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Abstract
We have carried out a 200 level close-coupling calculation for C-like Fe using
the R-matrix method in conjunction with the intermediate coupling frame
transformation method. We have generated effective collision strengths over
T = 8 × 104–8 × 107 K for all 19 900 inelastic transitions, which is an order
of magnitude larger than has been generated hitherto. We provide illustrative
comparisons with the results of previous workers, where possible, and find
a broad accord. The consistent and comprehensive set of data that we have
generated (energy levels, radiative rates and effective collision strengths) is
necessary for the collisional–radiative modelling of metallic impurities that
will arise in the next generation of magnetic fusion reactors as well as being
of relevance to studies utilizing observations from the high-resolution x-ray
satellites Chandra and XMM–Newton.

1. Introduction

Iron is arguably the most important astrophysical element, from a spectroscopic diagnostic
point of view. As such, it has been the subject of a vast number of theoretical studies into its
electron collisional properties, namely ionization and recombination (for ionization balance)
and excitation (for level populations). Most notably, the IRON Project (Hummer et al 1993)
aims to calculate electron-impact excitation rate coefficients for every ionization stage of iron
using the R-matrix method. Most of their effort has been directed to the Breit–Pauli R-
matrix approach (Scott and Burke 1980), which can be expected to give accurate and reliable
results, but is computationally demanding. An alternative approach is to use the LS-coupling
R-matrix method (including the mass–velocity and Darwin operators) in conjunction with
the intermediate coupling frame transformation (ICFT) method (Griffin et al 1998) to take
account of spin–orbit effects. Such an approach is much less computationally demanding than
the equivalent-sized full Breit–Pauli approach while being just as accurate, for all practical
purposes (Griffin and Badnell 2000). This enables data to be computed more rapidly or larger-
scale calculations to be attempted. The ICFT method can also be used in conjunction with
new R-matrix methods and codes that, currently, only exist in non-relativistic forms such as
RMATRX II (Burke et al 1994).
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It is the aspect of large-scale calculations which is the subject of this paper, which is also
an RmaX Network1 publication. Following-on from the IRON Project, the RmaX Network
aims to calculate R-matrix atomic data for x-ray processes which, for example, will be of
relevance to studies utilizing observations from the high-resolution x-ray satellites Chandra
and XMM–Newton. This involves not just data for Fe and Fe-like elements but for C, N, O, Ne
etc as well, and for photoionization as well as for electron-impact excitation. It is the focus
on x-ray transitions which sets the work of the RmaX Network apart from that of the IRON
Project. Another motivation for this paper is the next generation of magnetic fusion devices
which aim to test reactor operation under conditions nearer to those required for long-term
power generation. More durable materials will be used and will see a return to the greater use
of Fe/Ti/Ni etc, as well as new metals, namely W/Ta. This is to be contrasted with current
test-reactors which make greater use of lightweight, but less durable, materials such as Be/C.
With greater control now available over impurities, using divertors etc, the historical poisoning
of the fusion plasma by strongly radiating (i.e. high Z) elements is less of an issue and the
engineering advantage of metals takes precedence. However, the electron densities can be
upwards of 1016 cm−3 where the coronal assumption made of many astrophysical plasmas is
not valid and full collisional–radiative modelling becomes necessary. This in turn requires a
more comprehensive treatment of collision processes since a great many excitations contribute
to level populations, both directly and indirectly. Thus, it is desirable to be able to generate as
comprehensive a set of accurate, i.e. R-matrix, data as possible. The ICFT approach enables us
to generate an order of magnitude more data than is possible with a full Breit–Pauli R-matrix
calculation.

Before we focus on the problem at hand, we note that an alternative approach to larger-
scale Breit–Pauli R-matrix calculations has been introduced recently by Pelan and Berrington
(2001). They divide a set of close-coupling (CC) levels into two groups, a ‘low-lying’ one
and a ‘high-lying’ one. They carry out a low-energy, low angular momentum, Breit–Pauli
R-matrix calculation through the resonance region using the full CC set of levels and then a
second one, to much higher energies and angular momentum, that retains only the low-lying
set of levels in the CC expansion. By restricting the use of the full CC set to low energies only,
they require only a relatively small continuum basis expansion and this renders the problem
tractable. In particular, cross sections for transitions between the low-lying set of levels contain
resonances attached to levels from the high-lying set. Above the ionization limit, the effect of
continuum-coupling of the high-lying set of levels on the low-lying set is small for sufficiently
highly-charged ions and they can be omitted from the CC expansion enabling the number of
continuum basis orbitals to be increased. This is necessary so as to be able to calculate cross
sections for the low-lying set of levels to sufficiently high energy (and angular momentum) so
as to be able to generate rate coefficients. One advantage of the ICFT method is that it can
carry out calculations of the same size as the full CC set of Pelan and Berrington (2001) but
to a high enough energy and angular momentum so as to be able to generate rate coefficients
for transitions between all levels of the full CC set. Also, since the full CC set is retained
throughout, the ICFT method can be applied to low charge-state ions where coupling between
the low- and high-lying sets cannot be neglected.

Electron-impact excitation of C-like Fe20+ has been considered by Butler and Zeippen
(2000) as part of the IRON Project and they provide a comprehensive survey of prior work,
which their results largely supersede. Of particular note is the work by Phillips et al (1996).
They only carried out distorted-wave calculations but these included transitions of the form
2p → ns, d (n = 4, 5) relevant to diagnosing soft x-ray flares. Zhang and Sampson (1996,

1 Available at http://amdpp.phys.strath.ac.uk/UK RmaX.



Excitation of Fe20+ 683

1997) have carried out much more extensive calculations (in terms of n = 3 levels) than
Butler and Zeippen (2000) but only provide ordinary (energy-dependent) collision strengths
calculated in the distorted-wave approximation. The effect of resonance contributions on
effective collision strengths is so large that even the results of Dirac–Fock R-matrix calculations
by Aggarwal (1991), which just included the 20 n = 2 levels, can be a serious underestimate
due to the omission of resonances attached to n = 3 levels (see Butler and Zeippen (2000)).
Finally, we note a recent 46CC level Dirac–Fock R-matrix calculation by Aggarwal and Keenan
(1999), but they only provide ordinary collision strengths for a subset of transitions and only
above the ionization limit. There is no obvious physical reason why a Dirac–Fock approach
should be necessary for Z = 26. The Breit–Pauli approximation should be valid here and be
dominated by the one-body operators.

The most comprehensive and reliable results to-date for Fe20+, especially for application
purposes, are those of Butler and Zeippen (2000). They carried out a 52CC level Breit–Pauli
R-matrix calculation and provided effective collision strengths for all 1326 inelastic transitions.
Essentially, they allowed for 2p → 3l promotions out of the ground configuration, as well as
including all levels from the n = 2 complex of course. In this paper, in addition, we allow
for all 2s → 3l and 2p → 4l promotions out of the ground configuration. Correspondingly,
this also allows, for example, for 2p → 3l promotions out of the first excited configuration
(2s2p3). This leads us to a 200CC level ICFT R-matrix calculation from which we provide
effective collision strengths for all 19 900 inelastic transitions.

The structure of this paper is as follows: in section 2 we discuss our methodology, with
particular emphasis on issues that arose in handling the current large-scale ICFT calculations.
In section 3, we discuss details of the specific application of our methodology to Fe20+, including
results for both energy levels and oscillator strengths. In section 4, we present illustrative results
for both ordinary and effective collision strengths and comment on the comparison with the
results of Butler and Zeippen (2000), Aggarwal (1991) and Phillips et al (1996). We finish
with a short conclusion.

2. Methodology

Our basic approach to the solution of the collision problem is to use the R-matrix method
(Burke and Berrington 1993) in conjunction with the ICFT method (Griffin et al 1998).
A complete solution, in terms of reactance or scattering (collision) matrices, is obtained
first in LS-coupling. In particular, use is made of multi-channel quantum defect theory
(MQDT) to obtain ‘unphysical’ collision matrices (Gorczyca and Badnell 2000). These are
then transformed, first, algebraically to jK-coupling and then, via the use of term-coupling
coefficients, to intermediate coupling. Such an approach is typically an order of magnitude less
demanding of computer resources than the equivalent full Breit–Pauli R-matrix calculation.
Furthermore, the transformation of the ‘unphysical’ collision matrices ensures that accurate
results are obtained in the resonance region.

We now comment on a few pertinent aspects of the methodology. Firstly, it is more efficient
to work with (interpolate, close-off etc) the unphysical reactance matrix when, roughly, more
than half of the target levels are closed but to work with the unphysical scattering matrix when,
roughly, more than half of the target levels are open. On the face of it, the latter is always more
efficient since it takes the same number of operations to close-off the scattering matrix as it does
the reactance matrix, and the reactance matrix still has to be converted to the scattering matrix.
However, in the absence of radiation damping, the reactance matrix is real while the scattering
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matrix is complex. The ‘inversion’ of a real matrix2 is computationally more efficient than a
complex one and when the majority of levels are closed it is the closing-off of the unphysical
matrix that dominates the computational time (not the conversion from reactance to scattering
matrix) and so the reactance matrix route is more efficient.

Changing from closing-off the unphysical reactance matrix to closing-off the unphysical
scattering matrix can have an effect on the continuity of the collision strength as a function
of energy when term-coupling coefficients are being used. In general, our LS-coupling CC
expansion is smaller than the corresponding configuration interaction (CI) expansion. But our
levels are expanded in terms of term-coupling coefficients for all terms in the CI expansion.
Those components corresponding purely to CI terms, which should be small, are zeroed-
out and the remaining components are normally just renormalized to unity. However, this
does not ensure a unitary transformation from jK-coupling to intermediate coupling. If the
(unphysical) reactance matrix is transformed (and closed-off) then the subsequent conversion
to the (physical) scattering matrix re-imposes unitarity. If the unphysical scattering matrix is
transformed (and closed-off) then the resulting physical scattering matrix is no longer unitary.
This gives rise to ‘small’ differences in the collision strength calculated via each scheme
and to a discontinuity on switching from one to the other. We eliminate this discrepancy
by re-orthonormalizing the term-coupling coefficients, following the zeroing-out of some
components, and this ensures a unitary transformation to intermediate coupling and the
elimination of the discontinuity.

Finally, in the case of highly-charged ions, it is generally true that the set of levels arising
from a set of CC terms cannot be expanded in terms of term-coupling coefficients arising
solely from the CC terms. Instead, there will be non-negligible components from energetically
adjacent CI terms, of the appropriate symmetry. In the past we have identified a set of CC levels
that we want collision data for and have included all of the CC terms necessary to represent
these levels. This usually gives rise to additional levels, that are not well represented by
the term-coupling coefficient components retained, and to associated collision data (collision
strengths etc) which should be ignored and/or discarded. This is inefficient since the most time
consuming part of an ICFT R-matrix calculation is concerned with the operations involving the
level-resolved collision matrices. Within reason, we can increase the number of CC terms in
the LS-coupling calculation without impacting unduly upon the overall computational effort,
provided that these additional terms are not used to construct additional CC levels. In other
words, we now allow for the case where the number of levels (that could be) constructed from
the (LS) CC terms can be larger than the number of CC levels defined by the term-coupling
coefficients, and for which we ultimately provide collision data. Since the operation count for
the ICFT method is an N3 process in the number of CC levels, we are not forced to unduly
restrict the size of the LS-coupling CC expansion on the grounds that it will give rise to too
large a CC level expansion.

3. Application to Fe20+

3.1. Structure

In table 1, we list the 24 configurations that make up our CI expansion. These give rise
to 268 terms and 564 levels. The 200 levels included in our CC expansion are all of those
that arise from configurations 1–9 and 13–16, plus the lowest two levels of configuration
10. The energy levels are shown in figure 1. The solid lines denote CC levels while dashed
lines denote purely CI levels. The n = 2 configurations (1–3) are well separated from the

2 Of course, we actually solve Ax = b rather than x = A−1b.
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Table 1. Configurations included for Fe20+.

1 2s22p2 2 2s2p3 3 2p4

4 2s22p3s 5 2s22p3p 6 2s22p3d
7 2s2p23s 8 2s2p23p 9 2s2p23d

10 2p33s 11 2p33p 12 2p33d

13 2s22p4s 14 2s22p4p 15 2s22p4d 16 2s22p4f
17 2s2p24s 18 2s2p24p 19 2s2p24d 20 2s2p24f
21 2p34s 22 2p34p 23 2p34d 24 2p34f
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Figure 1. Energy level representation for Fe20+. The
solid lines denote CC levels and the broken lines purely
CI levels. The upper bounding box delineates the
ionization limit.

n = 3 (4–12) and n = 4 (13–24) configurations. The latter two sets, although much closer
in energy, do not overlap. However, we see that the n = 4 configurations that we include
in our CC expansion (13–16) lie above some of the n = 3 configurations that we omit
from it (part of 10, plus 11 and 12). We argue that this is a reasonable approach. These
n = 4 configurations are of the form 1s22s22p4l (l = 0–3) and are there to allow for 2p
promotions from the important ground configuration 1s22s22p2. The omitted n = 3 levels
are from configurations of the form 1s22p33l (l = 0–2) which differ from them by two or
three electrons and so cannot couple directly to them. The omission of some n = 3 levels
from the CC expansion also affects the highest n = 3 levels retained, but really only through
continuum coupling. The omitted and retained levels are too close in energy for any significant
resonances attached to the former to be energetically accessible to the latter. To include the
additional 76 n = 3 levels in our CC expansion would be tedious with our current workstation
processors (333 MHz UltraSparc II) as the present calculations took about 500 CPU hours on
them. However, CPU memory (400 Mb) and disk space (10 Gb) are not an issue with the ICFT
approach.
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Table 2. Potential scaling parameters λnl used for Fe20+.

1s 1.379 88 3s 1.384 80 4s 1.327 21
2s 1.250 35 3p 1.258 30 4p 1.254 40
2p 1.183 59 3d 1.396 90 4d 1.371 30

4f 1.445 40
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Figure 2. Absorption oscillator strengths for Fe20+. AHKN denotes those of Aggarwal et al (1997)
and BG denotes this work.

We used AUTOSTRUCTURE (Badnell 1986, 1997) to generate our atomic structure and, hence,
the radial orbitals for the R-matrix calculation. We used nl-dependent scaling parameters for
the Thomas–Fermi–Dirac–Amaldi statistical potential, as given in table 2. The 1s, 2s and
2p scaling parameters were optimized simultaneously by minimizing the equally-weighted
sum of all term energies arising from the n = 2 configurations (1–3). The 3l and 4l scaling
parameters were each optimized on a single configuration (1s22s22pnl) by minimizing the
equally-weighted sum of all term energies arising from said configuration.

In table 3, we compare the energies of our lowest 56 levels with those resulting from
large CI calculations with CIV3 by Aggarwal et al (1997) and from a 46 level calculation with
GRASP by Aggarwal and Keenan (1999), as well as with observed values (Corliss and Sugar
1982). We see that the agreement is more than satisfactory.

Butler and Zeippen (2000, table 2) used SUPERSTRUCTURE to generate energy levels for Fe20+,
but obtained much poorer agreement with the observed values. It now appears that these results
are not quite correct (Butler 2000). However, the effective collision strengths generated by
Butler and Zeippen (2000) are unaffected since the R-matrix calculation re-calculates the
atomic structure using only the tabulated radial functions from SUPERSTRUCTURE.

We compared our energy levels calculated using AUTOSTRUCTURE with those that we
obtained from the N -electron R-matrix structure calculation. The two differed by less than
2×10−6 Ryd, provided that we switched-off the two-body fine and non-fine structure operators
in AUTOSTRUCTURE and ensured that the R-matrix calculation used the same Blume and Watson
screening parameters as AUTOSTRUCTURE.
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Table 3. Some energy levels (Ryd) of Fe20+.

Index Configuration Level Observeda ASb CIV3c GRASPd

1 2s22p2 3P0 0.0 0.0 0.0 0.0
2 2s22p2 3P1 0.6730 0.6615 0.6599 0.6739
3 2s22p2 3P2 1.0694 1.0867 1.0634 1.0760
4 2s22p2 1D2 2.2286 2.2469 2.2383 2.2480
5 2s22p2 1S0 3.3890 3.3898 3.4820 3.3598
6 2s2p3 5S2 4.4374 4.3524 4.3979 4.3184
7 2s2p3 3D1 7.0785 7.0723 7.1098 7.0934
8 2s2p3 3D2 7.0837 7.0829 7.1166 7.1007
9 2s2p3 3D3 7.3259 7.3507 7.3538 7.3328

10 2s2p3 3P0 8.3507 8.3420 8.3859 8.3650
11 2s2p3 3P1 8.4281 8.4325 8.4623 8.4479
12 2s2p3 3P2 8.5870 8.6043 8.6210 8.6076
13 2s2p3 3S1 9.9838 10.030 10.035 10.137
14 2s2p3 1D2 10.268 10.343 10.338 10.414
15 2s2p3 1P1 11.491 11.558 11.560 11.641
16 2p4 3P2 15.002 15.055 15.129 15.153
17 2p4 3P0 15.817 15.857 15.940 15.974
18 2p4 3P1 15.861 15.894 15.973 15.999
19 2p4 1D2 16.560 16.657 16.704 16.774
20 2p4 1S0 18.665 18.771 18.836 18.911
21 2s22p3s 3P0 70.117 70.129 70.178
22 2s22p3s 3P1 70.206 70.216 70.250
23 2s22p3s 3P2 71.125 71.137 71.263
24 2s22p3s 1P1 71.366 71.383 71.476
25 2s22p3p 3D1 71.749 71.744 71.794
26 2s22p3p 1P1 72.264 72.263 72.355
27 2s22p3p 3D2 72.295 72.290 72.341
28 2s22p3p 3P0 72.448 72.432 72.581
29 2s22p3p 3P1 72.997 72.995 73.181
30 2s22p3p 3D3 73.085 73.090 73.207
31 2s22p3p 3S1 73.185 73.189 73.355
32 2s22p3p 3P2 73.239 73.226 73.417
33 2s2p23s 5P1 73.821
34 2s22p3p 1D2 73.821 73.804 73.936
35 2s22p3d 3F2 73.943 73.733 73.896
36 2s2p23s 5P2 74.261
37 2s22p3d 3F3 73.825 74.296 74.081 74.245
38 2s22p3d 3D2 74.609 74.362 74.136 74.315
39 2s22p3p 1S0 74.382 74.371 74.514
40 2s22p3d 3D1 74.529 74.312 74.486
41 2s2p23s 5P3 74.718
42 2s2p23s 3P0 74.872
43 2s22p3d 3F4 75.019 74.809 75.042
44 2s22p3d 1D2 73.794 75.092 73.873 75.126
45 2s2p23s 3P1 75.197
46 2s22p3d 3D3 74.831 75.308 75.092 75.334
47 2s22p3d 3P0 75.420 75.237 75.498
48 2s22p3d 3P1 75.421 75.218 75.477
49 2s22p3d 3P2 75.005 75.432 75.214 75.469
50 2s2p23p 5D0 75.531
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Table 3. (Continued)

Index Configuration Level Observeda ASb CIV3c GRASPd

51 2s2p23p 5D1 75.556
52 2s2p23s 3P2 75.678
53 2s2p23p 5D2 75.864
54 2s2p23p 3S1 75.893
55 2s22p3d 1F3 75.642 75.999 75.772 76.007
56 2s22p3d 1P1 75.577 76.002 75.776 76.027

a Corliss and Sugar (1982).
b AUTOSTRUCTURE (this paper).
c Aggarwal et al (1997).
d Aggarwal and Keenan (1999).

In figure 2, we compare our absorption oscillator strengths with those of Aggarwal et al
(1997) which they obtained using CIV3. There is a distinct reduction in the spread compared
to that observed by Butler and Zeippen (2000, figure 1) because their tabulated oscillator
strengths are also somewhat inaccurate (Butler 2000).

3.2. Collision

We carried out LS-coupling inner-region R-matrix calculations, including the mass–velocity
and Darwin operators, using codes that were originally based on the published exchange
(Berrington et al 1995) and non-exchange (Burke et al 1992) R-matrix codes. We used a
112CC term expansion consisting of the 100 terms necessary to generate the pure 200CC level
expansion discussed above plus an additional 12 terms that gave rise to components in the term-
coupling coefficient expansion that were larger than 0.01. The level-resolved collision matrix
elements for the additional resultant 28 levels did not need to be computed. In addition, since
our LS-coupling CC expansion is smaller than our CI expansion, we necessarily constructed a
balanced ‘correlation’ expansion following Gorczyca et al (1995). The outer-region solutions
were obtained using our MQDT version of Seaton’s unpublished STGF code; this treats all
closed channels as ‘open’ (Gorczyca and Badnell 2000). The ICFT calculation was made with
our unpublished STGICF and STGICFDAMP codes for working with the unphysical reactance and
scattering matrices, respectively.

We carried out our exchange calculations up to J = 21/2 and our non-exchange
calculations thereon up to J = 75/2. The ‘top-up’ contribution (from higher J ) for dipole
transitions was computed using the Burgess (1974) sum rule. We took care to check for
numerical failure in the generation of the Coulomb integrals by comparing the numerical
result with its analytic asymptotic form (Burgess et al 1970). Coulomb integrals for transitions
between widely-spaced energy levels can become vanishingly small while, at the same time,
those for transitions between closely-spaced levels can remain non-negligible. Numerical
failure inevitably occurs when the energy separation becomes large enough because the integral
series expansion cannot be accurately computed using a finite machine representation for real
numbers. However, it is easy to examine the parameter space of energy and angular momentum
and to show that the Coulomb integrals are well represented by their asymptotic form before
numerical failure occurs, and this is what is used instead. In addition, the top-up contribution
for non-dipole transitions was computed assuming a geometric series in energy and taking
care to switch-over smoothly to the degenerate-energy limiting case (Burgess et al 1970). We
compared the summed collision strength with top-up to that without top-up at every energy
and for every transition. The top-up contribution was at most a few per cent for the dipole
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transitions while for the non-dipole transitions the maximum top-up was less than 30% of the
total, with only a handful being in the 20–30% range. This latter case occurred, typically, for
weak transitions.

We used 24 continuum basis orbitals initially3, the number being progressively reduced
automatically in the non-exchange calculations as the scattering angular momentum increased.
This enabled us to calculate total collision strengths explicitly up to 400 Ryd. For dipole
transitions, collision strengths were calculated at higher energies by interpolating the reduced
collision strength, as a function of reduced scattering energy, between the values up to 400 Ryd
and the infinite energy limit-point, following Burgess and Tully (1992). The non-dipole
collision strengths were extrapolated as a constant in energy. We actually observe a range
of behaviours, namely according to E−α , with α = 0–2. By comparing effective collision
strengths for selected transitions that were computed using the correct energy behaviour for the
collision strength with those that were computed assuming the collision strength to be constant
in energy, we were able to determine the maximum temperature that we could accurately
tabulate these effective collision strength for. In principle, one could determine all of the high
energy behaviours, but this would best done by making use of the infinite energy Born limit
(Burgess et al 1997). For now, we can accurately tabulate all effective collision strengths
up to log10(T (K)) = 7.6, at which temperature the coronal fractional abundance of Fe20+

is less than 10−4 (Arnaud and Raymond 1992). By the ADAS adf04 temperature given by
log10(T (K)) = 7.9, results for a few of the non-dipole transitions may be subject to increasing
extrapolation error (∼20%). However, it is likely that only the dipole transitions may still be
of interest at these high temperatures.

The low-temperature limit of our effective collision strength tabulation follows from the
fact that the vast majority of the energy levels have not been observed. Low-temperature
effective collision strengths are sensitive to the presence and/or absence of resonances just
above each threshold, along with their resolution. We carried out two calculations of collision
strengths through the n = 2 thresholds, one using our calculated level energies and one
using the observed. We then compared the effective collision strengths. Differences of more
than a factor of two were noted at temperatures below 106 K for some transitions. Given the
uncertainty in the value of the calculated n > 2 level energies, we set our lowest recommended
temperature for transitions involving these levels to be log10(T (K)) = 6.2. It should be
noted that errors of 30% are still possible at this temperature, but these rapidly diminish with
increasing temperature. Again, from Arnaud and Raymond (1992), the coronal fractional
abundance is small (<10−5) for log10(T (K)) < 6.2. The situation for a photoionized plasma
is somewhat different, a significant fractional abundance persists to lower temperatures, and so
effective collision strengths are required to lower electron temperatures. However, the lower
electron temperature means that it is transitions between low-lying (e.g. n = 2) levels that are
the most important. Since we have used the observed n = 2 level energies in our calculations,
our effective collision strengths amongst the n = 2 levels can be extended to lower temperatures
and we tabulate them down to the ADAS adf04 temperature given by log10(T (K)) = 4.9.

Resolution of the resonance structure becomes increasingly laborious as the residual
charge-state (z) of an ion increases. This is because the energy separation between principal
quantum shells, and hence the energy spread of resonances, scales as z2, while the autoionizing
width is independent of z; i.e. the number of energy points should increase as z2 so as to maintain
the same level of resolution. Based on sample calculations, we chose to use an energy step
of 1 × 10−5z2 Ryd through energy regions where δn = 0 resonances were present and a

3 An equivalent full Breit–Pauli R-matrix calculation would have necessitated the diagonalization of (N +1)-electron
Hamiltonian matrices of the order of 25 000 since the number of level-resolved channels is just over 1000. Matrices
of this size (>1000) still have to be manipulated by STGICF and/or STGICFDAMP though.
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step of 4 × 10−5z2 Ryd where only δn = 1 resonances were present. Finally, we used a
step of 0.01z2 Ryd above all thresholds. This resulted in a total of 13 027 energies being
used. Although this energy mesh is sufficient to resolve the dominant resonance structure, a
large number of weaker resonances are only partially resolved. A step of ∼10−9z2 Ryd for
δn = 0 resonances and a step of ∼10−7z2 Ryd for δn = 1 resonances would be required
before narrower resonances could be assumed to be significantly radiation damped. We have
taken care to try to eliminate all sources of numerical failure in the computation of the collision
strengths, e.g. the evaluation of MQDT functions with perturbations, deeply-closed channels,
near threshold problems, top-up, etc. The point of all this is to enable us to make use of
a statistical argument for retaining partially resolved resonances in the determination of the
effective collision strength. Consider a model problem where, say, one has 100 resonances
each of the same width which is a factor of 10 smaller than the energy step being used to map
them out. On average one would ‘hit’ one in ten resonances, at a single point. But the strength
of that resonance would be overestimated by a factor of 10—compare the area of the ‘triangle’
with that obtained by integrating over a Lorentz profile. Thus, the over- and under-estimates are
largely self-cancelling. Such an argument fails when only a small number of partially resolved
resonances contribute, e.g. at low temperatures, or where there is large-scale numerical failure
in computing the collision strength.

We examined the value of the collision strength for every transition (19 900 of them) at
every energy in the resonance region (≈13 000 of them) and found 297 data points for which
the collision strength differed by a factor of 1000 or more from the value of the point at either
side, while ≈11 000 of them differed by a factor of 100 or more. This is to be compared
with the total number of data points ∼100 million. On investigating certain transitions more
closely, using a finer energy mesh over a limited energy range, we did indeed observe a large
amount of self-cancellation between the over- and under-estimate of the integrated collision
strength from partially-resolved resonances. Given that the 297 data points represent the most
extreme range of the statistics and the ones most likely to be subject to any numerical failure,
we chose to eliminate (only) those points. The only effective collision strengths significantly
affected (by more than a factor of 1.5) by this procedure were those for 20 transitions which
were between levels which differ by two electrons.

4. Results

Our 200CC level calculation gives rise to a large amount of data, e.g. effective collision
strengths for 19 900 transitions, and so we only present some illustrative results for comparison
here. The full set of results for energy levels, dipole radiative rates and effective collision
strengths, tabulated in the ADAS adf04 format (Summers 1994, 1999), is available via the
WWW under http://www-cfadc.phy.ornl.gov/data and codes. The effective collision strengths
(Seaton 1953) are tabulated over log10(T (K)) = 4.9–7.94 which comfortably exceeds the
temperature of peak coronal fractional abundance (107 K) for Fe20+ and spans the lower
temperatures of interest to photoionized plasmas.

4.1. n = 2 to n′ = 2

For transitions amongst levels of the ground configuration, we would not expect any significant
differences from the results of Butler and Zeippen (2000) since they allowed for the dominant
2p → 3l promotions here. In figure 3(a) we show the collision strength for the transition (2–3):

4 But, bear in mind the caveats given in section 3.2 and which are repeated in the adf04 file.
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Figure 3. Transition (2–3): 2s22p2 3P1–2s22p2 3P2. (a) Collision strength versus energy relative
to the Fe20+ ground state (this paper). (b) Effective collision strengths: solid curve, this paper;
dashed curve, Butler and Zeippen (2000); dotted curve, Aggarwal (1991).

2s22p2 3P1 − 3P2 and note little qualitative difference from that of Butler and Zeippen (2000,
figure 4). This is confirmed by a comparison of the effective collision strengths in figure 3(b).
There is only a modest increase at 107 K which can be attributed to the 2s → 3l and 2p → 4l

promotions that are also allowed for by our calculations. The results of Aggarwal (1991),
who carried out a Dirac–Fock calculation including only the n = 2 levels, differ markedly at
low temperatures. We observe a similar behaviour for a number of other transitions as well.
(Also, the Dirac–Fock results of Aggarwal et al (2000) for Fe14+ show a similar trend, the
low temperature effective collision strengths being significantly larger than those of the Breit–
Pauli R-matrix results of Eissner et al (1999) and the ICFT R-matrix results of Griffin et al
(1999).) Aggarwal (1991) used 2871 energy points to span the range of the n = 2 thresholds.
We used 4701 points here and observed little sensitivity to using a finer energy mesh. The
only sensitivity that we observed was to the positioning of near-threshold resonances, but this
should not lead to one set of results being consistently larger than another.

For transitions between levels of the ground and the first excited configuration, we can
observe larger qualitative differences between our collision strengths and those of Butler and
Zeippen (2000). In figure 4(a) we show the collision strength for the transition (4–8): 2s22p2

1D2–2s2p3 3D2. The resonance structure above 60 Ryd is largely absent from the results of
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Figure 4. Transition (4–8): 2s22p2 1D2–2s2p3 3D2. (a) Collision strength versus energy relative
to the Fe20+ ground state (this paper). (b) Effective collision strengths: solid curve, this paper;
dashed curve, Butler and Zeippen (2000); dotted curve, Aggarwal (1991).

Butler and Zeippen (2000, figure 6). However, this does not lead to a significant difference
in the effective collision strength, as shown in figure 4(b). On the other hand, if we consider
a weaker transition (1–14): 2s22p2 3P0–2s2p3 1D2, then the strong resonance structure above
60 Ryd observed in figure 5(a) does now translate into a larger (factor of 2) effective collision
strength, as seen in 5(b).

For transitions between levels of the first excited configuration, our inclusion of the 2s2p23l

configurations allows for the dominant 2p → 3l promotions. In figure 6(a) we show the
collision strength for the relatively strong transition (7–8): 2s2p3 3D1–3D2 and note that the
resonances above 60 Ryd lead to a 30% increase in the effective collision strength at 107 K,
as seen in figure 6(b).

4.2. n = 2 to n′ = 3

For these transitions, the scattered energy is much smaller in the n = 3 and 4 resonance
regions (compared to that for n = 2 to 2 transitions) and so the resonant enhancement of the
effective collision strength is peaked at much lower temperatures, where the coronal fractional
abundance of Fe20+ can be expected to be small. We illustrate this in figure 7 for the transition
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Figure 5. Transition (1–14): 2s22p2 3P0–2s2p3 1D2. (a) Collision strength versus energy relative
to the Fe20+ ground state (this paper). (b) Effective collision strengths: solid curve, this paper;
dashed curve, Butler and Zeippen (2000); dotted curve, Aggarwal (1991).

(1–21): 2s22p2 3P0 − 2s22p3s 3P0. Being a relatively weak transition, there is still a 30%
difference in the effective collision strength between our results and those of Butler and Zeippen
(2000) at 107 K (63 Ryd). Although the highest n = 3 threshold lies at 15 Ryd on the energy
scale of figure 7, the weak resonance structure observed at higher energies is not the only
contribution from resonances attached to the 2s22p4l configurations. In fact, these extend all
the way down to about zero (scattered) energy.

An interesting class of transitions arise from the first excited configuration, namely
2s2p3 → 2s22p3l. These involve a two-electron jump and so the direct (i.e., non-resonant)
collision strength can be expected to be small. However, they can proceed via two sequential
(core) one-electron jumps via intermediate resonance states of the form 2s2p23lnl′. We
illustrate the results for such a transition (7–22): 2s2p3 3D1–2s22p3s 3P1 in figure 8. The
effective collision strength of Butler and Zeippen (2000) is barely distinguishable from zero
on this scale.
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Figure 6. Transition (7–8): 2s2p3 3D1–2s2p3 3D2. (a) Collision strength versus energy relative to
the Fe20+ ground state (this paper). (b) Effective collision strengths: solid curve, this paper; dashed
curve, Butler and Zeippen (2000); dotted curve, Aggarwal (1991).

4.3. n = 2 to n′ = 4

The only prior collision data involving the n = 4 levels are the distorted-wave results of
Phillips et al (1996). In table 4, we compare collision strengths for those transitions 2s22p2

3P1–2s22p4d for which Phillips et al (1996) tabulated results to at least two significant figures.
We observe no significant differences. The spacing of the n = 4 levels means that, in
general, we expect little resonant enhancement of the effective collision strengths, except
at low temperatures. However, the main motivation for including these levels was to obtain a
consistent and comprehensive set of data that could be used for modelling the soft x-ray region.

4.4. All transitions

So far, we have focused on those transitions for which data already exist so as to make specific
comparisons. In figure 9 we give a broad overview of our results, namely effective collision
strengths at 107 K for all 19 900 inelastic transitions. The transitions are indexed according
to the upper level changing most rapidly. A few broad features are evident: firstly, transitions
from the n = 2 configurations span the first ≈4000 transitions (actually, 3790) and the ‘hole’
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Figure 7. Transition (1–21): 2s22p2 3P0–2s22p3s 3P0. Collision strength versus energy relative to
the upper level (this paper). Effective collision strengths versus temperature in Ryd: solid curve,
this paper; dashed curve, Butler and Zeippen (2000).
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Figure 8. Transition (7–22): 2s2p3 3D1–2s22p3s 3P1. Collision strength versus energy relative to
the upper level (this paper). Effective collision strengths versus temperature in Ryd: solid curve,
this paper; dashed curve, Butler and Zeippen (2000).

indicated is due to our omission of the 2p33l configurations from our CC expansion. This
means that we omit transitions of the form 2p4 → 2p33l, which would give rise to a set of
relatively strong effective collision strengths, but do include relatively weak transitions of the
form 2p4 → 2s2p23l etc. Effective collision strengths for transitions from the n = 3 levels
start to fall-off slightly above transition index ≈12 000, which is where transitions from the
2s2p23l configurations start—we have omitted 2s → 2p promotions from this configuration.
Effective collision strengths for those transitions labelled n = 4 (from 19 160 and upwards) are
relatively strong compared to those involving n = 2 and 3 levels. The reason for this is that an
n = 4 electron interacts less with the core than, say, an n = 3 electron and the corresponding
energy levels are more degenerate and, hence, the effective collision strengths between them
are relatively larger.
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Table 4. Collision strengths in Fe20+ from level 2 to levels of the 2s22p4d configuration. For each
transition, the first row is from Phillips et al (1996) and the second from our 200CC ICFT R-matrix
calculation.

Energies (Ryd)

Upper-level indexa Levelb 110 220 330

171 3F2 0.0016 0.0010 0.0010
0.0014 0.0009 0.0009

172 3D2 0.0132 0.0202 0.0250
0.0132 0.0195 0.0240

174 3D1 0.0028 0.0027 0.0031
0.0027 0.0026 0.0029

186 1D2 0.0051 0.0077 0.0095
0.0050 0.0073 0.0090

188 3P1 0.0057 0.0091 0.0114
0.0057 0.0087 0.0108

189 3P2 0.0029 0.0037 0.0044
0.0028 0.0034 0.0041

190 3P0 0.0024 0.0039 0.0049
0.0024 0.0038 0.0047

a As labelled in the adf04 file.
b Some of the spin-multiplicity labels given here differ from those in Phillips et al (1996).
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Figure 9. Effective collision strengths at a temperature of 107 K for 19 900 transitions in Fe20+.
The transition index (n) for the i–j transition is given by n: j = i + 1, 200, i = 1, 200 where i

denotes the lower level and j denotes the upper level.

5. Conclusion

We have carried out a 200 level CC calculation for Fe20+ using the R-matrix method in
conjunction with the ICFT method. We have generated effective collision strengths for all
19 900 inelastic transitions, which is an order of magnitude larger than has been generated
hitherto. We find a broad accord with the (much smaller) set of data generated by Butler
and Zeippen (2000), using the Breit–Pauli R-matrix method, as part of the IRON Project. As
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expected, the main discrepancies arise on weak transitions where the additional resonance
contributions that we provide for become paramount. This becomes more apparent for
transitions from the first excited configuration than from the ground configuration. The
consistent and comprehensive set of data that we have generated (energy levels, radiative
rates and effective collision strengths) is necessary for the collisional–radiative modelling of
metallic impurities that will arise in the next generation of magnetic fusion reactors as well as
being of relevance to studies utilizing observations made by the high-resolution x-ray satellites
Chandra and XMM–Newton.
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