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Abstract. The formulak = Coo — KCoc(Kee + 7) 1Ko is familiar in quantum defect theorg

is the reactance matrix for electron—ion collisiofGjs a matrix with partitioning for open—open,
open—closed, closed—open and closed—closed elements; anthn(zv) wherev is a diagonal

matrix of effective quantum numbers in the closed channels. In the simplest case it may be assumed
thatC is a slowly varying function of the energy.

This formula has usually been obtained by assuming only a pure Coulomb potential at radial
distances > ro, with rq finite. This paper discusses the derivation of a similar formula for the
case in which long-range non-Coulomb potentials are included, behaving ttké for r > rq,
withx > 1.

1. Introduction

A familiar formula in quantum defect theory (QDT) is
K = Koo — Koc(IKec + 7v')_lK:co 1)

whereK is the reactance matrix for electron collisions with a positive inis a matrix

with partitioning for open—open, open—closed, closed—open and closed—closed channels and
T = tan(wv) wherev is the diagonal matrix of effective quantum numbers in the closed
channels. It may usually be assumed #as a slowly varying function of the energy and that

the main energy-variation &f, due to resonance structures, is determined by the variation of
tan(zv).

Letrg be aradial distance which is large compared with the mean radii of the target states.
The formula has usually been derived assuming no potentials, other than Coulomb potentials,
in the region ofr > ry (see Seaton 1983, which will be referred to as S83: and section 4 of
the present paper). In some collision problems an important role is played by outer-region
multipole potentials, behaving like*~ for r > ro, with A > 1. It is therefore desirable to
generalize the formula to the case in which such potentials are included.

In an introductory essay to a book edited by Christian Jungen, Seaton (1996) described
the problem as an awkward one which ‘refuses to go away’. He concluded the essay by saying
‘| obtained some formulae but never published them: they were too complicated and all the
charm of QDT was lost’. There continues, however, to be an interest in the problem and an
important recent advance has been made by Goreayald1996, to be referred to as GRPB).

The present paper gives a detailed discussion of the problem.
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2. The collision problem

We consider electron collisions with an ion of chardeving energy levelg;. We use scaled
variablesr = zp wherep is a radial co-ordinate in atomic units and scaled channel energies
€ = (E — E;)/z?> whereE is the total energy anl andE; are both in Rydbergs. Let there
be N channels and take them to be in order of increagingk;+1 > E;.
Forr > rothe collision problem may be formulated in terms of a matrix of radial functions

F(r) with elementsF;; wherei specifies a channel aryda boundary condition. For > rq
the radial functions satisfy a system of coupled differential equations

hF+WF =0 2
where
¥+m+n 2

a2t e )

and whereW (r) is a symmetric matrix for the long-range multipole potentidig; (r) =
C;ir/r*** (» = 1 for dipole potentials). = 2 for quadrupole potentials, etc).

Equation (2) is of second order and therefore hildigearly independent solutions. We
suppose that the collision problem has been solved in the inner regiod of to give a value
for the R-matrix,

R=FF)1 at r=rg (4)
whereF’ = dF/dr. When the lower boundary condition (4) is imposed, equation (2\has
linearly independent solutions.

Let open channels havge > 0 and closed channels haye< 0, and let there b&/, open
channels. For a closed channele obtain, in general, solutio#3; () which are exponentially
increasing in the limit of large. The physical solutionG(r) are required to be everywhere
bounded, and are obtained on forming linear combinations of the colunig nf The matrix
G hasN rows andN, columns.

Given thatrg is large compared with the mean radii of the target states, it may be shown
that|W;; (r)| <« 2/r forallii”and allr > ro. The terms ir#¥ can therefore always be handled
using first-order perturbation theory.

2.1. The codeTcF

Berringtonet al (1987) describe a codseycr, which handles terms i using first-order
perturbation theory without making use of QDT. That code can be used for any value of
the energy but it is not well adapted to the problems of locating narrow resonances or for
obtaining cross-sections averaged over resonances. Wesresas a benchmark: results
obtained employing other methods are compared with thosedram

3. Coulomb functions

Coulomb functionsy(r) are solutions of:y = 0. Here we use Coulomb functionsandc¢
which are equal ter /2 times the Coulomb functionsandc defined in S83. For values f|
which are sufficiently small and valuesofvhich are not too large, the functionsandc are
slowly varying functions ot.

Fore > 0 the functions have asymptotic form~ k~Y/2sin(¢) andc ~ k=2 cog¢)
wherek = %2 and wheret is the usual Coulomb phase function. For< 0 one puts
v = 1/(—e)~Y? and defines

o = sin(rv) and y = CoSmv). (5)
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One may then put (see equation (2.55) of S83)

s =(po —qy), c=(py tqo) (e <0 (6)
where

p=DE/(@en2K), g = (D'0@v¥/DVK )

and wheregt ande are defined in S83 ankl = [v?T"(v +1 + 1)I" (v — 1)]~¥/2. The function®
andé have asymptotic forms

0 ~ (2r/v)" exp(—r/v), £~ (2r/v)”" expi+r/v). ®)

4. The QDT formula with no long-range potentials

With W = 0 the functionsF' are linear combinations of the functionsindc. We put
F=s5s+cK? 9)
which definegC©. Using (4) we obtain
K9 =—(c—R) s — Rs) (10)

which is the value ofC for the case of no outer-region multipole potentials.
One partitionsF’ according to the scheme

Foo Foc
F = , 11
(Fco Fcc) (1)

where subscripts ‘0’ and ‘c’ are used for open and closed channels, and takes the physical
solutions to be

G:F(ffc’z). (12)
Using (9) one then obtains

Goo = 5Loo+ c(KQ Loo + K9 Lco) (13)
and
Geo = plyKQ Loo+ (0 +yKQ) Leol + 4[0KQ Loo + (=y + 0 KQ) Leol. (14)

We now takeL, and L¢, to be such as to eliminate the exponentially increasing fungtion
in (14),

YK Loo+ (0 +yK2)Leo = 0, (15)

and takingL,, = 1 we then obtain from (13)

Goo =s5+cK (16)
where
K=1Kg — K@+ K KQ (17)

and wherer = o/y = tan(mv).



3958 N R Badnell ad M J Seaton
5. Perturbed outer-region functions

Let S andC be functions calculated allowing f&% as a first-order perturbation,
hS+Ws =0, hC+Wc=0. (18)

Let the Wronskian for any two functionsandb be W (a, b) = ab’ — a’b. The Coulomb
functions have Wronskiang (c, s) = 1 andW (g, p) = 1. We may therefore put

S =s+s(cs) — c(ss) and C =c+s{cc) —c(sc) (29)
where

(ab) = / aWbdr, (20)
ry
and where a choice of the lower limit;, provides a specification of the boundary conditions
to be imposed on the functions.

In formulating the theory it is convenient to introdugeas a value of which is large but
finite and to také¥V (r) = O forr > r1. All of our final results are independent of the choice
of r1. With two different choices for the lower limi we obtain

S =5 +s(cs) — c(ss), C =c+s(cc) —c(sc) for r>ry, } with r, = ro
S=s, C=c at r =ro,

(21)
S=s  CO=c mrr?”} with 7, = 0o
S =15 —5(cs) +c(ss), C =c—s(cc)+c(sc) at r =ro,

(22)
where we now use integrals

(“lej“.. (23)

6. Use of the perturbed functions

We calculate a perturbed reactance matktibxand then calculate the scattering matrix as
S = (1 +iK)(1 — iK)~% that gives the scattering matrix to be symmetric and unitary so
long asK is symmetric and real.

6.1. Elimination of the exponentially increasing solutions

In order to study the elimination of the exponentially increasing functions we use funétions
which are linear in the perturbation integrals. We therefore take rg in (20) and switch to
the use of andc for open channels ang andgq for closed channels. We then have

Soo =5 +s{cs) — c(ss), (24)
Soc = [s{cp) — c(sp)lo — [s(cq) — c(sq)]v, (25)
Sco = p{qs) — q(ps), (26)
Scc = [p + plgp) — q{pp)lo — g *+ plaq) — q(pq)]y. (27)

Similar equations for the sub-matrices 6f can be obtained on making the following
replacements in (24)—(27y:— ¢,¢c — —s,q — —p andp — q.
We put

F=8+CcK©® (28)
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where, sinceS = s andC = ¢ atr = ro, K@ is still defined by (10). The asymptotic forms
for G are obtained using (12) and (28), and the asymptotic forms (219 tondC. We omit
terms which go to zero in the limit of — co. Using integrations by partst it may be shown
thatg (ps), ¢{pc) andg(pq) all go to zero in that limit. Defining

P = s5(cp) — c(sp) and Q = plgp) —q({pp) (29)

it may be shown similarly thaP andQ behave likep/r*** for r large.
After a little algebra we obtain the following asymptotic forms:

Goo = 85(ALgo+ BLco) +c(CLoo+ DL) + PT, (30)

Goo= p(X Lo+ Y Leo) + QT, (31)
where

A=1+(c)KQ + (cq)o KD + (cs), (32)

B = (cOKQ +(cq)(—y +oKQ), (33)

C=1—-()NKY — (s5) — (sq)o K2, (34)

D =(1-(s)K — (sq)(—y +oKQ), (35)

X = (g9) + (@O + (v + (qq)0)KQ), (36)

Y = (qoKQ + (v + (q@)o)KQ +0 — (qq)y @37)
and

T=yK9Loo+ (0 +yKQ)Leo. (38)

In equations (32)—(37) we use integréls.) = f::’ We eliminate the increasing functiotts
a consistent first orden W. ForW = 0 we have, from (15)T" = 0 and forWw # 0 we may
therefore assunt® to be of orde¥. In (30) and (31) we therefore omit the teri®g" and
QT which are of ordeW?2.

Forr large we require tha,, = s + cK and thatG, goes to zero. We therefore put

ALgo+ BLco = 1, (39)
CLoo+ DLco =K, (40)
XLoo+YLe=0. (41)

On solving (39) and (41) foEq, and L, we obtain from (40)
K=CAl'+(CA'B-DAXxA? (42)

where
A=Y -XAlB. (43)

These are the equations which MJS obtained 20 years ago. He did not like them, as being
too cumbersome, and did not, therefore, publish them.

6.2. Variants on the method

6.2.1. Variant 1. Continuing to use; = ro, from (21) and (28) we have, for> ry,
F=8+CK? =[s+s(cs) — c(ss)] + [c +s(cc) — c(se)] K@ (44)
= s[1+ (cs) + (o) KO + [~ (s5) + KO — (s¢)K @] (45)

T The prototype of the integrals involved is given by:
exp(—kr) [ r=*"Lexpl(c +ik)rldr = (c +ik) " r L expikr) + (A + 1) exp(—kr) [ r~* 2 expl(c +ik)r] dr}.
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and hence, on re-normalizirig,

F=s+cK® (46)
where

KD =[—(s5) + K@ — (s0)KOYL + (es5) + (co)x©O] L. (47)

6.2.2. Variant 2. We now take the lower limit to be; = oo and put

F=8+CK® (48)
where we now havé = s andC = s for r > r;. From (4),

K@ =—(C —-RC) 'S —-RS) at r=ro, (49)
whereS andC atr = rg are given by (22). Using (10) we obtain

K? =[1+(sc) +KOo) —(s5) + KO — KO es)]. (50)

Although, analytically, (49) and (50) give identical values f0@, numerically, (50) is more
accurate wher becomes large at = rg as its inner turning point moves out beyond the
R-matrix boundary with increasing

6.3. Symmetrization af

We see thakC® is the transpose d€®. We require a symmetric matri and therefore put

K= KD +K?). (51)
Forr > r; we can then puF = s + ¢XC and obtain, as in section 4,
K= Koo — ICoc(t + K:cc)_llcca (52)

6.4. Summary on elimination of the increasing solutions

In section 6.1 we used functiorB linear in the perturbation integrals. We obtained the
expressions (30), (31) for the physical functi@gng which the perturbation integrals involving
the increasing functiong occur only in the termd@T and QT which are of second order
in the perturbation. To a consistent first order we neglected those terms. But the method of
section 6.1 did not give an expression koof the desired form (1).

In section 6.2 we re-normalized the functiaRgo the forms (46) or (48) before forming
the linear combinations to obta@. In those expressions the perturbation integrals occur in
both the numerators and denominators on the right-hand sides of (47) and (50). We now make
the assumption—without proof—that in (47) and (50) one can neglect all integrals involving
the functionsp, i.e. the closed-channelandc functions can be replaced bygy andgo,
respectively. We then obtain expressions of the form (1) involving only convergent integrals.

7. The method of GRPB

GRPB calculatdC using equations similar to (49), (50) of the present paper, and subsequently
symmetrizelC. Their method differs from that described in section 6 in that, in the elimination
of divergent integrals, they use approximations which are less drastic.

Let us define pointg = rg, b = r; andc = ro+i(r1 — ro). All integrals around the closed
coutour,fa are equal to zero. For open channels, GRPB use functions such as

pt =c+is ~ kY2 expi) (53)

bca’
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and consider integrals* p): then(cp) and(sp) are the real and imaginary parts@f* p).
Alongac, ¢* is exponentially decaying anglis oscillatory, so that the integrﬁuf is convergent
in the limit of r; — oco: GRPB taker; to be such that adequate convergence is obtained. They
replace the integraf: by the integralfac, which implies neglect of the integral around the
contourbc, which is divergent in the limit of; — oo. They assert, without proof, that ‘when
we form the physical closed-channel solution ... these divergences cancel’. The discussion
of section 6 provides some justification for their procedure.

In section 6.1 we neglected the teriBT” andQT in (30), (31). In the method of GRPB
one would retain the contribution from those terms from the integrals alorapd neglect
only the divergent contribution fronb.

8. Some numerical results

We have made calculations for a simple model.

The model. We consider two channels with energiés= 0.0, £, = 0.5; angular momenta

I1 = 0,1, = 1; inner-region boundary a§ = 2; outer-region charge= 1. We shall consider
energiest in the range O< E < E; and shall refer to channel 1 as open (subscript ‘0’) and
channel 2 as closed (subscript ‘c’). The effective quantum number in the closed channel is
v =1/[E; — E]7Y2.

The inner-region solutions. We assume no inner-region coupling between channels ‘0’
and ‘c’ and take the inner-region quantum defects tougeand .. Then atr = rg

the inner-region functions arefy,, = (50COS7 o) + CoSIN(T o)), foc = 0, feo = O,

fee = (¢ COYT ) + ccSIN(T ). The R-matrix is Rop = foo/fc;oa Roc = 0, Reo = 0,

Rec = fcc/fc/c-

The outer region. The only non-Coulomb interaction in the outer region is taken to be dipole
coupling between channels ‘0’ and ‘CWoo = Wee = 0, Woe = Weo = C/r2. We take
C =1.0.

The two methods. Equation (51) is obtained on neglecting all integrals involving the
increasing functionp. We refer to that as method 1. The method of GRPB makes less
drastic approximations and will be referred to as method 2.

We putKe, = tan(rn): thennn is the elastic scattering phase shift. Wjith = 0, one
obtains resonances in the vicinity of= (n — u¢), with n ~ % atv >~ (n — ug). Figure 1
showsn for then = 4 resonances witly, = 0. Results from method 2 are shown as full
curves, those from method 1 as dashed curves. The top part of the figure shows values of
The differences in values gffrom the two methods are seen to be fairly small: the differences
between method 2 argtcrare indistinguishable on the scale used in the top part. The lower
part shows, on a more expanded scale, valués@) = n(1) —n (ster) andsén(2) = n(2) —n
(steh. In the vicinity ofv = 4 we have; ~ 0.5 and tariz n) is large: largish values @fy then
give fractional errors in ta@rn) which are quite small. It is seen that method 1 gives errors
much larger than those from method 2.

Figure 2 shows the elements of the maiiXor 3.5 < v < 4.5. Itis seen that method 2
gives IC to be nearly constant in that range, but that method 1 gives much more marked

t Strictly speaking, they consider integrads™sc) and (¢*cc) wherese = (po — qy) andce = (py +qo). The
contributions fromy are convergent.
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Figure 1. Values ofp for uc = O (the elastic-scattering Figure 2. The elements of the matriiC for uc = 0.
phase-shiftisr ). Full curves, method 2; dashed curvesCurves as for figure 1.

method 1. The upper plot shows valuesmefand the

lower plot values of) — n (sTGH.

variations. This is to be expected since method 1 uses the closed-channel fgnetiarh is
not slowly varying with energy while method 2 uses closed-chanaeldc¢ functions which
are.

For uc. = 0.5 the resonances are much narrower than thosgfet 0. Figure 3 shows
values ofy for 3.4 < v < 3.6. Itis seen again that the differences between valuesfiaim
the two methods are fairly small, but that method 2 is much more accurate than method 1. For
the two-channel case the variants (47) and (50) are identical. For the gase-dd.5 we find
that the matrices in the denominator of those expressions have a singularity in the vicinity of
v = 3.43. Figure 4 shows that leads to some rather wild variations in the elemekit$oof
method 1. There is, however, no similar wild variatiomi(see figure 3).

9. Discussion

The multipole potentials are handled using perturbation theory. In order to study systematically
the elimination of exponentially increasing functiopsit is necessary to use functiors

which are linear in the perturbation integrals. In section 6.1 we showed that results correct to
a consistent first order in the perturbations are obtained if one neglects all integrals involving
the functionsp. In that section we obtained a somewhat ugly expressioK fehich does not



Quantum defect theory with long-range multipole potentials 3963

.0
| |
O 7\\\\ —
x8 5 = S, —
B \\\\\_\
15 |
' |
10 b—o o =1
N
. !
< |
= S f _
! |
0.01 | |
! |
|
B0 4 8250 | ! .
\E \\\\\ ’K\ k : //
| AR I /
< ! T~ v/
=~ |
!
-0.01 | ~500 L1y |
3.4 3.5 3.6 3.4 3.5 3.6
v v
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have the form of (1). In section 6.2 we obtained two variants, one kviththe formBA~*
and the other with the forrd~1B. Taking the mean we obtained a symmeit€avhich can
be used in (1). In section 8 that was referred to as method 1.

Less drastic approximations are made in the work of GRPB. In their work the perturbation
integrals involvingp are evaluated in the complex plane and the only approximation is to
neglect contributions from a contour on whifgth — oc. In section 8 that was referred to as
method 2.

We have presented some numerical results for a simple model. The valuedréon
method 2 are more accurate than those from method 1. More importantis the fact that method 2
gives matricedC which are much more slowly varying as functions of energy. In the present
paper we have considered only two simple examples, but we note that in the work of GRPB
many other examples were considered and found to give equally satisfactory results. The
practical usefulness of equation (1) is thatKifis slowly varying, it need be calculated only
for a small number of energies. The scattering matrig is (1 + iK)(1 — iK)~1. Defining
S = (1+iK)(1 —iK)~! one obtains

S = Soo — Soc[Scc — eXF(_zn'iV)]ilsco (54)
which can be used to locate positions and widths of resonances and to obtain cross-sections
averaged over energy (see S83).

It should be noted that we have not achieved a complete mathematical derivation of the

formulae used in methods 1 and 2, although they are rendered plausible by the discussion of
section 6.1. Extensive numerical testing shows that method 2 does indeed give accurate results.
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10. The computer codes

The original version okter was written by MJS. With various modifications it has been
used extensively in the work of the Opacity Project (The Opacity Project Team 1995) and the
subsequent Iron Project (Hummetr al 1993). The subroutineorinT used in the work of
GRPB for the calculation of the perturbation integrals was written by Dr F Robicheaux. A
version ofsterincorporating the methods of GRPB has been written by NRB and will be used
in a new project, RmaX, which will be mainly concerned with the calculation of data important
for x-ray astronomy.
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