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Abstract. We present the results ofR-matrix Breit–Pauli and intermediate-coupling frame
transformation (ICFT) calculations for the electron-impact excitation of Ni4+ at low energies. We
focus on the correlation resonances due to the 3p53d8 configuration, which are a severe test of the
ICFT method. We observe differences between the results of the two methods for the detailed shape
and position of the broad correlation resonances but the effect of using the Breit–Pauli method is
mainly redistributive, except for extremely weak transitions. This observation, together with our
previous findings (Griffinet al 1998J. Phys. B: At. Mol. Opt. Phys.31 3713–27), means that the
ICFT method is expected to be an accurate way of allowing for relativistic effects in the electron-
impact excitation of complex ions, particularly for rate coefficients for the spectroscopic modelling
of astrophysical plasmas.

1. Introduction

Electron-impact excitation of complex (open-shell) ions, such as ions of the transition metals,
is a key process for diagnosing many laboratory and astrophysical plasmas. Large numbers
of target states are required both to allow for coupling between levels, and to obtain accurate
atomic structure via a large configuration-interaction (CI) basis. Furthermore, relativistic
effects can be expected to be significant here (Z > 20). The importance of the contribution from
resonances to the rate coefficient for many transitions makes theR-matrix method the optimal
close-coupling (CC) theory to use. New algorithms to treat d-shells efficiently, and associated
computer codes to implement them, have been developed by Burkeet al (1994). These codes
(RMATRX II) are non-relativistic. Whilst a Breit–Pauli version could be developed, as has
been done for RMATRX I—see Berringtonet al (1995), an alternative approach is possible
based on an intermediate-coupling frame transformation (ICFT), see Griffinet al (1998).

The ICFT method is based on an initial non-relativistic solution to the scattering problem
and a multi-channel quantum defect theory (MQDT) solution in the outer region, i.e. outside
of theR-matrix box, which treats all closed channels as open (see Badnellet al 1998). The
unphysicalK-matrix is transformed to intermediate coupling using term-coupling coefficients
— since all channels are treated as open, the severe difficulties encountered with transforming
the physicalK-matrix at closed-channel energies is avoided (Griffinet al 1998). In addition,
the use of a frame transformation ensures that Rydberg series converge on non-degenerate level
energies rather than term energies. A similar approach can be taken with photoionization, but
there the unphysical dipole matrices are transformed as well, see Gorczycaet al (1998). The
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advantage of an ICFT calculation over a full Breit–Pauli calculation arises primarily from
the fact that it employs the non-relativistic (N + 1)-electron Hamiltonian inLS-coupling,
rather than the much larger Breit–Pauli (N +1)-electron Hamiltonian in intermediate coupling.
Therefore, Breit–Pauli calculations are often an order of magnitude more demanding than
ICFT calculations and, since there appears to be no end in sight with respect to the size of the
problems of current interest, the ICFT method allows one to tackle many problems that might
be otherwise intractable.

However, one aspect of the ICFT method that has yet to be studied is how it fares when
correlation resonances are present. These arise from (N +1)-electron configurations explicitly
added to the total wavefunction for the electron–ion system, both to satisfy the orthogonality
requirement and to allow for short-range correlation effects so as to partially offset the use
of a non-convergedN -electron eigenstate expansion. We expect correlation resonances to
be a severe test of the ICFT method for the following reasons: (i) standard MQDT does not
factor-out the energy dependence of such resonances (this applies to our Breit–Pauli MQDT
calculations as well); (ii) no frame transformation is applied here and so the core levels are
degenerate, this is in addition to the usual neglect by the ICFT method of the nuclear spin–
orbit interaction with the Rydberg electron which is likely to be most noticeable for low-
lying resonances; and (iii) the transformation to intermediate coupling using term-coupling
coefficients is based on a core ofN -electrons that are inequivalent to the (N + 1)th electron —
correlation resonances frequently involve equivalent electrons.

In this paper we report on both Breit–Pauli and ICFT results for the electron-impact
excitation of transitions within the ground configuration of Ni4+. This system has been
studied recently inLS-coupling by Tenget al (1998). They observed large, broad, correlation
resonances in a number of transitions and so this system is an ideal one to study the accuracy
of the ICFT method in the severe circumstances noted above. The outline of the remainder of
this paper is as follows: in section 2 we review the relevant theory, in section 3 we look at its
specific application to Ni4+, in section 4 we present our results, and we finish in section 5 with
a short conclusion.

2. Theory

The total (N + 1)-electronR-matrix wavefunction,9E , in the inner region can be expanded in
terms of basis functions,9k, at any energyE as (Burke and Robb 1975)

9E =
∑
k

AEk9k, (1)

where the expansion coefficientsAEk are ultimately determined by theR-matrix, and the basis
functions can be expanded as

9k = A
∑
ij

∫
cijk8iuij (r) +

∑
l

dlkφl. (2)

The8i areN -electron (atomic) eigenstates and theuij are continuum basis orbitals which are
taken to be orthogonal to the atomic basis orbitals. Theφl are (N + 1)-electron states formed
from the atomic basis orbitals and they are added to ensure completeness of the basis functions
9k, given the orthogonality condition. It is theseφl that give rise to the correlation resonances,
so-called because a largeφl set can model short-range electron–electron correlation effects.
Thecijk anddlk coefficients are determined by diagonalizing the (N +1)-electron Hamiltonian
in the inner region, the eigenvalues and eigenvectors of which determine the (low-lying) poles
and surface amplitudes of theR-matrix. A is the anti-symmetrization operator. The sum
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over bound and the integral over continuumN -electron atomic eigenstates in (2) can only be
made to converge for the simplest of systems by using, say, Laguerre basis states to discretize
the continuum (and further discretize closely-spaced bound states) as implemented in the
convergent close coupling (CCC) method (Bray and Stelbovics 1992) andR-matrix with
pseudo-states (RMPS) method (Bartschatet al 1996). Thus, we have a further motivation for
wanting to be able to use as large anN -electron eigenstate expansion as possible, and the use
of LS-coupling for the (N + 1)-electron Hamiltonians facilitates this.

To obtain the reactanceK-matrix, and hence the collision strength and cross section, the
inner region radial wavefunctions for each channeli are matched on theR-matrix boundary
(at r = a) to the outer region solutions. This leads to, in matrix notation,

K = −(C −RC ′)−1(S −RS′) at r = a, (3)

where′ denotes the spatial derivative,R is theR-matrix and theS andC functions are first
order perturbations ofs andc such that (Seaton 1985)

S(r) ∼
r→∞ s(r) and C(r) ∼

r→∞ c(r), (4)

wheres andc are (diagonal matrices of) the usual Coulomb functions (Seaton 1983). The
perturbation ofs andc is due to the long-range non-Coulomb multipole potentials in the outer
region (see also Berringtonet al 1987). If equation (3) is only applied to open channels then
the usual physicalK-matrix is obtained. We also solve for the perturbedS andC functions
for all closed channels (Badnellet al1998). Thes andc functions are then divergent (but only
the finite part of the perturbation integrals is retained, see Gorczycaet al (1996)). The phys-
icalK-matrix is obtained by requiring the elimination of the divergence from the unphysical
K-matrix (Seaton 1983):

K = Koo−Koc [Kcc + tan(πν)]−1Kco, (5)

where the matrices are partitioned by open (o) and closed (c) channels,ν denotes the effective
quantum numbers and tan(πν) is a diagonal matrix. This is all that is required for a Breit–Pauli
or LS-coupling calculation. The ICFT method has a further step between equations (3) and
(5). The unphysicalLS-couplingK-matrix is transformed first tojK-coupling,

KjK ←− UT
1KLSU1, (6)

by an algebraic recoupling matrix,U1 — see Griffinet al (1998). (KjK can also be closed-off
via equation (5) to obtain, subsequently, purelyjK-recoupled level-resolved cross sections.)
Second, the unphysicaljK-couplingK-matrix is transformed to intermediate coupling,

KIC ←− UT
2KjKU2, (7)

using a term-coupling matrix,U2 (see Griffinet al 1998, Jones 1975). In addition, calculated
or observed level energies are used in the evaluation of the channel energies—this is the frame
transformation (see e.g. Aymaret al 1996). The advantage of using an MQDT approach for
LS-coupling, ICFT or Breit–Pauli calculations is that the solution in the outer region need only
take place at a small number of energies (∼100) since the unphysicalK-matrix is (usually)
slowly varying with energy and so it is amenable to simple interpolation onto the much finer
energy mesh that is necessary to delineate detailed resonance structures. An additional advan-
tage that is realized with the ICFT method is that the transformation only takes place on the
coarse energy mesh; furthermore, since all channels are treated as open, the large errors that
can arise on transforming only the open–open part of the physicalK-matrix at closed-channel
energies are avoided (see Griffinet al (1998) for a detailed discussion). However, one draw-
back to the ICFT method, compared to the Breit–Pauli method, is that it neglects the nuclear
spin–orbit interaction of the(N + 1)th electron. This effect is largest on low-lying resonances.
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But in the case of correlation resonances the level splitting of the ‘core’ term energies is also
omitted as no frame transformation is applied. Furthermore, the term-coupling transformation
matrix is based on a diagonalization of theN -electron target Hamiltonian (see Jones 1975)
but the(N + 1)th electron in a correlation configuration is frequently equivalent to one in the
N -electron target and the use of a transformation based on theN -electron target is question-
able. More generally, low-n resonances, whether they are treated as correlation or not, probe
the accuracy of the ICFT method because of the possibility of a strong interaction between
the (N + 1)th electron and theN -electron core, which is not modelled by the term-coupling
transformation matrix. The case of equivalent electrons is just the most extreme example.

Finally, we note that the second term on the r.h.s. of equation (5) factors-out the energy
dependence of resonances associated with closed-channel functions arising from the first
expansion on the r.h.s. of equation (2), the surface amplitudes of which are non-vanishing.
The correlation resonances (due to the second expansion on the r.h.s. of equation (2)) are
fully contained within theR-matrix box, i.e. have negligible surface amplitudes, and they
are described byKoo which is, thus, rapidly varying with energy. (Although, we note that
such resonances are usually very broad, relatively speaking.) Within the framework of the
streamlined eigenchannelR-matrix method (Greene and Kim 1988), Lecomteet al (1994)
have analysed how the resonant and non-resonant parts ofKoo (actually,Soo) can be separated.
Our approach is to simply use a sufficiently fine energy mesh to minimize interpolation error
to the desired level—with no interpolation ofKoo the ‘problem’ does not arise.

3. Application to Ni4+

We focus on transitions within the 3p63d6 ground configuration of Ni4+. This LS-mixes
strongly with the 3p43d8 configuration. We used the SUPERSTRUCTURE (Eissneret al1974)
subset of AUTOSTRUCTURE (Badnell 1986) to determine our atomic structure. We included
both the 3p63d6 and 3p43d8 configurations in our description of the Ni4+ atomic structure. We
usednl-dependent Thomas–Fermi–Dirac–Amaldi statistical model potentials to determine
the radial orbitals. The scaling parameters,λnl , were taken to be unity in the determination
of the 1s, 2s and 2p radial orbitals while the remainder were determined simultaneously by
minimizing the average energy of all (16) terms of the 3p63d6 configuration. This resulted
in the following values, forλnl , of 1.070 76, 1.055 02 and 1.046 21 fornl = 3s, 3p and 3d,
respectively. In table 1, we present our calculated energies for the 34 levels of the ground
configuration and compare them with observed ones taken from Kelly (1987). (We note that
our term energies differ from those of Tenget al (table 2, 1998) by an amount that is much
smaller than the difference from the observed, weighted over fine structure.) We note that
some of the term labels on the levels are merely that, labels. They are, in fact, highly mixed.
For example, level 9, labelled3H4, is actually 36%3F4 and 41%3H4 while level 11, labelled
3F4, is actually 53%3H4 and only 31%3F4. We shall see the consequences of this later.

In ourLS-coupling, and hencejK-coupling, calculation the calculated term energies were
adjusted to the observed energies, weighted over fine structure, by adjusting the diagonal of
the (N + 1)-electron Hamiltonian (see, e.g., Berringtonet al 1995); similar adjustments were
made for the levels in our Breit–Pauli calculation. The prescription for our ICFT calculation
is a little more subtle. The inner region calculation proceeds as in a normalLS-coupling run,
including adjustment of the term energies. The term-coupling coefficients are determined from
a separate run using the calculated term and level energies. Thus, in addition to the (optional)
replacement of the calculated level energies with the observed for the frame transformation,
the calculated term energies must also be replaced with the observed before the intermediate
coupling transformation is applied because theLS-couplingK-matrix data will be indexed by
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Table 1. Energies in Rydbergs of the lowest 34 levels of Ni4+, relative to the ground level, all from
the 3p63d6 configuration.

Index Level Theory Observeda Index Level Theory Observeda

1 5D4 0.0000 0.0000 18 1I6 0.4324 0.3759
2 5D3 0.0085 0.0081 19 3D2 0.4206 0.3793
3 5D2 0.0143 0.0136 20 3D1 0.4207 0.3800
4 5D1 0.0179 0.0171 21 3D3 0.4236 0.3820
5 5D0 0.0197 0.0188 22 1G4 0.4144 0.3846
6 3P2 0.2581 0.2383 23 1S0 0.4459 0.4347
7 3H6 0.2864 0.2471 24 1D2 0.5030 0.4429
8 3H5 0.2901 0.2513 25 1F3 0.5964 0.5278
9 3H4 0.2891 0.2539 26 3P0 0.6745 0.6082

10 3P1 0.2835 0.2615 27 3P1 0.6828 0.6155
11 3F4 0.2962 0.2654 28 3F2 0.6898 0.6254
12 3F3 0.2978 0.2695 29 3F4 0.6915 0.6262
13 3P0 0.2925 0.2701 30 3F3 0.6924 0.6275
14 3F2 0.3012 0.2725 31 3P2 0.6996 0.6302
15 3G5 0.3431 0.3031 32 1G4 0.7934 0.7099
16 3G4 0.3504 0.3104 33 1D2 1.0533 0.9516
17 3G3 0.3534 0.3136 34 1S0 1.3284 —

a Kelly (1987).

the observed term order while, initially, the term-coupling coefficients are still indexed by the
calculated energy order. To put it more simply, if observed term energies are used in (STG3 of)
theLS-coupling calculation, then the same energies must be used to index the transformation
to intermediate coupling. (Strictly speaking, this is only necessary if the term order changes.)

As is well known, the use of observed energy levels relative to the ground level does not
change the position of the (N + 1)-electron correlation levels. The correlation configurations
used here are 3p63d7, 3p53d8 and 3p43d9. The first is non-autoionizing while the last is
situated well above our energy range of interest. As noted by Tenget al (1998), it is the 3p53d8

configuration that gives rise to the correlation resonances that are the focus of the present
work. There is little in the way of observed level energies relating to autoionizing levels; but,
fortunately in this case, the 3p53d8 correlation resonances are situated far enough above the
ionization limit for changes in position, comparable to the differences between theory and
observation (see table 1), to be unimportant for the present study.

Our inner-region calculations were carried out using codes that were originally based
on the published version of RMATRX I (Berringtonet al 1995). Since we are focusing on
low energies, and to keep the Breit–Pauli calculation tractable, we used ten continuum basis
orbitals per orbital angular momentum in all of our calculations. OurLS-coupling, and hence
jK-coupling, calculation included the 16CC terms from the 3p63d6 configuration and the 57CI
terms that arise from using the 3p43d8 CI configuration as well. Our Breit–Pauli calculation
used the corresponding 34CC and 93CI levels. The use of different sized CC and CI expansions
assumes that there is negligible coupling to the states that are included in the CI expansion,
but not in the CC expansion—we denote this set CI′. The requirement of the ICFT method
is subtly different. In addition to requiring that this coupling be negligible, spin–orbit mixing
between the CC terms and the CI′ terms must also be negligible because spin–orbit mixing
is not taken into account until theK-matrices are transformed. However, this is a very good
approximation since spin–orbit mixing between configurations is normally very small; indeed,
in our Ni4+ problem, renormalization of the term-coupling coefficients for the CC terms, due
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Figure 1. Breit–PauliR-matrix electron-impact excitation collision strength for the transition
5D4–3P2 in Ni4+.

to the neglect of term-coupling coefficients for the CI′ terms, changes the former by less than
one part in 104. Even if this were not the case, a 57CC term ICFT calculation (which models
a 93CC level Breit–Pauli calculation) still only gives rise to at most 170 channels perLSπ

symmetry while the 34CC levels give rise to as many as 201 channels perJπ symmetry.
Finally, we carried out ourLS-coupling calculation up toL = 11 to enable us to generate
jK-coupling and intermediate-coupling results up toJ = 17/2, which was also the highestJ
included in our Breit–Pauli calculation.

Our outer region calculations were carried-out with our MQDT version (Badnellet al
1998) of Seaton’s unpublished STGF code. We included both dipole and quadrupole perturb-
ing potentials—these change the background collision strengths by no more than a few per cent
for the strongest transitions considered and by∼20% for the weakest; resonance shapes and
positions are affected correspondingly. This is all that is required to complete the Breit–Pauli
calculation. The transformations etc, required to complete ourjK-coupling and ICFT calcula-
tions, as detailed in section 2, were carried out using the (STGIC) code of Griffinet al (1998).

4. Results

In figures1 and 2 we present out Breit–Pauli collision strengths for the5D4–3P2 and5D4–3H6

transitions in Ni4+. All energies are relative to the ground level. Above∼1 Ryd, we observe
the broad correlation resonances that arise in the4Do

J and4Go
J partial waves and which are

very similar to those observed inLS-coupling by Tenget al (1998). We used 551 points
(without interpolation) over 0.7–1.8 Ryd to map-out this structure. We also note that the
narrow resonance structure below∼0.6 Ryd is mapped-out efficiently using MQDT (equation
(5)). We used 221 points initially over 0.26–0.7 Ryd and interpolated the unphysicalK-matrix
at 2201 points. The accuracy of the ICFT method for this type of resonance has been studied by
Griffin et al (1998, 1999)—it is very accurate—and so we focus on the correlation resonances.

In figure 3 we compare out Breit–Pauli results with ourjK-coupling and ICFT results
for the same transitions. The Breit–Pauli peaks are about 0.06 Ryd lower in energy and a
little broadened and shifted compared to thejK-coupling and ICFT results, which are barely
distinguishable. We note a splitting starting to appear in the peak of the Breit–Pauli results
at 1 Ryd. This splitting is probably due to nuclear spin–orbit interactions of the 3p-electrons
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Figure 2. Breit–PauliR-matrix electron-impact excitation collision strength for the transition
5D4–3H6 in Ni4+.

Figure 3. R-matrix electron-impact excitation collision strengths for the transitions (a) 5D4–3P2
and (b) 5D4–3H6 in Ni4+. Full curve, Breit–Pauli; dashed curve, ICFT; dotted curve,jK-coupling.

that are not modelled by the ICFT method—recall, no frame transformation is applied to the
correlation resonances. (The 3p spin–orbit parameter is a factor 14 larger than the 3d.) The
splitting is more evident in the results for the5D2–3P2 and5D2–3H6 transitions, which we
compare in figure 4. The difference between ourjK-coupling and ICFT results is a little
greater than for transitions from the5D4 ground level but the Breit–Pauli results exhibit a
much stronger redistribution of the resonance strength.

Next, in figure 5, we compare our results from the three methods for the5D4–3H4 and
5D4–3F4 transitions. Here we see that thejK-coupling results fail completely, both for the
background and the resonance strength. We recall from section 3 that the3H4 and3F4 levels
are strongly (spin–orbit) mixed. This effect is well represented by the ICFT method, as a
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Figure 4. R-matrix electron-impact excitation collision strengths for the transitions (a) 5D2–3P2
and (b) 5D2–3H6 in Ni4+. Full curve, Breit–Pauli; dashed curve, ICFT; dotted curve,jK-coupling.

Figure 5. R-matrix electron-impact excitation collision strengths for the transitions (a) 5D4–3H4
and (b) 5D4–3F4 in Ni4+. Full curve, Breit–Pauli; dashed curve, ICFT; dotted curve,jK-coupling.

comparison of the background with the Breit–Pauli result shows, but it is not modelled by
thejK-coupling method (of course). The ICFT and Breit–Pauli resonance strength is again
redistributed a little.

So far, the differences between the results of the ICFT and Breit–Pauli methods are mainly
redistributive, and would therefore have a small effect on the total rate coefficients. We now
give an example where this may not be the case. In figure 6, we compare our results for
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Figure 6. R-matrix electron-impact excitation collision strengths for the transitions (a) 5D4–3P0
and (b) 5D0–3H6 in Ni4+. Full curve, Breit–Pauli; dashed curve, ICFT; dotted curve,jK-coupling.

the 5D4–3P0 and5D0–3H6 transitions. These are extremely weak transitions (1J = 4 and
6, respectively) both for the non-resonant background and resonance contributions. We see
that the Breit–Pauli resonance strength is a factor of∼2 smaller (larger) for the first (second)
transition. However, one would not normally base a diagnostic on such weak transitions.

5. Conclusions

The results that we have presented here are illustrative of those that we have observed in Ni4+.
But, we have tended to focus on the worst cases. For example, for transitions between fine-
structure levels of a given term, we observed very small differences between the ICFT and
Breit–Pauli results and so we did not present them here. Except for a few extremely weak
transitions, the correlation resonances can be expected to contribute at most 10% to the rate
coefficients between levels, based on theLS-coupling results of Tenget al (1998). Even for
systems where the correlation resonances may make a somewhat larger contribution to the rate
coefficient, the redistributive nature of the Breit–Pauli results compared with the ICFT means
that the ICFT method should be more than accurate enough for plasma diagnostics. Only for
comparison with precise measurements or for a detailed analysis of autoionizing resonances is
a full Breit–Pauli treatment necessary, and then only in energy regions where such correlation
resonances are present.
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