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Abstract

There have been two previous works concerning the electron-impact excitation
of H-like Fe employing the R-matrix technique. The calculations by Aggarwal
and Kingston (Aggarwal K M and Kingston A E 1993 Astrophys. J. Suppl.
Ser. 85 187-95) were carried out non-relativistically in LS coupling while
those of Kisielius et al (Kisielius R, Berrington K A and Norrington P H 1996
Astron. Astrophys. Suppl. Ser. 118 157-62) allowed for relativistic effects by
using the Dirac-Fock R-matrix method. There seems to general agreement
about values of the effective collision strength up to about 10° K in temperature
with Kisielius ef al, but close inspection of the collision strengths for dipole
transitions shows that they do not have the correct high-temperature form. We
have carried out a new (Breit—Pauli) R-matrix calculation combined with close
attention to high-energy behaviour and radiation damping (not included in the
previous works). We present and discuss our results for improved effective
collision strengths for the temperature range 10°~10%3 K—the peak coronal
fractional abundance of Fe>>* lies at ~10% K.

1. Introduction

The analysis of data returned by the new high-resolution x-ray satellites Chandra and XMM-
Newton requires atomic collision data that, in general, is beyond the scope of that computed by
the IRON Project (Hummer et al 1993). The RmaX Network? was formed to carry out extensive
calculations of atomic data in the x-ray regime, using the radiation damped (Robicheaux et al
1995) R-matrix method (Berrington et al 1995). In particular, highly charged Fe systems
exist at relatively low temperatures in photoionized plasmas, compared to coronal plasmas.
These systems clearly illustrate the large contribution from Rydberg resonances on effective
(Maxwellian-averaged) collision strengths, especially at lower temperatures (Ballance et al
2001). Also, resonances positioned just above an excitation threshold can be the dominant
contribution to the effective collision strength at low temperatures. Similar observations were
made by Kisielius et al (1996) following comparisons of their undamped R-matrix results for

3 Available at http://amdpp.phys.strath.ac.uk/UK_RmaX/.
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Fe?** with those of non-resonant calculations such as the Coulomb—Born—Oppenheimer (CBO)
approach of Golden et al (1981) and Clarke et al (1982). However, we have observed that most
of the high-temperature effective collision strengths of Kisielius et al (1996) decrease rapidly
with increasing temperature whilst, asymptotically, they should increase logarithmically (or
tend to a constant) for dipole (or non-dipole) allowed transitions. In particular, Burgess and
Tully (1992) discuss the high-energy (temperature) behaviour of ordinary (effective) collision
strengths in some detail.

Although the R-matrix method puts little restriction on the energy range spanned by
the incident electron, it does require the diagonalization of ever larger Hamiltonians so as
to increase the energy range. Beyond the final level included within a close-coupling (CC)
expansion, there are no resonances and we would also expect little in the way of CC and
distorted-wave effects in a highly charged ion. So, the computational effort of an R-matrix
calculation is unnecessary and simpler approaches can be employed to obtain the high-energy
contribution to effective collision strengths from ordinary collision strengths. In the case of
dipole transitions, the infinite energy (temperature) ordinary (effective) collision strength is
given by the Bethe approximation and it reduces to a simple formula involving the oscillator
strength (Burgess and Tully 1992). Burgess et al (1997) extended this work to include the high-
energy Born limits for the optically forbidden (allowed) transitions. Recently, Badnell and
Thomas (see Whiteford et al (2001)) implemented and extended these multipole expressions
within AuTosTRUCTURE (Badnell 1997) for all multipoles. These limits cannot be expressed
so concisely, and require the careful manipulation of Born integrals and fractional parentage
coefficients together with the allowance for configuration mixing. We note that Burgess—
Tully plots, in which the electron energy and collision strengths are scaled, indicate whether
or not the infinite energy point for an allowed transition is being approached correctly.
Consideration of the high-energy asymptotic behaviour of allowed transitions and utilization
of the infinite energy limit point has enabled the results of R-matrix calculations to be extended
into temperature ranges that were traditionally an order of magnitude too high to reach (see, for
example, Whiteford et al (2001)). This means that population modelling into the 10’-10° K
temperature regime is feasible with such data.

Kisielius et al (1996), in regard to the scattering energies that they used in the electron-
impact excitation of Fe?>*, state that ‘the energy interval is chosen to be from 512.5 to 1000
Ry’. We assume that this (512.5) is a typing error as their table 1, relating the experimental
levels of Erickson (1977), gives eigen-energies for the 2s;,, and 2p, P levels to be 510.951
9822 and 510.994 9940 Ry, respectively. Furthermore, effective collision strengths to these
levels are given in their table 5. The subsequent statement that ‘this enables us to obtain Y
for temperature (sic) T < 3 x 107’ is overly optimistic, if no account is taken of collision
strengths above 1000 Ry, and may explain why the effective collision strengths given in their
table 5 begin to decay at their highest temperatures, for most transitions.

Consider the formula for a Maxwellian-averaged effective collision strength

= [ e () e(57) ®
ij = ij €X - |
i= ), AP kT

where E; represents the final-state free-electron energy, €2;; the collision strength for transition
i—j, T the temperature and k the Boltzmann constant. To ensure closure in the integral of the
slowly decaying exponential term, we require the ratio E;/kT to be sufficiently large. For
Q2 a constant in energy—the asymptotic case of non-dipole-allowed transitions, a value of 7
for this ratio gives T to 0.1% accuracy. For the weakly divergent logarithmic €2 of dipole
transitions, a somewhat larger ratio is required. At a temperature of 3 x 107 K, excitation of
the n = 4 levels with an incident electron energy of 1000 Ry relative to the ground, as used by
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Figure 1. High-temperature effective collision strengths versus temperature (K) for dipole
transitions from the ground state. The dotted curve denotes the results of Kisielius er al (1996)
while the solid curve denotes our present results: for the, (a) 1s1-2p3, (b) 1s1-2p1, (¢) Is1-3p3

2 2 2 2 2 2

and (d) 1s ! -3p 1 transitions.

(This figure is in colour only in the electronic version)

Kisielius et al (1996), gives a ratio of about 1.9, and e~!* & 0.15. We find that it is necessary
to consider contributions from up to ~3000 Ry relative to the ground in this instance. As stated
earlier, it is computationally burdensome and unnecessary to evaluate this contribution with
explicit R-matrix calculations and we circumvent this problem by a linear interpolation of the
scaled collision strengths between our highest calculated finite energy point and the infinite
energy point, for each dipole and allowed transition, as classified by Burgess and Tully (1992).

2. Calculation

Our model again employs the R-matrix method (Berrington et al 1995) and we include
the same n < 5 levels as included by Kisielius er al (1996). The atomic orbitals were
generated by the structure package AUTOSTRUCTURE, as were the infinite energy Bethe and
Born limits. The partial waves were treated in two different ways, in a similar vein to our
Li-like Fe work (Ballance er al 2001). The low partial waves (J = 0-10), which include
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Figure 2. Burgess and Tully (1992) reduced plot for the 1s1,2—2p3/2 dipole transition in which
the collision strength is scaled by ©, = Q/In((E;/E;;) +e). E; corresponds to the free-electron
energy whilst E;; represents the energy separation of the initial and final states. The free electron
energy is scaled by E, = 1 —In(C)/In((E;/E;;) + C) where C is an arbitrary real constant, in
this case we used C = 2.
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Figure 3. As figure 2, but for the quadrupole 1s; ,2—3ds,> transition. Here only the free electron
energy is scaled, this time by E, = (E;/E;;)/(E;/E;ij + C), C = 2 again.

rich Rydberg resonance structure, were obtained from a standard Breit—Pauli calculation
(Berrington et al 1995). However, the J = 11-50 partial waves, required to ensure convergence
for dipole transitions, were obtained via the intermediate coupling frame transformation
approach of Griffin et al (1998). This entails transforming unphysical S- or K-matrices
(within the framework of quantum defect theory) to a j K-coupling scheme before a further
transformation, involving term-coupling coefficients, gives rise to intermediate coupling level-
to-level excitation cross sections.
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Figure 4. As figure 2, but for the 2p3/2—3ds/> dipole transition.

Our 25CC level calculation (1s1,,-5g9/2) used 56 continuum basis orbitals. This enabled
us to generate collision strengths up 2000 Ry, to which we add the result for the infinite energy
point for allowed transitions. We note that every transition is allowed, i.e. in the absence
of configuration mixing and spin—orbit mixing, a non-vanishing Born or Bethe limit point
exists. There are no weak ‘forbidden’ transitions that can only take place through mixing.
Finally, radiation damping for the high-n members of a Rydberg series was introduced via
a complex effective quantum number (Robicheaux er al 1995), which cancels some of the
effective collision strength contribution from narrow resonances close to a threshold.

3. Discussion

We have calculated effective collision strengths over a temperature range of 10°-10° K.
The temperature range was extended beyond the log,,(7'(K)) = 7.5 presented in Kisielius
et al (1996) because Arnaud and Raymond (1992) place the peak coronal abundance for
Fe?* at log,o(T(K)) ~ 8.1. Note, higher temperature effective collision strengths can
be determined by an interpolation that makes use of the infinite temperature limit point
(Burgess and Tully 1992). This limit point is also present in the adf04 data structure tabulation
of our effective collision strengths under the atomic data and analysis structure format
(Summers 1994, 1999).

If we consider a dipole transition, such as 1s; ,—2p3 /2, then we know that the scaled infinite
energy Bethe limit for the effective collision strength is given by (Burgess and Tully 1992)

T(ls%—ng) 4w,-f,-j
—_
ll’l(kT) AE,']‘

where w; is the statistical weight of the initial state, f;; the upward oscillator strength and A E;;
the energy separation of the levels. But, if we look along row 3 of table 5 of Kisielius et al (1996)
we see that Y reaches a maximum between log,,(7 (K)) = 6.5 and 7.0 and then decreases at
log,o(T (K)) = 7.5. This theme is consistent amongst nearly all of the dipole transitions. This
is illustrated more clearly in figure 1 where effective collision strengths for dipole transitions
from the ground state to the 2p; and 3p; levels are compared. There seems to be good
argreement at log (7' (K)) = 6.0 before the Kisielius et al (1996) results rise slightly above our
own, before decaying rapidly. Certainly, radiation damping could account for this discrepancy

as kT — oo, )
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Table 1. High-temperature effective collision strengths from the ground and first excited-state to
the n < 4 levels (a(—b) denotes a x 1077).

Temperature (K)

Transition 100 1065 1070 1073 107-80 1030 1082 1085

Is1=2py  152=3) 156(=3) 1.62-3) 177(=3) 202-3) 229(-3) 267(-3) 342-3)
Is;=2s1  LI4(=3) L1I(=3) 110(=3) 108(=3) 108(=3) 108(=3) 1.09(-3) L10(-3)
Is;=2p3  283(=3) 3.01(=3) 3.8(-3) 349(-3) 3.99(-3) 453(-3) 527(-3) 6.76(-3)
I51-3p;  357(=4)  3.60(—4) 342=4) 347(=4) 379(—4) 417(-4) 4TI(-4) 581(-4)
Is;=3s)  248(—4) 252-4) 232-4) 216(-4) 211(-4) 208(-4) 207(-4) 207(-4)
Is;=3d;  130(=4) 137(=4) 9.65(=5) 642=5) 541(=5) 5.10(=5) 5.03(-5) 527(-5)
Is;=3p;  690(~4) 7.19(—4) 692-4) T06(-4) T7IA-4) 851(-4) 9.62-4) 119(-3)
Is;=3ds  187(=4) 185(—4) 132=4) 907(=5) 780(=5) T45-5) T43(-5) 7T.86(-5)
Is;~4py  142(—4)  132-4) 124(-4) 125(-4) 135(-4) 148(-4) 1.66(~4) 2.03(—4)
Isj4s1 100(—4) 923(=5) 834(=5) T8A-=5) T60(=5) TAY(-5) TAU=5) T3U(-5)
Is;-4dy  624(=5) 4.86(=5) 354(=5) 260(=5) 240(=5) 232-5) 232=5) 244(-5)
Is;~4p;  255(—4) 252—4) 248(—4) 257(-4) 280(—4) 307(—4) 345(-4) 422-4)
Is;—4fs  261(=5) 161(=5) 730(~6) 3.16(~6) 1.96(~6) 147(=6) 1.14(=6) 8.58(-7)
Isj~4ds  762=5) 651(=5) 503(=5) 395(-5) 356(=5) 345(-5) 347(=5) 3.68(-5)
Is; 43 259(=5) 158(=5) 740(=6) 341(=6) 221(=6) 170(~6) 1.36(~6) 1.07(~6)
2py-3py  135(=2) 139(=2) 134(=2) 132(-2) 133(-2) 134(-2) 135(-2) 136(-2)
2py-3sp  183(=3) 199(=3) 155(=3) 131(=3) 142(-3) 159(-3) 184(-3) 233(-3)
2py-3dy  470(=2) 505(=2) 572(=2) 752(=2) 938(-2) 109(-1) 127(-1) 158-1)
2py-3py  576(=3) 574(=3) 428(=3) 3.18(=3) 287(=3) 277(=3) 273(-3) 274(-3)
2py-3ds  119(=2) 113(=2) 788(=3) 5.09(-3) 408(=3) 366(-3) 338(-3) 3.15(-3)
2pidp;  274(=3) 259(=3) 245(-3) 240(-3) 241(=3) 242(-3) 244(-3) 247(-3)
pydsy 7204 S61(=4) 394(=4) 313(=4) 313(-4) 333(-4) 368(-4) 4444
2pi-4dy  899(=3) 9.18(-3) 100(-2) 125(-2) 150(-2) 171(=2) 195(-2) 237(-2)
2pi4py  187(=3) 154(=3) 112(=3) 8.13(-4) T04(-4) 659(—4) 630(—4) 6.08(—4)
2py4fs 220(-3) 197(=3) 185(=3) 219(-3) 257(=3) 284(-3) 3.10(-3) 344(-3)
2pi4dy  316(=3) 258(=3) 182(=3) L17(=3) 8924 7644 6744 596(-4)
2pyAf; 197(=3)  141(=3) 8.60(—4) 520(—4) 400(—4) 350(—4) 3.17(=4) 290(-4)

alone. But, row 2 of table 5 (Kisielius et al 1996) indicates that between log,,(T (K)) = 6.0
and 6.5 the effective collision strength for a monopole transition (1s;,,—2s,2) increases faster
than that for a dipole one (1s;,2,—2p3,2), see row 3 of their table 5, which seems unusual.
Furthermore, effective collision strengths for non-dipole (allowed) transitions tend to a constant
at high temperatures (Burgess and Tully 1992). Again, the results in table 5 of Kisielius et al
(1996) for many of these transitions fall-off quite rapidly at their highest temperatures.

In figures 2-4, we show Burgess and Tully (1992) reduced plots for a pair of dipole
transitions as well as for a weak allowed quadrupole transition (1s;,,—3ds;). Whilst these
plots show that the collision strength for the (strong) dipole transitions reaches its asymptotic
form rapidly, that for the weak quadrupole transition requires an energy 1000 Ry beyond the
3ds, threshold before it assumes its asymptotic form.



Excitation of FeZ* 1101

Table 2. High-temperature effective collision strengths from the 2s ! and 2p 3 levels tothe n < 4

levels.
Temperature (K)

Transition ~ 10° 1063 1079 1073 1078 1080 1082 108>

25%—3p% 597(-3) 6.06(—=3) 6.82(=3) 9.94(-3) 1.35(-2) 1.66(—2) 2.02(-2) 2.64(-2)
2s%—3s% 1.36(—=2) 1.29(=2) 1.29(=2) 1.34(=2) 1.38(—-2) 141(=2) 143(=2) 1.45(-2)
23%—3d% 1.20(=2) 1.25(=2) 1.24(=2) 1.37(=2) 1.51(=2) 1.60(=2) 1.68(-2) 1.77(=2)
25%—3p% 9.34(=3) 1.05(—2) 1.25(-2) 1.88(—=2) 2.57(=2) 3.18(—2) 3.88(—2) 5.08(-2)
2s%—3d% 1.77(=2)  1.82(=2) 1.84(=2) 2.05(-=2) 2.26(—=2) 2.40(-2) 2.52(-2) 2.66(—2)
2S%—4p% 1.42(-3) 1.36(—3) 1.44(-3) 1.95(-3) 2.54(-3) 3.07(-3) 3.69(-3) 4.77(-3)
23%—45% 2.39(-3) 2.37(=3) 2.35(-3) 244(-3) 2.51(=3) 256(-3) 2.60(-3) 2.64(-3)
2s%—4d% 2.38(—3) 2.14(=3) 1.95(-3) 1.96(—3) 2.05(=3) 2.12(=3) 2.19(=3) 2.29(-3)
ZS%AP% 2.51(=3) 249(-3) 2.75(=3) 3.81(—3) 5.02(=3) 6.08(—3) 7.33(=3) 9.49(-3)
2S%—4f% 1.69(-3) 148(-3) 1.27(-3) 1.21(-3) 1.23(-3) 1.25(-3) 1.27(-3) 1.29(-3)
25%—4d% 3.47(=3) 3.21(=3) 295(-3) 297(-3) 3.10(=3) 3.22(-3) 3.32(-3) 3.46(-3)
2s%4f% 237(=3) 2.00(-3) 1.71(=3) 1.64(—=3) 1.66(—3) 1.69(=3) 1.71(=3) 1.73(-3)
2p%—3p% 7.16(=3) 6.45(=3) 4.67(-3) 3.43(-3) 3.09(—-3) 2.98(—3) 2.92(-3) 2.89(-3)
Zp%—Bs% 397(-3) 4.08(-3) 3.13(-3) 2.82(—=3) 3.17(=3) 3.61(=3) 4.19(-3) 5.28(-3)
2p%—3d% 236(—2) 243(-2) 2.17(=2) 2.19(-2) 245(-2) 2.72(-2) 3.05(-2) 3.65(-2)
Zp%—3p% 330(—2) 341(-2) 3.20(-2) 3.07(-=2) 3.06(-2) 3.07(-=2) 3.08(=2) 3.08(-2)
Zp%—Sd% 9.55(=2) 1.02(—1) 1.13(-=1) 145(-1) 1.78(=1) 2.07(—=1) 240(—1) 2.96(—1)
2p%—4p% 1.97(-3) 1.55(-3) 1.12(-3) 8.16(—4) 7.09(—4) 6.65(—4) 6.37(—4) 6.14(—4)
Zp%—4s% 1.33(=3) 1.04(-3) 7.54(—4) 640(—4) 6.72(—4) 7.34(—4) 8.24(—4) 1.00(-3)
2pg—4d; 6.02(=3) 5.19(=3) 4.31(=3) 3.95(-3) 4.09(-3) 4.35(-3) 4.73(-3) 5.46(-3)
2p%—4p% 7.62(—=3) 7.02(=3) 6.35(-3) 599(-3) 590(—-3) 5.87(—=3) 5.86(—3) 5.83(-3)
2p%4f% 334(-3) 252(-3) 1.75(-3) 1.37(=3) 1.32(=3) 1.33(-3) 1.36(-3) 1.41(-3)
Zp%—4d% 1.93(=2) 191(=2) 1.99(-2) 2.38(—2) 2.81(=2) 3.18(—2) 3.61(-2) 4.36(-2)
2p%4f% 5.96(—3) 4.79(=3) 4.12(-3) 4.48(—-3) 5.06(—3) 548(—3) 5.89(—3) 6.38(—3)

In table 1, we present our effective collision strengths for all transitions from the ground
and first excited state to the n < 4 levels over* T = 10°~103 K. In table 2, we present similar
results for excitations from the remaining n = 2 levels, but exclude transitions within the
same n-shell. Our calculations give results for the allowed transitions which have the correct
high-temperature form, but as we proceed to these higher temperatures the Y integral relies
ever more on the linear interpolation. Therefore, for weaker transitions whose approach to the
asymptotic energy limit might not be so uniform, some overestimation or underestimation is
inevitable. However, with regards to population modelling, it is important to have accurate
rates for those transitions that are one to two orders of magnitude greater than these weak
excitations.

4 The full set of results for energy levels, dipole radiative rates and effective collision strengths over T = 10°~10° K
(including Born limits), tabulated in the ADAS adf04 format (Summers 1994, 1999), is available via the WWW under
http://www-cfadc.phy.ornl.gov/data_and_codes/. One of the authors (CPB) will be glad to provide all the effective
collision strengths in electronic form to the interested reader. c.p.ballance @shu.ac.uk.
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