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Abstract. The formulaK = Koo−Koc(Kcc + τ)−1Kco is familiar in quantum defect theory:K
is the reactance matrix for electron–ion collisions;K is a matrix with partitioning for open–open,
open–closed, closed–open and closed–closed elements; andτ = tan(πν) whereν is a diagonal
matrix of effective quantum numbers in the closed channels. In the simplest case it may be assumed
thatK is a slowly varying function of the energy.

This formula has usually been obtained by assuming only a pure Coulomb potential at radial
distancesr > r0, with r0 finite. This paper discusses the derivation of a similar formula for the
case in which long-range non-Coulomb potentials are included, behaving liker−λ−1 for r > r0,
with λ > 1.

1. Introduction

A familiar formula in quantum defect theory (QDT) is

K = Koo−Koc(Kcc + τ)−1Kco (1)

whereK is the reactance matrix for electron collisions with a positive ion,K is a matrix
with partitioning for open–open, open–closed, closed–open and closed–closed channels and
τ = tan(πν) whereν is the diagonal matrix of effective quantum numbers in the closed
channels. It may usually be assumed thatK is a slowly varying function of the energy and that
the main energy-variation ofK, due to resonance structures, is determined by the variation of
tan(πν).

Let r0 be a radial distance which is large compared with the mean radii of the target states.
The formula has usually been derived assuming no potentials, other than Coulomb potentials,
in the region ofr > r0 (see Seaton 1983, which will be referred to as S83: and section 4 of
the present paper). In some collision problems an important role is played by outer-region
multipole potentials, behaving liker−λ−1 for r > r0, with λ > 1. It is therefore desirable to
generalize the formula to the case in which such potentials are included.

In an introductory essay to a book edited by Christian Jungen, Seaton (1996) described
the problem as an awkward one which ‘refuses to go away’. He concluded the essay by saying
‘I obtained some formulae but never published them: they were too complicated and all the
charm of QDT was lost’. There continues, however, to be an interest in the problem and an
important recent advance has been made by Gorczycaet al (1996, to be referred to as GRPB).
The present paper gives a detailed discussion of the problem.
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2. The collision problem

We consider electron collisions with an ion of chargez having energy levelsEi . We use scaled
variablesr = zρ whereρ is a radial co-ordinate in atomic units and scaled channel energies
εi = (E − Ei)/z2 whereE is the total energy andE andEi are both in Rydbergs. Let there
beN channels and take them to be in order of increasingEi ; Ei+1 > Ei .

Forr > r0 the collision problem may be formulated in terms of a matrix of radial functions
F (r) with elementsFij wherei specifies a channel andj a boundary condition. Forr > r0
the radial functions satisfy a system of coupled differential equations

hF +WF = 0 (2)

where

h = − d2

dr2
+
l(l + 1)

r2
− 2

r
− ε (3)

and whereW (r) is a symmetric matrix for the long-range multipole potentials:Wii ′(r) =
Cii ′/r

λ+1 (λ = 1 for dipole potentials,λ = 2 for quadrupole potentials, etc).
Equation (2) is of second order and therefore has 2N linearly independent solutions. We

suppose that the collision problem has been solved in the inner region ofr 6 r0 to give a value
for theR-matrix,

R = F (F ′)−1 at r = r0 (4)

whereF ′ = dF /dr. When the lower boundary condition (4) is imposed, equation (2) hasN

linearly independent solutions.
Let open channels haveεi > 0 and closed channels haveεi < 0, and let there beNo open

channels. For a closed channeli we obtain, in general, solutionsFij (r)which are exponentially
increasing in the limit ofr large. The physical solutionsG(r) are required to be everywhere
bounded, and are obtained on forming linear combinations of the columns ofF (r). The matrix
G hasN rows andNo columns.

Given thatr0 is large compared with the mean radii of the target states, it may be shown
that|Wii ′(r)| � 2/r for all ii ′ and allr > r0. The terms inW can therefore always be handled
using first-order perturbation theory.

2.1. The codeSTGF

Berringtonet al (1987) describe a code,STGF, which handles terms inW using first-order
perturbation theory without making use of QDT. That code can be used for any value of
the energy but it is not well adapted to the problems of locating narrow resonances or for
obtaining cross-sections averaged over resonances. We useSTGF as a benchmark: results
obtained employing other methods are compared with those fromSTGF.

3. Coulomb functions

Coulomb functionsy(r) are solutions ofhy = 0. Here we use Coulomb functionss andc
which are equal toπ1/2 times the Coulomb functionss andc defined in S83. For values of|ε|
which are sufficiently small and values ofr which are not too large, the functionss andc are
slowly varying functions ofε.

For ε > 0 the functions have asymptotic forms ∼ k−1/2 sin(ζ ) andc ∼ k−1/2 cos(ζ )
wherek = ε1/2 and whereζ is the usual Coulomb phase function. Forε < 0 one puts
ν = 1/(−ε)−1/2 and defines

σ = sin(πν) and γ = cos(πν). (5)
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One may then put (see equation (2.55) of S83)

s = (pσ − qγ ), c = (pγ + qσ) (ε < 0) (6)

where

p = (−1)lξ/((2πν)1/2K), q = (−1)lθ(πν3/2)1/2K (7)

and whereξ andθ are defined in S83 andK = [ν20(ν + l + 1)0(ν − l)]−1/2. The functionsθ
andξ have asymptotic forms

θ ∼ (2r/ν)ν exp(−r/ν), ξ ∼ (2r/ν)−ν exp(+r/ν). (8)

4. The QDT formula with no long-range potentials

WithW = 0 the functionsF are linear combinations of the functionss andc. We put

F = s + cK(0) (9)

which definesK(0). Using (4) we obtain

K(0) = −(c −Rc′)−1(s −Rs ′) (10)

which is the value ofK for the case of no outer-region multipole potentials.
One partitionsF according to the scheme

F =
(
Foo Foc

Fco Fcc

)
, (11)

where subscripts ‘o’ and ‘c’ are used for open and closed channels, and takes the physical
solutions to be

G = F
(
Loo

Lco

)
. (12)

Using (9) one then obtains

Goo = sLoo + c(K(0)ooLoo +K(0)ocLco) (13)

and

Gco = p[γK(0)coLoo + (σ + γK(0)cc )Lco] + q[σK(0)coLoo + (−γ + σK(0)cc )Lco]. (14)

We now takeLoo andLco to be such as to eliminate the exponentially increasing functionp

in (14),

γK(0)coLoo + (σ + γK(0)cc )Lco = 0, (15)

and takingLoo = 1 we then obtain from (13)

Goo = s + cK (16)

where

K = K(0)oo −K(0)oc (τ +K(0)cc )
−1K(0)co (17)

and whereτ = σ/γ = tan(πν).
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5. Perturbed outer-region functions

LetS andC be functions calculated allowing forW as a first-order perturbation,

hS +W s = 0, hC +W c = 0. (18)

Let the Wronskian for any two functionsa andb beW(a, b) = ab′ − a′b. The Coulomb
functions have WronskiansW(c, s) = 1 andW(q, p) = 1. We may therefore put

S = s + s〈cs〉 − c〈ss〉 and C = c + s〈cc〉 − c〈sc〉 (19)

where

〈ab〉 =
∫ r

rI

aW b dr, (20)

and where a choice of the lower limit,rI , provides a specification of the boundary conditions
to be imposed on the functions.

In formulating the theory it is convenient to introducer1 as a value ofr which is large but
finite and to takeW (r) = 0 for r > r1. All of our final results are independent of the choice
of r1. With two different choices for the lower limitrI we obtain

S = s + s(cs)− c(ss), C = c + s(cc)− c(sc) for r > r1,
S = s, C = c at r = r0,

}
with rI = r0

(21)

S = s, C = c for r > r1,
S = s − s(cs) + c(ss), C = c − s(cc) + c(sc) at r = r0,

}
with rI = ∞

(22)

where we now use integrals

(. . .) =
∫ r1

r0

. . . . (23)

6. Use of the perturbed functions

We calculate a perturbed reactance matrixK and then calculate the scattering matrix as
S = (1 + iK)(1 − iK)−1: that gives the scattering matrix to be symmetric and unitary so
long asK is symmetric and real.

6.1. Elimination of the exponentially increasing solutions

In order to study the elimination of the exponentially increasing functions we use functionsF

which are linear in the perturbation integrals. We therefore takerI = r0 in (20) and switch to
the use ofs andc for open channels andp andq for closed channels. We then have

Soo = s + s〈cs〉 − c〈ss〉, (24)

Soc = [s〈cp〉 − c〈sp〉]σ − [s〈cq〉 − c〈sq〉]γ, (25)

Sco = p〈qs〉 − q〈ps〉, (26)

Scc = [p + p〈qp〉 − q〈pp〉]σ − [q + p〈qq〉 − q〈pq〉]γ. (27)

Similar equations for the sub-matrices ofC can be obtained on making the following
replacements in (24)–(27):s → c, c→−s, q →−p andp→ q.

We put

F = S +CK(0) (28)
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where, sinceS = s andC = c at r = r0,K(0) is still defined by (10). The asymptotic forms
for G are obtained using (12) and (28), and the asymptotic forms (21) forS andC. We omit
terms which go to zero in the limit ofr →∞. Using integrations by parts† it may be shown
thatq〈ps〉, q〈pc〉 andq〈pq〉 all go to zero in that limit. Defining

P = s〈cp〉 − c〈sp〉 and Q = p〈qp〉 − q〈pp〉 (29)

it may be shown similarly thatP andQ behave likep/rλ+1 for r large.
After a little algebra we obtain the following asymptotic forms:

Goo = s(ALoo +BLco) + c(CLoo +DLco) +PT , (30)

Gco = p(XLoo + Y Lco) +QT , (31)

where

A = 1 + (cc)K(0)oo + (cq)σK(0)co + (cs), (32)

B = (cc)K(0)oc + (cq)(−γ + σK(0)cc ), (33)

C = (1− (sc))K(0)oo − (ss)− (sq)σK(0)co , (34)

D = (1− (sc))K(0)oc − (sq)(−γ + σK(0)cc ), (35)

X = (qs) + (qc)K(0)oo + (γ + (qq)σ )K(0)co , (36)

Y = (qc)K(0)oc + (γ + (qq)σ )K(0)cc + σ − (qq)γ (37)

and

T = γK(0)coLoo + (σ + γK(0)cc )Lco. (38)

In equations (32)–(37) we use integrals(. . .) = ∫∞
r0

. We eliminate the increasing functionsto
a consistent first orderinW . ForW = 0 we have, from (15),T = 0 and forW 6= 0 we may
therefore assumeT to be of orderW . In (30) and (31) we therefore omit the termsPT and
QT which are of orderW 2.

For r large we require thatGoo = s + cK and thatGco goes to zero. We therefore put

ALoo +BLco = 1, (39)

CLoo +DLco = K, (40)

XLoo + Y Lco = 0. (41)

On solving (39) and (41) forLoo andLco we obtain from (40)

K = CA−1 + (CA−1B −D)1−1XA−1 (42)

where

1 = Y −XA−1B. (43)

These are the equations which MJS obtained 20 years ago. He did not like them, as being
too cumbersome, and did not, therefore, publish them.

6.2. Variants on the method

6.2.1. Variant 1. Continuing to userI = r0, from (21) and (28) we have, forr > r1,

F = S +CK(0) = [s + s(cs)− c(ss)] + [c + s(cc)− c(sc)]K(0) (44)

= s[1 + (cs) + (cc)K(0)] + c[−(ss) +K(0) − (sc)K(0)] (45)

† The prototype of the integrals involved is given by:
exp(−κr) ∫ r−λ−1 exp[(κ + ik)r] dr = (κ + ik)−1{r−λ−1 exp(ikr) + (λ + 1) exp(−κr) ∫ r−λ−2 exp[(κ + ik)r] dr}.
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and hence, on re-normalizingF ,

F = s + cK(1) (46)

where

K(1) = [−(ss) +K(0) − (sc)K(0)][1 + (cs) + (cc)K(0)]−1. (47)

6.2.2. Variant 2. We now take the lower limit to berI = ∞ and put

F = S +CK(2) (48)

where we now haveS = s andC = s for r > r1. From (4),

K(2) = −(C −RC ′)−1(S −RS′) at r = r0, (49)

whereS andC at r = r0 are given by (22). Using (10) we obtain

K(2) = [1 + (sc) +K(0)(cc)]−1[−(ss) +K(0) −K(0)(cs)]. (50)

Although, analytically, (49) and (50) give identical values forK(2), numerically, (50) is more
accurate whenc becomes large atr = r0 as its inner turning point moves out beyond the
R-matrix boundary with increasingl.

6.3. Symmetrization ofK

We see thatK(2) is the transpose ofK(1). We require a symmetric matrixK and therefore put

K = ( 1
2)
(
K(1) +K(2)

)
. (51)

For r > r1 we can then putF = s + cK and obtain, as in section 4,

K = Koo−Koc(τ +Kcc)
−1Kco. (52)

6.4. Summary on elimination of the increasing solutions

In section 6.1 we used functionsF linear in the perturbation integrals. We obtained the
expressions (30), (31) for the physical functionsG in which the perturbation integrals involving
the increasing functionsp occur only in the termsPT andQT which are of second order
in the perturbation. To a consistent first order we neglected those terms. But the method of
section 6.1 did not give an expression forK of the desired form (1).

In section 6.2 we re-normalized the functionsF to the forms (46) or (48) before forming
the linear combinations to obtainG. In those expressions the perturbation integrals occur in
both the numerators and denominators on the right-hand sides of (47) and (50). We now make
the assumption—without proof—that in (47) and (50) one can neglect all integrals involving
the functionsp, i.e. the closed-channels andc functions can be replaced by−qγ andqσ ,
respectively. We then obtain expressions of the form (1) involving only convergent integrals.

7. The method of GRPB

GRPB calculateK using equations similar to (49), (50) of the present paper, and subsequently
symmetrizeK. Their method differs from that described in section 6 in that, in the elimination
of divergent integrals, they use approximations which are less drastic.

Let us define pointsa = r0, b = r1 andc = r0 + i(r1− r0). All integrals around the closed
coutour,

∫
abca

, are equal to zero. For open channels, GRPB use functions such as

φ+ = c + is ∼ k−1/2 exp(iζ ) (53)
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and consider integrals†(φ+p): then(cp) and(sp) are the real and imaginary parts of(φ+p).
Alongac,φ+ is exponentially decaying andp is oscillatory, so that the integral

∫ c
a

is convergent
in the limit of r1→∞: GRPB taker1 to be such that adequate convergence is obtained. They
replace the integral

∫ b
a

by the integral
∫ c
a

, which implies neglect of the integral around the
contourbc, which is divergent in the limit ofr1→∞. They assert, without proof, that ‘when
we form the physical closed-channel solution . . . these divergences cancel’. The discussion
of section 6 provides some justification for their procedure.

In section 6.1 we neglected the termsPT andQT in (30), (31). In the method of GRPB
one would retain the contribution from those terms from the integrals alongac and neglect
only the divergent contribution fromcb.

8. Some numerical results

We have made calculations for a simple model.

The model. We consider two channels with energiesE1 = 0.0,E2 = 0.5; angular momenta
l1 = 0, l2 = 1; inner-region boundary atr0 = 2; outer-region chargez = 1. We shall consider
energiesE in the range 0< E < E2 and shall refer to channel 1 as open (subscript ‘o’) and
channel 2 as closed (subscript ‘c’). The effective quantum number in the closed channel is
ν = 1/[E2 − E]−1/2.

The inner-region solutions. We assume no inner-region coupling between channels ‘o’
and ‘c’ and take the inner-region quantum defects to beµo and µc. Then atr = r0
the inner-region functions are:foo = (so cos(πµo) + co sin(πµo)), foc = 0, fco = 0,
fcc = (sc cos(πµc) + cc sin(πµc)). TheR-matrix isRoo = foo/f

′
oo, Roc = 0, Rco = 0,

Rcc = fcc/f
′
cc.

The outer region. The only non-Coulomb interaction in the outer region is taken to be dipole
coupling between channels ‘o’ and ‘c’:Woo = Wcc = 0, Woc = Wco = C/r2. We take
C = 1.0.

The two methods. Equation (51) is obtained on neglecting all integrals involving the
increasing functionp. We refer to that as method 1. The method of GRPB makes less
drastic approximations and will be referred to as method 2.

We putKoo = tan(πη): thenπη is the elastic scattering phase shift. Withµo = 0, one
obtains resonances in the vicinity ofν = (n − µc), with η ' 1

2 at ν ' (n − µc). Figure 1
showsη for then = 4 resonances withµc = 0. Results from method 2 are shown as full
curves, those from method 1 as dashed curves. The top part of the figure shows values ofη.
The differences in values ofη from the two methods are seen to be fairly small: the differences
between method 2 andSTGFare indistinguishable on the scale used in the top part. The lower
part shows, on a more expanded scale, values ofδη(1) = η(1)−η (STGF) andδη(2) = η(2)−η
(STGF). In the vicinity ofν = 4 we haveη ' 0.5 and tan(πη) is large: largish values ofδη then
give fractional errors in tan(πη) which are quite small. It is seen that method 1 gives errors
much larger than those from method 2.

Figure 2 shows the elements of the matrixK for 3.5 6 ν 6 4.5. It is seen that method 2
givesK to be nearly constant in that range, but that method 1 gives much more marked

† Strictly speaking, they consider integrals(φ+sc) and(φ+cc) wheresc = (pσ − qγ ) andcc = (pγ + qσ). The
contributions fromq are convergent.
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Figure 1. Values ofη for µc = 0 (the elastic-scattering
phase-shift isπη). Full curves, method 2; dashed curves,
method 1. The upper plot shows values ofη, and the
lower plot values ofη − η (STGF).

Figure 2. The elements of the matrixK for µc = 0.
Curves as for figure 1.

variations. This is to be expected since method 1 uses the closed-channel functionq which is
not slowly varying with energy while method 2 uses closed-channels andc functions which
are.

Forµc = 0.5 the resonances are much narrower than those forµc = 0. Figure 3 shows
values ofη for 3.4 6 ν 6 3.6. It is seen again that the differences between values ofη from
the two methods are fairly small, but that method 2 is much more accurate than method 1. For
the two-channel case the variants (47) and (50) are identical. For the case ofµc = 0.5 we find
that the matrices in the denominator of those expressions have a singularity in the vicinity of
ν = 3.43. Figure 4 shows that leads to some rather wild variations in the elements ofK for
method 1. There is, however, no similar wild variation inη (see figure 3).

9. Discussion

The multipole potentials are handled using perturbation theory. In order to study systematically
the elimination of exponentially increasing functionsp, it is necessary to use functionsF
which are linear in the perturbation integrals. In section 6.1 we showed that results correct to
a consistent first order in the perturbations are obtained if one neglects all integrals involving
the functionsp. In that section we obtained a somewhat ugly expression forK which does not
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Figure 3. As figure 1, forµc = 0.5. Figure 4. As figure 2, forµc = 0.5.

have the form of (1). In section 6.2 we obtained two variants, one withK of the formBA−1

and the other with the formA−1B. Taking the mean we obtained a symmetricK which can
be used in (1). In section 8 that was referred to as method 1.

Less drastic approximations are made in the work of GRPB. In their work the perturbation
integrals involvingp are evaluated in the complex plane and the only approximation is to
neglect contributions from a contour on which|r| → ∞. In section 8 that was referred to as
method 2.

We have presented some numerical results for a simple model. The values forK from
method 2 are more accurate than those from method 1. More important is the fact that method 2
gives matricesK which are much more slowly varying as functions of energy. In the present
paper we have considered only two simple examples, but we note that in the work of GRPB
many other examples were considered and found to give equally satisfactory results. The
practical usefulness of equation (1) is that, ifK is slowly varying, it need be calculated only
for a small number of energies. The scattering matrix isS = (1 + iK)(1− iK)−1. Defining
S = (1 + iK)(1− iK)−1 one obtains

S = Soo− Soc[Scc− exp(−2π iν)]−1Sco (54)

which can be used to locate positions and widths of resonances and to obtain cross-sections
averaged over energy (see S83).

It should be noted that we have not achieved a complete mathematical derivation of the
formulae used in methods 1 and 2, although they are rendered plausible by the discussion of
section 6.1. Extensive numerical testing shows that method 2 does indeed give accurate results.
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10. The computer codes

The original version ofSTGF was written by MJS. With various modifications it has been
used extensively in the work of the Opacity Project (The Opacity Project Team 1995) and the
subsequent Iron Project (Hummeret al 1993). The subroutineCORINT used in the work of
GRPB for the calculation of the perturbation integrals was written by Dr F Robicheaux. A
version ofSTGFincorporating the methods of GRPB has been written by NRB and will be used
in a new project, RmaX, which will be mainly concerned with the calculation of data important
for x-ray astronomy.
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