by nuclear reactions at the centre of a star, at a temperature of a few
times 107 K, and escapes at the stellar surface. The structure of a star is determined by the
equations for conservation of mass and of energy, an equation for hydrostatic equilibrium, and
by the temperature gradient (see [1–3]). In regions in which convection does not occur, the
temperature gradient is determined by the Rosseland-mean opacity, which is the concern of
the present paper.

In a stellar interior, an atom of a chemical element k can exist in a number of ionization
stages, i , and energy levels, j . Using the frequency variable u = hν/(kBT ) (where kB is the
Boltzmann constant), let σi jk(u) be the cross-section for absorption3 or scattering of radiation
by level (i jk) and let pi jk be the probability of that level being populated. Then, the opacity
cross-section for element k is

σk(u) =
∑
i, j

pi jkσi jk(u). (1)

3 For absorption processes, the correction factor for stimulated emission, [1 − exp(−u)], is included.
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With fk the fractional abundance for element k, normalized to∑
k

fk = 1, (2)

the mean cross-section per atom for a mixture of chemical elements is

σ(u) =
∑

k

fkσk(u). (3)

The Rosseland-mean cross-section is σR, where

1

σR
=

∫ ∞

0

1

σ(u)
F(u) du (4)

and

F(u) = [15/(4π4)]u4 exp(−u)/[1 − exp(−u)]2 (5)

(see [1–3]). Astronomers usually use opacities per unit mass. The Rosseland-mean opacity
per unit mass is

κR = σR/µ, (6)

where µ is the mean atomic weight.
The 1982 paper of Simon [4] suggested that possible errors in opacities might explain

discrepancies between theory and observations for pulsational properties of stars, and provided
the stimulus for two major new efforts in opacity calculations: one referred to as OPAL at
the Lawrence Livermore National Laboratory by Iglesias and Rogers; and the other referred
to as the Opacity Project (OP). Early OPAL results [5] showed that the inclusion of very
large numbers of spectrum lines did indeed lead to major revisions in opacities. A number of
subsequent OPAL papers have been published, of which one of the most recent is [6]. The
present paper is a continuation of the OP work. The calculations of atomic data were described
in a series of papers in this journal, of which the first was [7], and OP results for opacities were
published in [8], to be referred to as SYMP. A collection of papers from the OP work, together
with selected atomic data tables, have been published in book form [9].

For regions of stellar interiors with temperatures of a few times 105 K, which are of
particular importance for pulsation studies,opacities from OPAL and OP are in close agreement
and can be larger than values previously adopted, by up to factors of about 3. The new opacities
have led to substantial improvements in the agreement between calculated and observed
pulsation properties. However, for deeper layers, the results from OPAL were larger than
those from OP, by amounts of 30% or so.

Very large numbers of spectrum lines are included in the calculations, of order a few
times 107 for a complete opacity run. OPAL used a parametric potential model [10], while
OP (see [9]) used R-matrix calculations supplemented by data from Kurucz [11] and from
SUPERSTRUCTURE [12]. Much of the OP data includes allowance for configuration-interaction
effects which are not included in the OPAL work. In their 1995 paper [13], to be referred
to as IR95, Iglesias and Rogers suggested that the discrepancies between OPAL and OP at
the higher temperatures and densities occurring in the deeper layers of stellar interiors could
be due to the omission by OP of some important inner-shell transitions. We have now made
new calculations, using the code AUTOSTRUCTURE [14], for promotions of inner-shell electrons,
both via photoionization and via photoexcitation of autoionizing states. Our results confirm
the essential correctness of the suggestion made in IR95. The present paper describes the new
atomic physics calculations and presents results for the six-element mix of IR95.

The structure of the paper is as follows: in section 2 we discuss issues relating to the
equation of state (EOS); in section 3 we detail the new inner-shell transitions that we now



Inner-shell contributions to opacity 4369

include and the methodology that we used to describe them; in section 4 we briefly discuss
free–free transitions; in section 5 we present and discuss our results for Rosseland-mean
opacities; in section 6 we discuss a number of issues that arise in determining opacities; in
section 7 we look at the opacity in the solar centre region; and finally, in section 8, we give a
brief summary.

2. The equation of state

The fraction of element k in ionization stage i is

φik =
∑

j

pi jk. (7)

We may put

pi jk = φik × gi jkWi jk exp[−Ei jk/(kBT )]/Uik (8)

where, for level (i jk), gi jk is statistical weight, Ei jk the total energy and Wi jk an occupation
probability. The internal partition function is

Uik =
∑

j

gi jkWi jk exp[−Ei jk/(kBT )]. (9)

If all Wi jk were set to unity, the summation for Uik would be divergent. Due to interactions
with particles and fields of the surrounding plasma, states of sufficiently high energy have only
small probabilities of being occupied and, hence, small values of Wi jk .

2.1. Occupation probabilities

The methods used in the OP work for the calculation of the Wi jk are described by Hummer and
Mihalas in [15]. Let F be the ion micro-field and P(F) the micro-field distribution (MFD):
P(F) dF is the probability of F being in the range dF , with

∫ ∞
0 P(F) dF = 1. Hummer and

Mihalas define critical fields, Fi jk, such that species (i jk) can only exist in an environment
with F < Fi jk, giving

Wi jk =
∫ Fi j k

0
P(F) dF. (10)

The use of equation (10) gives W � 1 for low densities but W to be small for high states and
high densities. In [15] Hummer and Mihalas used the Holtsmark MFD, which does not make
full allowance for correlations between particles nor for the charge on the ion (i jk). They also
introduced a simple analytical approximation (equation (4.70) of [15]) which gave results in
close agreement with those from (10) at low densities but a more rapid exponential decrease
at high densities. A similar exponential form is obtained using a ‘hard-sphere’ approximation
(see section III (a) of [15]). The analytical form, (4.70) of [15], was used in SYMP.

Iglesias and Rogers, in IR95, noted that the Holtsmark distribution would not be a good
approximation at the higher densities of stellar interiors and Nayfonov et al [16] subsequently
obtained improved expressions for the Wi jk using the MFDs of Hooper [17], which are also
used in the OP calculations of line profiles for hydrogenic ions [18]. Following Nayfonov
et al, we refer to the equation of state using their MFD as the Q-EOS. Their Wi jk are fairly
close to those obtained using the APEX distribution of IR95 and, with one modification to be
described below, will be used in the present work.
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2.2. The ionization equilibrium

For simplicity of presentation, we here omit specification of the element index k and neglect
all refinements such as allowance for electron degeneracy. The conclusions reached remain
valid when all necessary refinements are included. We take the ionization index i to be equal
to the number of bound electrons: i = 0 for the bare nucleus and i = Z for a neutral atom
with nuclear charge Z .

The ratio of ionization fractions in successive stages is (see [7] or [15])

φi

φi−1
= Ui

Ui−1

Ne

Ue
, (11)

where Ne is the electron density,

Ue = 2

{
mekBT

2π h̄2

}3/2

(12)

and me is the mass of an electron.
Since U0 = 1, the fraction in stage i relative to the fraction of bare nuclei is

φi

φ0
= Ui

[
Ne

Ue

]i

. (13)

2.3. Pressure ionization

Now consider fixed T and increasing Ne. Initially, φi/φ0 will increase with increasing Ne

due to the factor [Ne/Ue]i in (13). That effect is pressure recombination. Eventually, for
large densities, the Wi j in Ui become small and, if they become sufficiently small, pressure
recombination can be followed by pressure ionization.

For W calculated using (10), in the limit of Ne large one obtains W ∝ N−2
e using the

Holtsmark MFD and W ∝ N−3/2
e with the Q form. In either case it is seen that pressure

ionization does not occur for i � 2. That result would appear to be quite unphysical, since
it would imply that all atoms are in states which have very small occupation probabilities.
Pressure ionization does occur, for all i , if one uses a ‘hard-sphere’ model for W or, as in
SYMP, the approximation of equation (4.70) of [15], giving exponential decreases of W with
increasing Ne.

We conclude that equation (10) can be expected to give reasonable values for W when W
is not very small, but that it does not give a sufficiently rapid decrease of W in the limit of high
densities. We adopt the expedient of introducing a critical value Wc of W : use the value of W
from equation (10) if it is greater than Wc; and take W = 0 if equation (10) gives W < Wc. For
quite a wide range of values of Wc, results for opacities are found to be insensitive to the value
of Wc adopted. The final results reported in the present paper are obtained with Wc = 10−3.

The need for introducing a cut-off in W is illustrated in figure 1 for carbon at rather
high temperature (log(T ) = 7.5) and very high densities (log(Ne) = 27.0, 27.5 and 28.0).
Figure 1(a) shows ground-state occupation probabilities W against ionization stage i . Neutral
carbon, i = 6, is seen to have very small values of W which decrease with increasing Ne.
Figure 1(b) shows ionization fractions calculated without a cut-off in W . There is seen to be
an abrupt change from the case of log(Ne) = 27.0 with carbon nearly fully ionized (ionization
fraction 0.98 for i = 0) to the case of log(Ne) = 28.0 with carbon nearly fully neutral
(ionization fraction 0.95 for i = 6). The result for log(Ne) = 28 is clearly nonsensical, with
nearly all of the carbon in a state with occupation probability of W � 10−12! With a cut-off of
Wc = 10−3 we obtain a result which is much more plausible: for log(Ne) = 27.0, ionization
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Figure 1. Carbon at log(T ) = 7.5 and log(Ne) = 27.0, 27.5 and 28.0. (a) Ground-state occupation
probabilities, W , against ionization stage i . (b) Ionization fractions, φi , calculated without a cut-off,
Wc, in W .

fractions very similar to those for Wc = 0 for i � 3 and equal to zero for i > 3; and for
log(Ne) = 27.5 and 28.0 the carbon is fully ionized.

2.4. The Wn of OPAL

Bethe and Salpeter [19] give expressions for 〈r3
nl〉 for hydrogenic ions of charge Z . We put

〈r3
n 〉 =

(
1

n2

) n−1∑
l=0

(2l + 1)〈r3
nl〉 (14)

to obtain

〈r3
n 〉 = [n2/(8Z 3)][21n4 + 35n2 + 4]. (15)

The mean volume for state n can be defined as

Vn = (4π/3)〈r3
n 〉. (16)

Let Ne be the electron density, Na be the atom density and ρ be the mass density. From
table 1 and figure 1 of IR95, Ne = 5.0 × 1021 cm−3 and, for log(ρ) = −2 and the six-
element mix (see section 5.2), Na = 4.7 × 1021 cm−3. The total particle density is then
N = Ne + Na = 9.7 × 1021 cm−3. The average volume occupied by a particle (electron or
atom) is 1/N .

Table 1 gives, for hydrogenic carbon and the case of table 1 of IR95 (log(T ) = 6,
log(ρ) = −2): values of NVn ; Wn(OPAL) from IR95; and Wn(Q) from formulae given
in [16]. The values of Wn(Q) are fairly close to the values of Wn(APEX), as given in IR95.

In both OP and OPAL, optical properties (oscillator strengths and photoionization cross-
sections) are calculated for unperturbed atomic states, and Wn is the probability of state n
being unperturbed. With NVn > 1, one would expect to find at least one other plasma particle
within the volume Vn, giving a state which is markedly perturbed and which one would therefore
expect to have a small value of Wn . By that criterion, some values of Wn(OPAL) seem to be
surprisingly large, particularly those for n = 4, 5 and 6. Values of Wn(Q) appear to be more
reasonable.
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Figure 2. The atomic cross-section, σi jk , for photoionization from Fe24+ 1s2s 1S, in the vicinity
of the K edge. The cross-section is in atomic units.

Table 1. Occupation probabilities (Wn) and average volumes (Vn) for C5+ at T = 106 K and
N = 9.7 × 1021 cm−3.

n N Vn Wn(OPAL) Wn(Q)

1 2.08(−4) a 1.000 1.000
2 6.67(−3) 0.996 0.997
3 6.31(−2) 0.995 0.967
4 0.330 0.995 0.705
5 1.216 0.914 0.154
6 3.562 0.527 1.58(−2)
7 8.875 0.162 1.87(−3)
8 1.96(+1) 2.37(−2) 2.82(−4)
9 3.96(+1) 2.23(−3) 5.22(−5)

a 2.08(−4) = 2.08 × 10−4.

3. Inner-shell atomic physics

The original OP work utilized the R-matrix method which uses wavefunction expansions of
the type

� = A
∑

n

ψnθn, (17)

where theψn are functions for atomic ‘target’ states, the θn are functions for an added electron
and A is an anti-symmetrization operator. In that method, photoionization and autoionization
are treated as a single quantum-mechanical process. Figure 2 gives, as an example, the cross-
section for transitions from the 1s2s 1S state of Fe24+. Below the threshold for ejection of the
1s electron, the cross-section shows autoionization features due to processes

1s2s + hν → 2snp → 1s + e−. (18)

However, use of the R-matrix method would not be practicable for the computation of the
atomic data required for the present work, for two reasons:
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(a) in many cases, the number of channels n required in equation (17) would be prohibitive
(our experience with the RmaX work on inner-shell x-ray processes [20] shows that a few
Li- and Be-like ions are the most that could be treated with a reasonable timescale);

(b) it would be difficult to allow for pressure broadening of the autoionization features; we
therefore use a perturbative approach, as implemented in the program AUTOSTRUCTURE

[14, 24].

We note that figure 2 shows, qualitatively, the effects of interference between
autoionization features and the background continuum. However, detailed quantitative
studies [21] show that, on averaging over resonance profiles, this interference is a very small
effect and it can safely be neglected for our purposes. This is the independent processes
approximation. In the time-reversed case, this corresponds to treating dielectronic and radiative
recombination separately. The second approximation required by our perturbative approach
is an isolated resonance treatment of the autoionizing features. The effect of interacting
resonances has been investigated [21] for the reverse process of dielectronic recombination,
and it also can safely be neglected for our purposes.

3.1. Photoexcitation

The downward probability rate for a radiative transition from an upper state u to a lower state
l is given by

Ar
u→l = 1

gu

4ω3

3h̄c3
Slu , (19)

where gu is the statistical weight for the upper level, c is the speed of light, ω = 2πν, where ν
is the photon frequency, and Slu is the bound–bound line strength, as defined in [22]. Eissner
et al [23] give expressions for Slu for multi-configuration LS and intermediate coupling (their
equations (115) and (117), respectively): their code, SUPERSTRUCTURE, gives numerical values
for Slu in atomic units. The code AUTOSTRUCTURE, which incorporates SUPERSTRUCTURE, gives
the following data:

(a) the line-centre frequency;
(b) the rates (gu/gl)Ar

u→l ;
(c) Ar

u ≡ ∑
l Ar

u→l , the total probability rate for radiative decay of the upper level u;
(d) Aa

u→m and Aa
u ≡ ∑

m Aa
u→m , the partial and total autoionization decay probability rates,

respectively.

Multi-configuration LS- and intermediate-coupling expressions for Aa
u→m are given in [14]

(equations (2.2) and (2.4), respectively). The rates are all in s−1.
The oscillator strength for the l → u transition is

ful = mec3

2e2ω2

gu

gl
Ar

u→l (20)

and the absorption (photoexcitation) cross-section for an autoionizing feature is

σ PE
l→u = 2π2e2

mec
fulϕ(ω), (21)

where ϕ(ω) is the line-profile factor. On neglecting thermal Doppler broadening, the profile
is

ϕ(ω) = (�/2π)/[(ω − ω0)
2 + (�/2)2], (22)
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where ω0 is the line-centre angular frequency and

� = (Ar
l + Ar

u) + Aa
u + �p

lu, (23)

where expressions for the pressure-broadening contribution, �p
lu , are given in [35] (a different

form is used for hydrogenic lines; see [18]). The profile (22) is then convolved with that for
Doppler broadening to give a Voigt profile.

For more detailed (collisional–radiative) modelling purposes we require to follow the
break-up of an autoionizing state. For example, the photoexcitation cross-section in
equation (21) is multiplied by branching ratios for radiative decay, Ar

u→l/(A
r
u + Aa

u), and
by Auger yields for autoionizing decay, Aa

u→m/(A
r
u + Aa

u).

3.2. Photoionization

The direct photoionization cross-section from an initial state l of an (N + 1)-electron atom to
a final state u of an N-electron ion plus ejected electron is given by [7]

σ PI
l→u = 1

gl

4π2

3c
ωSul , (24)

where gl is the statistical weight of the initial level and Sul is the bound–free line strength with
the final-state continuum wavefunction normalized per unit energy. The code AUTOSTRUCTURE

uses a different continuum normalization and gives numerical values for the bound–free line
strength which are equal to π/2 times Sul in atomic units. The same expressions for Sul that
were used for bound–bound transitions are used for bound–free transitions, except that the
final ‘active’ bound-state wavefunction is replaced by a continuum distorted wavefunction
which does not contain any resonance structure. This use of distorted waves is a good
approximation for atoms that are a few times ionized and is the final approximation employed
by our perturbative approach.

3.3. AUTOSTRUCTURE; some details

3.3.1. Angular algebra. AUTOSTRUCTURE [14, 24] incorporates SUPERSTRUCTURE [23] and the
angular algebra required to calculate the preceding atomic data is no more than that which
is generated by SUPERSTRUCTURE to determine energy levels and radiative rates. (The angular
algebra required for autoionization rates is that which follows from the H operator which
determines the structure.) However, for the complex inner-shell processes considered here,
which can give rise to configurations with thousands of terms, we found it necessary to rewrite
the angular algebra code. Specifically, because of historical memory limitations, the algebraic
Slater-state interactions were determined between each LS term or J level [23]. However,
the Slater-state interaction depends only trivially on the configuration and it can be generated
much more efficiently between symmetry groups. With complex configurations there is a high
degree of algebraic term and level degeneracy, both within and between configurations. Re-
coupling by LS or LS J symmetry groups reduces the overall time spent on the largest scale
jobs by a factor of 30–40 (LS) or 100–200 (LS J ).

3.3.2. The Hamiltonian matrix. SUPERSTRUCTURE determines multi-configuration
eigenenergies and eigenvectors by diagonalization of the Hamiltonian matrix for each SLπ or
Jπ symmetry group. AUTOSTRUCTURE further partitions the problem into (N +1)-electron bound
and N-electron (plus continuum) configurations—the N- and (N + 1)-electron Hamiltonians
are diagonalized separately. The bound–free Hamiltonian interaction between the two is treated
as a perturbation—this leads simply to the autoionization rate [14].
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The mass–velocity and Darwin operators of the Breit–Pauli Hamiltonian [23] are also
added to the usual non-relativistic Hamiltonian for the determination of our L S-coupling atomic
structure. This results in transition energies between terms which are in good agreement with
those obtained from using intermediate coupling, on averaging over the fine structure.

3.4. Application to the six-element mix

The K-shell processes required are of the form

1sq2l pn′l ′ + hν → 1sq−12l pn′l ′ + e− (25)

for photoionization and

1sq2l pn′l ′ + hν → 1sq−12l pn′l ′n′′l ′′ → 1sq−12l pn′′′l ′′′ + e− (26)

for photoexcitation–autoionization, where 2l p stands for 2ss2pt with p = s + t . Calculations
are made for q = 1, 2 for p = 0 and q = 2 for p > 0. The values of p depend on the
element—for example, up to p = 7 for iron but only p = 1 for carbon. This depends on
the importance of its contribution to the opacity. We use n′, n′′, n′′′ = 2–6, for all allowed
l ′, l ′′, l ′′′. The contributions from higher n in (26) are obtained by matching onto the results
of (25).

The L-shell processes required are

2lq 3l ′pn′′l ′′ + hν → 2lq−13l ′pn′′l ′′ + e− (27)

and

2lq 3l ′pn′′l ′′ + hν → 2lq−13l ′pn′′l ′′n′′′l ′′′ → 2lq−13l ′pnivl iv + e−, (28)

where 3l ′p stands for 3ss3pt3du with p = s + t + u. Calculations are made for q = 1–8 for
p = 0 and q = 8 for p > 0; e.g., up to p = 2 for iron.

The M-shell processes required are simpler:

3lqn′l ′ + hν → 3lq−1n′l ′ + e− (29)

and

3lqn′l ′ + hν → 3lq−1n′l ′n′′l ′′ → 3lq−1n′′′l ′′′ + e−, (30)

and are included only for iron, with q = 1–3.
To attain as much accuracy as possible for consistency with the existing R-matrix data, our

perturbative calculations retain configuration interaction within the N-electron (core) complex
and the (N + 1)-electron complex (for n′ = n′′): for example, we retain interactions between
states such as 2s2 1S and 2p2 1S. For most cases, calculations are made both for L S coupling and
for intermediate coupling (including Breit–Pauli terms). Even when not significant for inner-
shell contributions to opacity, this resolution is required for modelling non-LTE photoionized
plasmas.

In table 2, we summarize the inner-shell calculations that we have carried out. We have
examined the convergence with respect to the inclusion of inner-shell data and estimate that
the inclusion of further data would change the Rosseland means by less than 1%.

The new data resulted in an additional 2575 458 level-resolved photoexcitation lines and
187 351 total photoionization cross-sections, i.e. summed over all final states, contributing to
the OP opacities. Many more data are archived, namely final-state resolved photoionization
cross-sections and data for transitions and lines that were already included in the original OP
work.
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Table 2. Inner-shell transitions considered: Z is the nuclear charge of the element and N the
number of electrons left on the final ion.

Z N Shells Z N Shells

2 1 K

6 1 K 26 1 K
2 K 2 K
3 K L 3 K L

4 K L
8 1 K 5 K L

2 K 6 K L
3 K L 7 K L

8 K L
16 1 K 9 K L

2 K 10 L
3 K L 11 L M
4 K L 12 L M
5 L 13 M
6 L
7 L
8 L
9 L

10 L

3.5. Database issues

Given that we have already generated, and will be generating, large numbers of atomic data,
some thought has been given to how they might be effectively archived for applications other
than the one at hand. In particular, the Atomic Data and Analysis Structure (ADAS) [25] has
long had the capability of handling radiation fields [26] but has, until recently, concentrated
on utilizing escape factors [27]. The collisional–radiative modelling of finite-density non-LTE
photoionized plasmas with ADAS requires that we archive final-state resolved photoionization
data, summed over final channel angular momenta. We have written codes (ADASPE and
ADASPI) for processing the large numbers of energy levels, radiative rates, autoionization
rates and photoionization cross-sections produced by AUTOSTRUCTURE and have defined such a
suitable archive data structure of final-state resolved photoexcitation–autoionization and direct
photoionization data, specifically, adf38 and adf39 ADAS data formats [25]. These partial
data are then further reduced to total photoionization data for use by opacity calculations.
For completeness, outer-shell photoionization data are archived in the adf39 files as well as
inner-shell data, but they are not used in the work reported on here.

4. Free–free transitions

Contributions from free–free transitions are, in most cases, calculated in a hydrogenic
approximation using the code of [28] which employs fits to accurate results from [29].
Allowance for Debye screening can be of importance at high density and is included if it gives
increases in Rosseland means by more than 0.1%. The screening contribution is calculated
using the Born–Elwert theory [19, 30, 31]. It is checked that, without screening, the Born–
Elwert approximate gives agreement with the accurate results from [28] and [29] to better than
1% for all cases considered in the present work. For log(R) � −1 and log(T ) � 7.7 it is
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Table 3. Number fractions ( fk ) for the six-element (k) mix of Iglesias and Rogers [13].

k fk

H 9.071(−1)
He 9.137(−2)
C 4.859(−4)
O 9.503(−4)
S 9.526(−5)
Fe 3.632(−5)

found that inclusion of screening for free–free transitions never changes the Rosseland mean
by more than 2 or 3%.

The correction for Debye screening was not included in the work of SYMP but is included
in the present work.

5. Results for Rosseland-mean opacities

5.1. Use of the variable log(R)

It is convenient to use the variable

R = ρ/T 3
6 , (31)

where ρ is the mass density in g cm−3 and T6 = 10−6 × T , with T in K. For a solar mix,
comparisons of log(κR) from OP and OPAL for log(R) = −1 to −6 were given in figure 15
of SYMP, which showed the OPAL opacities to be larger than those from OP for larger values
of log(R) with log(T ) > 5.5.

5.2. The six-element mix

Iglesias and Rogers in IR95 considered the importance of inner-shell transitions for a mixture
of six elements (H, He, C, O, S and Fe) with abundances chosen to be such as to give opacities
similar to those for the complete solar mix. The number fractions adopted, fk , are given in
table 3.

Paper IR95 gave results for one temperature–density point, log(T ) = 6 and log(R) = −2
giving log(ρ) = −2. OPAL calculations were made both with and without the inclusion of
inner-shell processes. The inclusion of those processes was found to give an increase in κR by
30%.

5.3. OP results both with and without inner-shell transitions

Figure 3 gives OP values of log(κR) for the six-element mix, both with the inclusion of the
inner-shell data discussed in section 3 and without. The results without inner-shell data are
essentially the same as those given in SYMP, but include some fairly minor improvements and
use of the Q-EOS. Figure 4 shows δ log(κR), the increase in log(κR) due to inclusion of the
inner-shell data. For log(T ) = 6 and log(R) = −2 we obtain an increase in κR by 31%, in
close agreement with the increase obtained in IR95.

Changes in κR due to changes in the EOS are much smaller than those due to the inclusion
of inner-shell data: thus for log(T ) = 6 and log(R) = −2, use of the Q-EOS in place of the
EOS used in SYMP reduces κR by only 1.6% (in both cases, without inner-shell data).
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Figure 3. OP Rosseland-mean opacities for the six-element mix for log(R) = −1, −2, −3 and
−4, with inclusion of inner-shell data (full curves) and without those data (dotted curves). The
opacities are in cgs units: cm2 g−1.
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Figure 4. δ log(κR), the change in Rosseland-mean opacity which results from the inclusion of
inner-shell data.

5.4. Results from OP and OPAL

Figure 5 shows values of log(κR) for the six-element mix from OPAL (data obtained from the
OPAL website [32]) and from the present OP work with the inclusion of inner-shell data. It is
seen that, for the larger values of log(R) where the inner-shell data are important, OP is now
in close agreement with OPAL.

There are some remaining differences between OP and OPAL at smaller values of log(T )
and log(R) where inner-shell data are not important. A feature at log(T ) � 5.2, often referred
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Figure 5. Rosseland-mean opacities for the six-element mix, with the inclusion of inner-shell data:
full curves, OP, present work; dashed curves, OPAL, from [32]. The opacities are in cgs units.
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Figure 6. Percentage differences between OP and OPAL Rosseland means, OP − OPAL.
(a) log(R) = −3. (b) log(R) = −6.

to as the ‘Z -bump’, was first identified by Iglesias et al [33] as due to inclusion of very large
numbers of M-shell transitions for various ionization stages of iron. For log(R) � −3 there
are seen to be some differences between OPAL and OP in the vicinity of that feature. Figure 6
shows, on a much more expanded scale, percentage difference for κR, (OP − OPAL), for
log(R) = −3 and −6. For log(R) = −3 the Z -bump feature from OP is seen to be broader
than that from OPAL, and to have a peak value lower by about 10%. For log(R) = −6 the OP
peak value is lower by 20%. We plan to consider these differences further in a later paper.

6. Discussion

IR95 was mainly concerned with illustrative results for the case of the six-element mix and
log(T ) = 6, log(ρ) = −2. Plots of monochromatic opacities were given for C, S, Fe and for
the mixture. Similar plots were obtained in the course of the present work.
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Figure 7. The opacity cross-section, σ , for iron in the vicinity of the K edge, at log(T ) = 7:
the cross-section in atomic units. Pressure broadening is included. (a) log(Ne) = 22.5 and
(b) log(Ne) = 25.

6.1. Density dependence

It is seen from figure 4 that the inner-shell contributions are most important at high densities.
That can be understood by considering the case of high temperatures (similar considerations
apply for other regions). At high temperatures, say log(T ) � 7.0, the most important
transitions are for the iron K shell. At the very lowest densities considered, the iron is almost
fully ionized and there are no K-shell contributions. Then, as the density increases, one has
K-shell transitions of the type

1s + hν → κp (32)

and

1s2 + hν → 1sκp, (33)

where κ = n for transitions to a bound state and κ = k for photoionization. Such transitions
are included in the original OP calculations. With a further increase in density, one has states
of the type 1s2C (where ‘C’ stands for states of outer electrons) and K-shell transitions of the
type

1s2C + hν → 1sCκp. (34)

Such transitions were not included in the original OP work but are included in the present work
(see section 3).

6.2. Line profiles

Pressure broadening of all spectral lines should be included, for both transitions to true bound
states and those to autoionizing states.

The importance of pressure broadening for the iron K shell is illustrated in figure 7, which
gives plots of σ(u) for iron for log(T ) = 7 and log(Ne) = 22.5 and 25: for the six-element
mix, those values of Ne correspond to log(R) = −4.21 and −1.71. It is seen that, for the low-
density case, there are very many resolved spectral lines but that at higher densities pressure
broadening leads to the lines being almost completely blended. We use the pressure-broadening
theory from [35] and [18] and line-blending theory from [36].

We note that, beyond the K edge, the cross-sections are nearly the same for both densities,
since both depend mainly on K-shell ionization. At the lower energies, say u � 7, the
background opacity is mainly due to free–free transitions, giving cross-sections per atom
proportional to the electron density.
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6.3. Autoionization

The AUTOSTRUCTURE calculations give linewidths due to radiation damping and to autoionization.
We find, in practice, that inclusion of those contributions to the line profiles is never very
important since widths due to pressure broadening are generally much larger: omission of
autoionization widths would never give errors in Rosseland means larger than 1 or 2%.

6.4. Fine structure

In both the OPAL and the OP work, it was found that inclusion of fine structure for outer-
shell transitions could be of importance for the calculation of Rosseland means (see [34] and
SYMP). Most of our AUTOSTRUCTURE calculations were made both for LS coupling (no fine
structure) and for intermediate coupling (with fine structure). Test runs showed that inclusion
of fine structure for the inner-shell transitions never increased Rosseland means by as much
as 1%, which was, again, a consequence of the importance of pressure broadening. All final
results as reported in the present paper were made with omission of inner-shell fine structure.

7. The solar centre region

Convection occurs throughout much of the solar interior and for those regions a precise
knowledge of the Rosseland-mean opacity is not of great importance. However, convection
does not occur in the deepest layers of the solar interior. Knowledge of the Rosseland mean
for the centre region is of importance for the construction of solar models, which can be tested
against data from helioseismology.

At the solar centre, models give log(T ) = 7.196, log(ρ) = 2.179 and log(R) = −1.409
(see [37, 38]). Opacities calculated using a number of different codes [39] show quite a large
scatter. The most accurate values currently available are undoubtedly those from OPAL [40].
For the six-element mix, opacities for the centre region from OP are a little larger than those
from OPAL: by 2.3% at log(T ) = 7.2 and log(R) = −1.5.

The present work permits some further discussion of the solar centre problem. In the OP
work we use a mesh of values of log(T ) and log(Ne). We select a mesh point log(T ) = 7.2,
log(Ne) = 26 giving, for the six-element mix, log(ρ) = 2.294 and log(R) = −1.306. Figure 8
shows log(σ ) for the mixture at that point. There are three main contributions to the centre
opacity.

7.1. Free–free contribution

The free–free contribution is mainly due to electron collisions with H+ and He2+. The free–free
cross-section behaves like u−2 and the process therefore dominates at low frequencies. We
include Debye screening (see section 4) which modifies the solar centre opacities by about 1
or 2%. OPAL include some further refinements (see [13]) but they are not likely to be of much
importance.

7.2. Electron scattering

At lower densities, the electron scattering cross-section is equal to the Thomson cross-section,
and is independent of frequency. For higher densities, the cross-section is modified by plasma
collective effects. Both OP and OPAL use the theory of Boercker [41], and also allow for
relativistic corrections.
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Figure 8. The opacity cross-section, σ (in atomic units), for the six-element mix at log(T ) = 7.2,
log(Ne) = 26, log(R) = −1.306.

Table 4. Ionization fractions (φi ) and ground-state occupation probabilities (W0) for iron for
log(T ) = 7.2 and log(Ne) = 26.

i φi W0

0 0.000 1.000
1 0.001 1.000
2 0.039 1.000
3 0.155 0.959
4 0.289 0.954
5 0.282 0.941
6 0.162 0.930
7 0.058 0.918
8 0.012 0.894
9 0.002 0.872

10 0.000 0.847

7.3. Atomic transitions

In figure 8 there is a just-discernible feature at u � 2 due to sulphur K-shell transitions, and a
much more conspicuous one at u � 5 due to iron K-shell transitions. For hydrogenic iron, the
Lyα line is at u = 5.10 and the Lyman continuum starts at u = 6.80. Table 4 gives ionization
fractions and ground-state occupation probabilities for iron: all stages up to i = 9 are seen to
contribute to the K feature. It is seen from figure 7 that the high K-shell lines are completely
blended. It may be noted that the mean opacity will not be sensitive to the exact distribution
amongst ionization stages (the φi of table 4) since the cross-sections for promotion of 1s2

electrons will be much the same for the different stages.
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Figure 9. 1/σ against v, defined by equation (35), for the case of figure 7.

7.4. Use of a different frequency variable

Equation (4) may be replaced by

1

σR
=

∫ vmax

v=0

1

σ(u)
dv (35)

where

v(u) =
∫ v

u=0
F(u) du (36)

and vmax = v(u → ∞)—numerical integrations give vmax = 1.0553. Figure 9 shows
1/σ plotted against v for the case of figure 7. The advantage of using figure 9 is that it
shows the sensitivity of 1/σR to the various features in σ(u). There are seen to be rather
small contributions from regions of small u where σ(u) is large, but much more important
contributions from large u where σ(u) is small.

8. Summary

Rosseland-mean opacities κR from the Opacity Project, OP, were originally found to be smaller
than those from the OPAL project at high temperatures and high densities. Iglesias and Rogers,
in IR95 [13], discussed the case of log(T ) = 6, log(ρ) = −2 where κR(OPAL) was larger
than κR(OP) by about 30%. They made two criticisms of the OP work:

(a) OP calculated occupation probabilities W using a Holtsmark MFD where, at high densities,
it is a poor approximation;

(b) OP omitted some important inner-shell atomic data.

8.1. Occupation probabilities

In the present work we calculated values of W using expressions from Nayfonov et al [16],
who used an MFD theory that is valid to high densities. It is shown that the expressions for
W given in [15] and [16] are not valid in the limit of very high densities: a simple expedient
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removes that difficulty. It is found that final results for Rosseland-mean opacities are not very
sensitive to the occupation probabilities adopted.

It is noted that the values of W obtained from the OPAL work seem to be rather surprisingly
large for more highly excited states.

8.2. Inner-shell data

New opacity calculations have been made for the six-element mix introduced in IR95.
Extensive inner-shell atomic data were computed using the code AUTOSTRUCTURE for the six-
element mix introduced in IR95. It is shown that inclusion of those data removes all major
differences between the OP and OPAL work.

8.3. Future work

In the work described in SYMP, opacities were calculated for 17 cosmically abundant chemical
elements. Work is now in progress to obtain inner-shell data for those elements not included
in the present work.
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[36] Däppen W, Anderson L and Mihalas D 1987 Astrophys. J. 319 195
[37] Guenther D B, Demarque P, Kim Y-C and Pinsoneault M H 1992 Astrophys. J. 387 372
[38] Bahcall J N and Ulrich R K 1988 Rev. Mod. Phys. 60 297
[39] Rose S J 2001 J. Quant. Spectrosc. Radiat. Transfer 71 635
[40] Iglesias C A and Rogers F J 1991 Astrophys. J. 371 408
[41] Boercker D B 1987 Astrophys. J. 316 L95


