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Abstract. We address the validity and practicality of using multi-channel quantum defect theory
(MQDT) to treat electron–ion collision problems for cases where some channel solutions propagate
with extremely negative, classically forbidden, energies. We discuss theoretically and demonstrate
numerically, within an unrealistically sensitive model-problem study, how MQDT results can be
obtained which are in agreement with those obtained from the more standard non-MQDT method
at all energies.

1. Introduction

Multi-channel quantum defect theory (MQDT) is a powerful method for treating electron–
ion collision problems such as those that arise in electron-impact excitation, ionization and
recombination studies, and in photoionization studies (see Seaton 1966, 1969, 1983, Greene
et al 1979, 1982, Aymar et al 1996). It is an analytic technique for identifying the smooth,
usually very weak, energy dependence of pertinent scattering amplitudes below threshold.
Because of this, MQDT methods can easily reduce CPU times by orders of magnitude.
Also, other powerful techniques, such as the analytic preconvolution of photoabsorption cross
sections (Robicheaux 1993), frame transformation methods for including spin–orbit effects in
resonances (see, for example, Aymar et al 1996), and complex energy methods to include the
missing radiative decay of resonances (Robicheaux et al 1995), are only practical within an
MQDT formalism. The reason for this is that an analytic representation of the closed-channel
energy dependence is required. Furthermore, recent developments (Badnell and Seaton 1999)
have detailed how higher-order long-range potentials can be included perturbatively within
MQDT in a straightforward manner and so MQDT is no longer restricted to pure Coulomb
potentials.

Although MQDT is valid mathematically at all energies, care has to be taken in how one
treats negative-energy solutions numerically, far away from threshold. At this point, it is helpful
to categorize channels according to their energies and various other properties (e.g. orbital
angular momentum l). Partitioned-space methods (e.g. R-matrix) separate the configuration
space of the scattering or valence electron into an inner region (r < r0), where the inter-electron
coupling potential is strong, and an outer region (r > r0), where the coupling potentials are
assumed to be negligible or small enough to be treated as a perturbation, and only the Coulomb
and centrifugal terms are retained in the (diagonal) potential, V (r) = −2z/r + l(l + 1)/r2. For
open channels (those with energies ε � 0), the outer-region solutions to the equation(

− d2

dr2
+ V (r) − ε

)
f (r) = 0 (1)
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oscillate sinusoidally as r → ∞. Just below threshold (ε < 0), where the energy is still
greater than the potential for a large region of configuration space, the solutions oscillate in the
outer region from the boundary radius, r0, out to the finite classical turning radius, rc, at which
point ε = V (rc). The physical solutions in these weakly closed channels decay exponentially
beyond the classical turning radius.

The classical turning radius eventually becomes less than the boundary radius (rc < r0)
when the channel energy is decreased sufficiently from threshold. These strongly closed
channels have exponentially decaying solutions in the outer region, and for all practical
purposes may not even need to be considered for r > r0 (Greene et al 1979). However, they may
have appreciable amplitudes in the inner region, provided that the channel energy is greater than
the potential, which has a minimum Vmin = −z2/l(l+1) at rmin = l(l+1)/z. When the energy
is negative enough so that ε = −z2/ν2 < Vmin = −z2/l(l + 1) or, equivalently, ν <

√
l(l + 1),

this channel is classically forbidden everywhere for a purely Coulombic potential. At even
lower energies, when ν < l, the traditionally defined regular and irregular Coulomb functions
can become complex. We refer to these latter channels (with ν < l) as deeply closed. While
alternative base pairs of real functions can be used instead (Greene 1979, 1980, Ross and
Jungen 1994), the physical solutions nevertheless eventually become numerically unstable as
ν → 0. This is due to a creeping linear dependence of the regular and irregular solutions—the
exponentially increasing contribution to each swamps the exponentially decreasing one and
there is no way to (numerically) recover the linear combination that yields a decaying physical
solution. When using MQDT for studying a broad energy region such that some channels
span from open, to deeply closed and to the unstable limit ν → 0, it is necessary to treat
these various cases in a unified manner, retaining the smooth analytic behaviour of scattering
quantities near threshold while avoiding numerical instability at very low energies.

We have previously implemented an MQDT approach, which treats all closed channels
as open, within Seaton’s unpublished STGF code (Gorczyca and Badnell 1996, 1997, Badnell
et al 1998). Here we address the issue of deeply closed channels through the study of a model
problem that is designed to replicate the worst-case scenario of a deeply closed channel’s
observable effect on a typical electron–ion collision calculation, which we carry out using the
Wigner–Eisenbud R-matrix method (Burke and Berrington 1993). A perturbing resonance
belonging to a deeply closed channel is forced to coincide in energy with the higher-ν Rydberg
region of a weakly closed channel. We assume that a solution has been obtained for the
R-matrix inner-region problem (Berrington et al 1995). Then, various methods for tackling
the solution of the outer-region problem are explored. First, we look at the traditional non-
MQDT method, such as is implemented in the outer-region solution to the Wigner–Eisenbud
R-matrix approach (Berrington et al 1987). Here, exponentially decaying boundary conditions
are enforced for all closed channels, so instability is avoided as ν → 0. Next, we consider a
renormalized MQDT approach. Here, we rescale from complex to real regular and irregular
Coulomb functions for ν < l—this approach, on the other hand, eventually becomes unstable
as ν → 0. Finally, we consider a hybrid MQDT approach. This is numerically stable at all
energies, yet it follows in spirit the traditional MQDT implementation of extracting weakly
energy-dependent scattering quantities. In the hybrid MQDT approach, the deeply closed
channels have exponentially decaying boundary conditions enforced, leading to an MQDT
analytic reduction only within the subspace of the open plus weakly and strongly closed
channels. A similar approach has been adopted by many practitioners of the eigenchannel
R-matrix method (Aymar et al 1996).

The outline of the paper is as follows. The theoretical methodologies are discussed in
section 2 (and an appendix) and then the model problem is presented in section 3, including a
detailed comparison between the results of the various theoretical methods.
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2. Theoretical methodologies

The solution matrix, F in(r), for the inner region (r � r0) is usually expressed compactly in
terms of the R-matrix (Burke and Berrington 1993, Aymar et al 1996)

R ≡ F in(r)

(
d

dr
F in(r)

)−1
∣∣∣∣∣
r=r0

. (2)

For an n-channel case, F in(r) is the (non-unique) n×n matrix with diagonal rli+1-type physical
boundary conditions at r = 0. A smooth match of the inner- and outer-region solutions and
spatial derivatives at r = r0 is obtained via

R

(
d

dr
F out(r0)

)
= F out(r0). (3)

So far, the outer-region boundary conditions have not been specified. We now consider three
different approaches to their specification.

2.1. Method 1

Physical boundary conditions are imposed in the customary outer-region solution to the
Wigner–Eisenbud R-matrix approach (see, e.g., Berrington et al 1987†). These are sinusoidal
in the open channels and exponentially decaying in the closed channels, giving rise to the
n × no solution matrix

F out(r) =
(

so(r)

0

)
+

(
co(r) 0

0 θc(r)

)(
K

phys
oo

K
phys
co

)
(4)

where Kphys is the physical reactance matrix, and where the no × no diagonal matrices so(r)

and co(r) have, along their respective diagonals, the regular and irregular Coulomb functions
for each channel, i, with asymptotic behaviour

si(r) ∼
r→∞ sin

(
kir +

z

ki
ln 2kir − liπ/2 + σli

)

ci(r) ∼
r→∞ cos

(
kir +

z

ki
ln 2kir − liπ/2 + σli

) (5)

where ki is the channel wavenumber, li is the orbital angular momentum, z is the asymptotic
charge of the target ion and σli is the usual Coulomb phase shift.

The nc × nc diagonal matrix θc has, instead, exponentially decaying functions along its
diagonal which are given by (Seaton 1985)

θi(r) = rνi e−zr/νi
∑
n

Bnir
−n. (6)

The coefficients Bni are computed by standard asymptotic recursion relations. Therefore, they
are stable for deeply closed channels since r0 can be treated as asymptotic and only the first
term in the expansion is needed.

† As implemented in STGF.
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2.2. Method 2

The essence of MQDT (Seaton 1966, 1983) is that the strong energy dependence of Kphys near
threshold can be circumvented by matching to solutions that are nearly energy independent
there. These unphysical outer-region solutions, with closed-channel solutions that diverge
exponentially as r → ∞, take the n × n matrix form

F out(r) =
(

so(r) 0

0 sc(r)

)
+

(
co(r) 0

0 cc(r)

)(
Koo Koc

Kco Kcc

)
. (7)

The open-channel solutions so(r) and co(r) are the same as those found in method 1. However,
here, K is the unphysical reactance matrix since the nc × nc diagonal matrices sc(r) and
cc(r), which match smoothly from below threshold to their open-channel counterparts above
threshold, now have along their respective diagonals the unphysical exponentially diverging
solutions

si(r) = A1/2

21/2
fi(r) and ci(r) = − 1

21/2A1/2
(gi(r) + Gfi(r)). (8)

Here, fi and gi are analytic functions in energy and they are evaluated via series expansions
(see Seaton 1983). The parameter A has an energy dependence which is given by

A(ν, l) =
l∏

p=0

(
1 − p2/ν2

)
(9)

and it therefore alternates between positive and negative values, for ν < l. This gives rise to
complex si and ci solutions for deeply closed channels, in the latter case. The closed-channel
solutions have asymptotic forms, to within a common factor, given by

si(r) ∼
r→∞ −rνi e−zr/νi cos(πνi) + B(νi) r

−νi e+zr/νi sin(πνi)

ci(r) ∼
r→∞ rνi e−zr/νi sin(πνi) + B(νi) r

−νi e+zr/νi cos(πνi).
(10)

The n×n unphysical solutions of equation (7) are projected onto the n×no physical ones
(4) by right-multiplying equation (7) with the transformation matrix

M =
(

1oo

Mco

)
. (11)

Only exponentially decaying solutions remain for the closed channels provided that Mco is
chosen to be

Mco = − [Kcc + tan(πνc)]
−1 Kco. (12)

This projection transforms the smooth unphysical reactance matrix into the physical reactance
matrix via

Kphys =
(

Koo Koc

Kco Kcc

)(
1oo

Mco

)

=
(

Koo − Koc [Kcc + tan(πνc)]
−1 Kco

Kco − Kcc [Kcc + tan(πνc)]
−1 Kco

)
. (13)

Although this MQDT method is mathematically equivalent to the previous non-MQDT
method (method 1), only much more efficient, some practical issues arise on implementing it
numerically for the case of deeply closed channels. Firstly, for ν < l, the traditionally defined
regular and irregular Coulomb functions can become complex (see equation (9)). However,
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a simple rescaling of complex to real functions, with an accompanying minor modification
to the above equation (13), recovers the same physical reactance matrix as we detail in an
appendix to the present paper. We have implemented this approach within STGF. Secondly, as
the effective quantum number ν gets very small, the exponentially increasing components of
the s and c functions in equation (10) dominate the exponentially decreasing components and
so the s and c functions become (numerically) linearly dependent and the unphysical reactance
matrix, K, becomes unstable.

2.3. Method 3

As we illustrate in the next section, the non-MQDT method suffers from a dramatic energy
dependence in the near-threshold reactance matrix, whereas the traditional MQDT method,
even after rescaling, becomes unstable for very deeply closed channels as ν → 0. We have
implemented a third method within STGF. This relies on a hybrid approach: exponentially
decaying boundary conditions using θi are imposed for all deeply closed channels, but the si
and ci functions are used for all (unphysical) strongly and weakly closed channels, and all
open channels of course. (Partitioning has been discussed formally by Seaton (1969, 1983).)
This retains the power of analytically revealing the infinite resonance structure of the weakly
closed channels within an MQDT description, while avoiding the instability associated with
(very) deeply closed channels. Accordingly, we partition the n-total channel problem into no

open channels, nc weakly and strongly closed channels and nc deeply closed channels. The
n × (no + nc) outer-region solution matrix is taken to be

F out(r) =




so(r) 0

0 sc(r)

0 0


 +




co(r) 0 0

0 cc(r) 0

0 0 θc






K
hyb
oo K

hyb
oc

K
hyb
co K

hyb
cc

K
hyb
co K

hyb
cc


 (14)

giving rise to a smooth, stable, hybrid reactance matrix, Khyb. We now have to project onto
physical solutions, following the procedure prescribed by equations (11)–(13).

3. A model problem study

Calculations have been performed for a simple model problem, which we chose for two reasons.
First, it enables us to set up precisely the problem that we wish to study. Second, we have
found it difficult to find a real case where deeply closed channels make a significant effect.
This is because a deeply closed channel, being classically forbidden, usually corresponds to a
channel energy far less than that of the position of its lowest-lying resonances. So, only for
uncharacteristically large widths and/or non-Coulombic binding potentials may the effect of
a deeply closed channel be non-negligible. In a model, we can set the interaction with the
deeply closed channel as large as is necessary so as to produce a sizeable observable effect.

3.1. The model

We consider a variant of the model of Badnell and Seaton (1999). Here, we consider three
channels with Rydberg energies E1 = 0.0, E2 = 0.5 and E3(>E2); angular momenta l1 = 0,
l2 = 1, l3 = 1 (initially); inner-region boundary at r0 = 2 (initially); outer-region charge
z = 1. We consider energies E in the range E1 < E < E2 and refer to channel 1 as open
(subscript ‘o’), channel 2 as closed (subscript ‘c’) and channel 3 as deeply closed (subscript
‘c’). The effective quantum number in closed channel i is νi = 1/[Ei − E]−1/2.
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3.1.1. The inner-region solutions. We assume no inner-region coupling between channels
‘c’ and ‘c’ and take inner-region quantum defects of µo, µc and µc. We take the R-matrix
to be given by Roo = foo/f

′
oo, Rcc = fcc/f

′
cc, Rcc = fcc/f

′
cc, Roc = Coc, Rco = Roc,

Roc = Coc, Rco = Roc, Rcc = 0 and Rcc = 0. Here, foo = (so cos(πµo) + co sin(πµo)),
fcc = (sc cos(πµc)+ cc sin(πµc)) and fcc = (sc cos(πµc)+ cc sin(πµc)), evaluated at r = r0.

3.1.2. The outer region. We assume only the pure Coulomb potential.

3.1.3. The three methods. Having set up an inner-region problem, we solve the outer-region
problem in three ways, as described in section 2. Method 1 solves it without recourse to
MQDT, method 2 uses MQDT—including the approach developed for handling deeply closed
channels, while method 3 uses the hybrid-MQDT approach.

3.2. Results from the model

In order to obtain a clearer picture of computed scattering quantities in each of the three
methods, we first investigate the behaviour of the computed reactance matrix. We focus on the
energy region (0 < E < 1) containing the second (weakly closed) channel’s Rydberg series,
which terminates at E2 = 0.5, and force the third channel to be deeply closed (ν3 < l3 = 1)
across and below the second threshold by setting E3 = 1.6. Each method yields a different
reactance matrix. Method 1 computes the 1 × 1 physical reactance matrix, method 2 the 3 × 3
unphysical reactance matrix and method 3 the 2 × 2 hybrid reactance matrix. The energy
dependence of these matrices is seen most easily by considering the eigenquantum defects,
µα , which are the arctangents of the eigenvalues of the operational reactance matrix, divided
by π :

K = U † tan(πµ)U . (15)

The results from each method are shown in figure 1. In method 1, µ1 turns out to be
simply the phase shift δ divided by π (µ1 = δ/π ) and it has an infinite number of oscillations
near the second threshold E � E2. Therefore, it is an impossible quantity to resolve fully at
the Rydberg limit and, furthermore, it is not a desirable quantity to work with analytically in
this energy region.

In method 2, on the other hand, the eigenquantum defects show a weaker energy
dependence near the second threshold. The one associated predominantly with the second
channel, µ2, is flat and nearly zero throughout, due to our choice of µo = 0, µc = 0,
Coc = 0.5, and all other weakly closed interactions turned-off. The others, µ1 associated with
the open channel, and µ3 associated with the channel 3, are strongly interacting due to our
choice of Coc = 1.5; µ1 behaves quite differently from that resulting from method 1. Note
also the discontinuity in the derivatives at E = 0.6, corresponding to ε3 = E − E3 = −1, i.e.
ν3 = l3 = 1. From equations (7)–(9), we see that as ν3 → l3, s3 → 0 and c3 → ∞, so that
K3i → 0 and µ3 goes to zero. For ν3 < l3, however, we transform the unphysical reactance
matrix, as detailed in the appendix to this paper, and so the eigenvalues are transformed likewise.

The smoothest behaviour for the eigenquantum defect is obtained from method 3. The
eigenquantum defect that we identify as being predominantly associated with the first channel,
µ1, is almost identical to the background (scaled) phase shift obtained with method 1. The
other one, µ2, resembles predominantly the second channel’s quantum defect, obtained with
method 2. These eigenquantum defects, being the smoothest in energy, are the most amenable
to interpolation (see also Kim and Greene (1988), especially their figure 3, where similar
conclusions are drawn).
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Figure 1. Eigenquantum defects (arctangents of the eigenvalues of the operational reactance
matrix divided by π ) for: (a) method 1, the non-MQDT case, where the 1 × 1 physical reactance
matrix Kphys is used; (b) method 2, the full MQDT case, where the 3 × 3 unphysical reactance
matrix K is used (the discontinuity in the derivative at E = 0.6 is due to rescaling of K ′ for
ν3 < l3 = 1, as discussed in the appendix); and (c) method 3, the hybrid MQDT case, where the
2 × 2 hybrid reactance matrix Khyb is used.

Therefore, it is seen that one or the other of the MQDT methods (2 or 3) should be used
in order to extract smooth scattering quantities. We now consider the numerical accuracy of
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Figure 2. Values of η (the elastic-scattering phase shift is πη) for E3 = 1. Full and broken
curves, Coc = 1.5; dotted curve, Coc = 0—see text for details. The upper plot shows values of η,
and the lower plot the difference between the results from method 1 and methods 2 (broken and
dotted curves) and 3 (full and dotted curves).

each method by focusing on the third channel’s effect on a single resonance as ν3 → 0,
obtained by adjusting E3. We put K

phys
oo = tan(πη): then πη is the elastic-scattering

phase shift. With µo = 0, one obtains resonances in the vicinity of ν2 = (n − µc),
with η ≈ 1

2 at ν2 ≈ (n − µc). The precise form of the resonances depends on the
values assigned to Coc and Coc. On setting Coc = 0, initially, we find that a value of
Coc = 0.5 closely reproduces the resonance shown in figure 1 of Badnell and Seaton
(1999) and we choose this as the basis for our study. We focus on values for E3 such that
ν3 < l3 + 0.5 and so there are no resonances associated with this channel over the range
of E studied. This was verified by setting Coc = 0, with Coc non-zero, and observing
a constant value for η. We find that setting Coc = 1.5 (with Coc = 0.5) produces a
strong perturbation of η by channel 3. (We note that Coc = 1.5 is an unphysically large
value.)
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Figure 3. As in figure 2, for E3 = 2.2 (Coc = 1.5 only).

Figure 2(a) shows η for the ν2 = 4 resonance, with µc = 0. We show results both for
Coc = 0 and 1.5, with µc = 0. We chose E3 = 1, giving values for ν3 ≈ 1.3 > l3, over
the energy range shown. Figure 2(a) shows clearly the effect of channel 3. On this scale, the
results from all three methods are indistinguishable. Figure 2(b) shows, on a more expanded
scale, values of δη = η1 − η2,3. In the vicinity of ν2 = 4 we have η ≈ 0.5 and tan(πη) is
large: largish values of δη then give fractional errors in tan(πη) which are quite small. We
see that the results of methods 2 and 3 differ little from those of method 1.

Next, we consider E3 = 2.2. This results in values for ν3 ≈ 0.75 < l3. We keep Coc

constant as we vary E3. In reality, of course, Coc should decrease as E3 is moved further
away from E1 and E2, but a constant value is all that is necessary for our model problem.
Figure 3(a) again shows η for the ν2 = 4 resonance. The results from all three methods are
(again) indistinguishable. In figure 3(b), we see that the differences between the results of
the methods 2 and 3, compared with method 1, have changed little even though we now have
ν3 < l3.
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Figure 4. As in figure 2, for E3 = 15 (Coc = 1.5 only).

Finally, we consider E3 = 15.0. This results in values for ν3 ≈ 0.26 � l3. In figure 4(a),
we now see clear differences between the results, for η, from method 2 and methods 1 and 3,
which are indistinguishable. (Note, although these results indicate errors in s3 and c3, and we
use s and c to define the R-matrix, the same identical R-matrix is used for all three methods
and the differences observed in figure 4(a) are due solely to the different treatments of the
outer-region problem.) In figure 4(b), we see that the results of the hybrid-MQDT method
(method 3) are still subject to only very small errors. (The values of η1 − η2 are largely off the
scale and so are not shown.)

3.3. Discussion

We have seen that the pure MQDT approach to deeply closed channels (method 2) does break
down eventually due to an increasing linear dependence of s and c. We find the onset to be
quite rapid and it occurs at ν3 ≈ 0.3 (l3 = 1) for the model considered here. On increasing l3,
we find that this onset occurs at slightly smaller values of ν3. It is also relatively insensitive
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to the value of Coc, provided that it is not vanishingly small. We also find that it varies with
the R-matrix radius—on studying a range of values (r0 = 2–16)—via ν3 ≈ r0/10. This
means that K-shell holes in multi-electron atoms provide the worst-case scenario. However,
we emphasize again that we have had to resort to a model problem to observe strong effects
from deeply closed channels. In normal situations, we have found in the past that a safe,
simple and accurate MQDT approach is to omit channels with ν < l from both the inner- and
outer-region solutions. We have demonstrated that the accuracy of such an approach can be
checked purely within MQDT by using our approach for deeply closed channels (method 2)
or the hybrid-MQDT method for the most deeply closed channels. Of course, the accuracy
can also be checked (and has been routinely) by comparison with the results of a non-MQDT
calculation.

4. Conclusion

MQDT methods for treating electron–ion collision problems are mathematically equivalent to
non-MQDT ones at all scattering energies and, numerically, give the same results (to within
the accuracy of the numerical methods used) provided that certain modifications are made, and
which we have made in STGF. First, for deeply closed channels, a rescaling of any complex
Coulomb functions, and a corresponding modification to the MQDT equations, is necessary—
this we detail in the appendix. Second, for extremely low channel energies (ν3 � r0/10 in our
model), even a rescaled MQDT method becomes numerically unstable. We circumvent this
instability by forcing deeply closed channel solutions to be exponentially decaying prior to
the determination of an unphysical reactance matrix, as is done for all closed channels in the
non-MQDT case. This hybrid-MQDT method is quite useful since, accuracy-wise, numerical
instabilities are avoided and the results are the same as non-MQDT ones at all energies. Just
as importantly, efficiency-wise, an essentially analytic formula is extracted for the infinitely
oscillating behaviour of resonant scattering quantities associated with each weakly closed
channel; analytic expressions can be used to reduce the computational effort by orders of
magnitude and make other analytic techniques applicable. We also note that for realistic
situations, rather than our model problem, we have found completely omitting channels with
ν < l to be an accurate and reliable approach.
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Appendix

We show here how to determine the physical reactance matrix when the deeply closed channel
solutions are rescaled from complex to real. For ν < l, the parameter A of equation (9)
can become negative and so the si and ci functions in equation (8) become complex. If we
instead replace A with −A, and refer to these new solutions as s ′

i and c′
i , then our outer-region

(unphysical) solution matrix, which we now partition into open (subscript ‘o’), weakly and
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strongly closed (subscript ‘c’) and deeply closed (subscript ‘c’) blocks, becomes

F out,′(r) =




s′
o(r) 0 0

0 s′
c(r) 0

0 0 s′
c(r)




+




c′
o(r) 0 0

0 c′
c(r) 0

0 0 c′
c(r)






K ′
oo K ′

oc K ′
oc

K ′
co K ′

cc K ′
cc

K ′
co K ′

cc K ′
cc


 (A1)

where

s′
o(r) = so(r) s′

c(r) = sc(r) s′
c(r) = sc(r) i−1

c′
o(r) = co(r) c′

c(r) = cc(r) c′
c(r) = cc(r) i

(A2)

and i is just i times the nc×nc identity matrix. (Alternatively, complex functions can be avoided
by reformulating MQDT using different base pairs, such as the fi and gi of equation (8); see
Greene (1979, 1980), Ross and Jungen (1994).) The projection matrix is now defined as

M =




1oo

Mco

Mco


. (A3)

Elimination of the divergent behaviour of the weakly, strongly and deeply closed channels is
achieved if(

Mco

Mco

)
= −

(
K ′

cc + tan (πνc) K ′
cc

K ′
cc K ′

cc − tan (πνc)

)−1 (
K ′

co

K ′
co

)
. (A4)

The physical reactance matrix is then given by

Kphys
oo = K ′

oo − (
K ′

oc K ′
oc

) ( K ′
cc + tan (πνc) K ′

cc

K ′
cc K ′

cc − tan (πνc)

)−1 (
K ′

co

K ′
co

)
. (A5)

Thus, we can work with rescaled Coulomb functions, giving a modified unphysical reactance
matrix, K ′, that can still be used to produce a physical reactance matrix, provided that we
simply reverse the sign of the tan(πνi) term for every deeply closed channel.

Finally, the physical scattering matrix is given by

Sphys = (1 + i Kphys)(1 − i Kphys)−1. (A6)

Defining the unphysical scattering matrix via

S = (1 + i K)(1 − i K)−1 (A7)

one obtains

Sphys
oo = Soo − Soc[Scc − exp(−2π iνc)]

−1Sco. (A8)

Deeply closed channels can be taken account of by reversing the sign of νi for these channels
and generalizing the partitioning of equation (A8) analogously to (A5), together with replacing
S by S′.
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