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Abstract. We describe a perturbative approach to the solution of the coupled outer-region
equations for the electron-impact excitation of neutral atoms, and which we have implemented
within the computer code STGF. We compare the results from STGF for neutral Be and H with
those that we have obtained with the non-perturbaRvmatrix propagator code FARM. The
excellent agreement obtained in general here points the way to the future extension of related codes
for the calculation of energy levels and radiative rates in negative ions, photo-detachment cross
sections and free—free electron transition data in the presence of a neutral atom.

1. Introduction

The R-matrix method is a very powerful approach for describing the dynamics of atoms
and molecules. Configuration space is divided up into two regions: an inner one where the
governing potentials are complicated to describe, often having no analytic form, and an outer
one where the potentials have a rather simple form namély* with » > 0. This paper

is concerned with the solution of the outer-region problem. We focus on electron collisions
with atoms and ions and, in particular, excitation. For ions, there are two main approaches and
associated computer codes. The FARM code solves the coupled outer-region equations without
approximation usin@R-matrix propagator techniques (see Burke and Noble 1995), while the
STGF code solves (initially) the uncoupled problem and treats the coupling potentials as a
perturbation to the Coulomb potential (Seaton, unpublished, but see Berrigigadh987).

In our experience there is no significant difference to be found between the results of the two
methods but we have found the perturbative approach (STGF) to be typically a factor of 3-5
faster computationally, in large cases, compared to the non-perturbative approach (FARM)
as well as being more robust, in particular, when large pseudo-state expansions are being
used. Furthermore, STGF does not exist in isolation. It is one of a suite of inter-related codes
which can be used to calculate bound-state energies (STGB) and radiative rates (STGBB),
photoionization and/or photorecombination cross sections (STGBF), free—free transition data
(STGFF) and damping constants (STGD), in addition to excitation cross sections (STGF) (see
Berringtonet al 1987). To date, these codes require that the colliding electron impact upon a
positively charged ion. In this paper we report on the development of STGF so that it can be
applied to electron collisions with neutral atoms as well as ions, still treating the outer-region
coupling potentials as a perturbation. This then points the way for the future development of
the above suite of codes for application to neutral atoms, namely energies and radiative rates
in negative ions, photo-detachment cross sections, etc.
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The outline of the paper is as follows. In section 2 we review the outer-region problem
for neutral atoms. In section 3 we present results for the electron-impact excitation of neutral
Be and H; in particular, we compare the results obtained from STGF with those that we have
obtained from FARM. We finish with a short conclusion.

2. Theory

We assume that we have a solution to the scattering problem within some innerrregion
and require to solve

a2 L+
(W i +8i)Fi(V) = Z Vi (r)Fy(r) 1)
in the outer regiom > ro where the long-range multipolés;: are reduced to
Vie(r) =y Ch/r**t 2
A

wherexr = 1, 2, 3.... In the Coulomb case the multipole potentials are small perturbations to

the Coulomb potential (Seaton 1985). For neutral atoms

Li(; +1)
}’2

[Vie ()| < |e — for r>ro (3

is often satisfied but it cannot be guaranteed for all values bandr; for exampleg > 0
such that

r=[L+1/e]"? > ro. (4)

However, effective-range theory for long-range potentials demonstrates that the Born
approximation gives the correct expansion terms for the scattering phase shifts, as powers
of the wavenumbet expanded about = 0, up to (but not includingk?*! for » > 1 (see
O’Malley et al 1961, Levy and Keller 1963). Since equation (4) is satisfied only fer k?

small, in general, this provides us with some justification to proceed in assuming that the
long-range multipole potentials can still be treated as a perturbation in this instance as well.

2.1. Spherical Bessel functions

If the multipole potentials are neglected then the solutions of equation (1)1 are simply related

to spherical Bessel functions. We denote the regulas ( + %) and irregular = -1 — %
solutions of
@ 2-3
(m— 2 +8>Yx(r)=0 ©)

by s; (= yi+1/2) and¢; (= y_1—1/2), by analogy with the Coulomb problem. They are related
to the regular f) and irregular ;) spherical Bessel functions via

s1(r) = Nrji(r) and c(r) = —Nrn;(r) (6)

whereN is a normalization constant.

The practical solution to the neutral atom problem cannot simply be obtained by setting
the asymptotic Coulomb charge to zerto=£ 0) everywhere in the solution to the Coulomb
problem since the correct limiting behaviour as— 0 is not always obtained by such a
procedure. So, we briefly review the differences from the solution to the Coulomb problem,
which has been discussed by Seaton (1982, 1983, 1985).

T Sometimes known as Riccati—Bessel functions.
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2.1.1. Positive energies. We sets = k2. We uses andc functions normalized to asymptotic
forms given by

si(r) ~ k™Y2sin(kr —I7/2) and a(r) ~ k™ Y?cogkr —In/2). 7)

Then W(c,s) = 1, whereW denotes the Wronskian. These are evaluated to first order
(amplitude) or second order (phase) in the JWKB method using the expressions given by
Burgess (1963) for neutral atoms. Solutionsifgr r are then obtained by inward integration
using the Numerov method. Fer> 0, equation (5) has an (inner) point of inflectigrgiven

by
r o= [ +D]Y¥k. (8)

Whenr, > rg the inward integration of is unstable. A power-series solution to equation (5)
at smallr is given by

() = ©9)
n=0
where
a, = —€a,_y[n(n + 2)»)]_1 (10)

with the normalizationiy determined by the smatl-behaviour, given by

k'*1/2 2-nn

I+1 r
0 kl+1/2

sl(r) ~ (11)

,
r—0 (20 + D!
consistent with (7). When > rg, ¢ can, and should, still be evaluated by inward integration
but there are problems where we do require, or prefer, a series solutignféorexample, in
the absence of perturbations we can simply evaluatelc atr = ry from equations (9)—(11).

and a(r) ~

2.1.2. Negative energies Writing
g =—1/12 (12)

we see that the solution of equation (5) has no points of inflection. We look for exponentially
decaying solutiong with a power-series solution for largegiven by

0 = eir/u anr—n (13)
n=0
where, from (5),
b, = <1>[1(1 +1) —n(m — D]by-1. (14)
2n

The spatial derivative d@f (¢’) is obtained trivially from (13). A complete perturbative solution
for closed-channel long-range potentials (Seaton 1985) also requinesd’, where the dot
denotes the energy derivative, wilth(9, 6)|,—,, = 1 which obviates the need to determine
explicitly. Explicit expressions fof andé’ are given in an appendix to this paper. Agéin,
andod can then be integrated inwardsrte= ro.

For completeness, we note that negative energy solutionsafwdc can be obtained from
section 2.1.1 on setting= i/v and that they are complex for all valuesioénd!.
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2.2. Perturbation corrections

The first-order corrections tg ¢ andé then follow as in the Coulomb case (see section 7.2 of
Berringtonet al 19877). We note that the asymptotic contribution to the outer-region integrals
can still be evaluated using the methods oE8dl (1984) on, again, modifying the expressions

for the amplitudes and phases in the complex plane according to Burgess (1963) for the neutral
case.

3. Results

We have carried out S-coupling 6CC (22/',1,!" = 0,1) and 26CC (6CC plusid/’,! =

0,1, =0, 1, 2) R-matrix calculations for the electron-impact excitation of neutral Be as well

as 3CC (1s, 2s, 2p) and 6CC (3CC plus 3s, 3p, 3d) calculations for neutral H. Be was chosen as
a typical neutral, with a relatively small-matrix box, and H as the most extreme example for
treating coupling as a perturbation. Consideration of box size is an important point. We wish
to compare the perturbative results from STGF with the non-perturbative results from FARM.
Both sets of calculations have the same solution for the inner region. The only difference arises
from the treatment of the outer-region contribution. If we use a large configuration-interaction
target expansion or, more importantly, a large pseudo-state expansion to allow for continuum
coupling then this would result in a very large box size and severely limit the outer-region
contribution. Since we wish to emphasize the outer-region contribution but still deal with a
physically relevant problem (i.e. we do not want to set the inner-region contribution to zero)
we use a small target expansion so as to consider the worst-case scenario. For this reason,
the results that we present here should be viewed as relative rather than absolute. Finally,
we note that all of our calculations involving the outer-region long-range multipole potentials
included only the dipole and quadrupole terms sincefgr 3, the treatment of STGF and
FARM differs—STGF only includes a single multipole per transition, so the octupole potential

is present in s— f transitions but not p— d, for example, while FARM includes both the
dipole and octupole potentials in the latter case.

3.1. Be

In figure 1@) we compare collision strengths for the?2s — 2p?3P transition in neutral Be

that were obtained from 6CC calculations for the sum offPeand?D symmetries, which
dominate. We show results that were obtained both with and without the inclusion of outer-
region long-range multipole potentials. In both cases, the results from STGF and FARM are
indistinguishable and so we show a single curve for each. We see that the inclusion of outer-
region multipole potentials has a significant effect for this transition. In figurenlg show the
difference between the collision strengths obtained from STGF and FARM when outer-region
multipole potentials are included—it is typically0.1%. (When omitted, the difference is

<1 x 1075, except very close to threshold where it is a little larger.)

In figure 2 we show results for the same transition as in figure 1, but this time for the
26CC calculation. We see that the effect of the outer-region multipole potentials is severely
reduced, sincey(6CC) = 17.2, whilerq(26CCO = 43.5. The results from STGF and FARM
are again indistinguishable in both cases, both with and without the inclusion of outer-region
multipole potentials. We see, from figureb?(that the difference between the results from
STGF and FARM is broadly reduced but it is slightly larger at the ‘odd’ energy (for three
energies, the difference is only just off the scale). The former is to be expected because of

T ThereW(c,s) = 1/x.
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Figure 1. The 281S — 2p?3p transition in Be for the sum of tH#™® and?D symmetries from

a 6CCR-matrix calculation. &) Collision strength with (full curve) and without (broken curve)
outer-region multipole potentials from STGF and FARMK). The difference between the collision
strengths, with outer-region multipoles, calculated with STGF and FARM. All results are from this
work.

the increased box size, while the latter is due to the large increase in the number of couplings,
particularly to more highly excited states that are present in the 26CC calculation but not the
6CC. (This was verified by carrying out a 6CC calculation usifi@6CO—the difference

fellto ~107°.) Furthermore, we have scanned through over 100 transitions in Be {$o22

2 — 3 and 3— 3 transitions) and noted only the tiniest of observable differences between
the results from STGF and FARM. The effect of the outer-region multipoles is also severely
reduced for these 26CC results, compared to the 6CC results, emphasizing the point about
the role of therR-matrix box. Finally, we note that STGF is a little over (under) a factor of 5
faster than FARM for the 26CC calculation run with (without) the inclusion of outer-region
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Figure 2. As figure 1, but from a 26C@®&-matrix calculation. All results are from this work.

multipole potentials. (We took care to ensure that the exact same energy mesh was used in both
sets of calculations—a linear one witfe = 0.001 Ryd, except that energies that occurred
within 5 x 10~2 Ryd above a threshold were dropped as such energies are particularly time
consuming to propagate.)

3.2. H

In figure 3 we compare collision strengths for the-2s2s transition in neutral H that were
obtained from 3CC calculations summed over the= 0-2 symmetries, which dominate.

We find that only for collision energies within about 0.01 Ryd aboventhke 2 threshold do

the results from STGF and FARM start to differ appreciably. This is due to the presence
of the outer-region potentials, as can be seen by comparison with the (single) curve for
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Figure 3. Collision strengths for the 1s> 2s transition in H from a 3C@®-matrix calculation

for the sum of theL = 0-2 symmetries. Full curve, from STGF with outer-region multipole
potentials; broken curve, from FARM with outer-region multipole potentials; dotted curve, without
outer-region multipoles from STGF and FARM. All results are from this work.

the results obtained on omitting the outer-region multipole potentials. We find that going
to a 6CC calculation significantly improves the situation singg3CC = 26.1 while

ro(6CC) = 47.3. From equation (4) we see, fer~ rq, that the perturbations are relatively

large fore ~ I(I +1)/r§ =~ 0.01 (3CC) and @03 (6CC) forl = 2, sayt. Similar inaccuracies

arise inthe 6CC results justabove the- 3threshold. These would be reduced by the inclusion

of n = 4 states, and so on. Any realistic calculation necessitates the use of a large pseudo-state
expansion and so the differences between the results from STGF and FARM can be expected to
be of no practical significance. Furthermore, in practice, perturbations involving channels with

¢ small can be switched off, or the near-threshold energies can be skipped altogether. Finally,
we note the presence of several small ‘blips’ in the perturbed STGF collision strength. There
is no obvious explanation for them but they are peculiar to the degenerate coupling problem.
We did not observe any such features in the case of Be.

4. Conclusion

We have described a perturbative approach for the treatment of the outer-region long-range
multipole potentials that arise in the equations describing electron collisions with neutral
atoms and, in particular, excitation. We have demonstrated the accuracy of such an approach
by comparison with the results of the non-perturbatR«natrix propagator method. This
points the way to the extension of related codes for application to (electrons plus) neutral
atoms for the calculation of energies and radiative rates in negative ions, photo-detachment
Cross sections, etc.

t Off-diagonal dipole coupling between degenerate target states is equivalent to a moditieyonal potential, i.e.

A = linequation (2), which is not covered by the effective-range theory discussed in section 2. If precise perturbative
results are required here for H then they would be best obtained on diagonalizing the matrix of degenerate target-state
dipole-coupling coefficients (Seaton 1961).
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Appendix

We consider the evaluation 6f6’, 6 andé’ in the neutral case. We switch to usipdnstead
of 0, etc and follow the notation of Seaton (1985) who considered the Coulomb case. We
rewrite our large= power-series solution as

p=e"l i Bux ™" /! (A1)
n=0

wherex = 2r/v, then

Bo=U+n)(l+1—n)By (A2)
where we can take

Bo=1 (A3)
Let

p=9¢S (A4)
where

$=e"/" etc. (A5)
Then, compare with the Coulomb case (Seaton 1985)

p =¢@S+dT) (AB)

p=/2¢(bS+U) (A7)

P = (V3/2)p[(ab +c)S +bdT +alU +dV] (A8)
where, now,

a=-1/v (A9)

b =r/v? (A10)

c=1/? (A11)
and

d=-1/r. (A12)
Furthermore,

T = Z]: Bux "/ (n — 1)! (A13)

n=1
!
U= Z Yux " /n! (A14)
n=1

!
V= Z Yux "/ (n — D! (A15)
n=1
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where, now,
Yo =Bun/v =B /v+@+n)(l+1—n)y,—1
=l +n)+1=n)[Bu-1/v+yu-1] (A16)
and
yo=0. (A17)
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