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Abstract. In a recent paper (1998J. Phys. B: At. Mol. Opt. Phys.31 3713–27), we described
an intermediate-coupling frame transformation (ICFT) method based on multi-channel quantum
defect theory that allows one to generate accurate level-to-level excitation data from unphysicalK-
matrices calculated in pureLS-coupling. In this paper, we consider ICFTR-matrix close-coupling
calculations of effective collision strengths for the Mg-like ions Si2+, Ar6+, Ti10+ and Fe14+. In
order to further demonstrate the level of accuracy of this method, we compare our ICFT effective
collision strengths with those determined from a full Breit–PauliR-matrix calculation for Fe14+.
We also consider the use of our radiative rates and effective collision strengths in conjunction with
a collisional–radiative program to generate line-emission intensity ratios as a function of density
and temperature. The full set of energies, radiative rates, and effective collision strengths for these
four ions have been made available on the Internet.

1. Introduction

The Breit–PauliR-matrix method (see, for example, Berringtonet al 1995) provides an
effective means for the determination of electron-impact excitation cross sections. However,
for complex atomic species, the number of levels that must be included in the configuration-
interaction expansion of theN -electron target and the number of levels required in the close-
coupling expansion for the (N + 1)-electron scattering system often renders these calculations
extremely time consuming or even totally impractical. For this reason, methods such as those
employed in the program JAJOM (Saraph 1972, 1978), that are based on the transformation of
LS-coupling physicalS- orK-matrices to intermediate coupling, have often been employed
to generate approximate level-to-level cross sections. However, such transformation methods
have significant problems that have severely limited their use (see Griffinet al1998 for details).

Recently, we introduced what we refer to as the intermediate-coupling frame
transformation (ICFT) method (Griffinet al 1998). It is based on the application of multi-
channel quantum defect theory (MQDT) to first generate unphysicalK-matrices in pureLS
coupling. These unphysicalK-matrices (K) are then transformed to intermediate coupling
and the physicalK-matrices (K) are finally determined from the equation:

K = Koo−Koc[Kcc + tan(πν)]−1Kco, (1)

where the matrices are partitioned by the open (o) and closed (c) channels;ν denotes the
effective quantum numbers of the levels; and tan(πν) is a diagonal matrix. This method
eliminates many of the problems associated with the transformation of physicalS- or K-
matrices and is capable of generating accurate level-to-level cross sections in much less time
than that required for a full Breit–PauliR-matrix calculation.
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In our earlier paper, we performed an 8-term, 14-level model calculation on Fe14+ in
order to test the accuracy of the ICFT method in comparison to a Breit–Pauli calculation. We
have now completed much more extensive ICFT calculations on the Mg-like ions Si2+, Ar6+,
Ti10+ and Fe14+, in which we have included 25-terms and 45-levels in both our configuration-
interaction expansions and our close-coupling expansions. In the case of Fe14+, we have also
performed a Breit–Pauli calculation and we have compared the results from this calculation
with those obtained from a far less time consuming ICFT calculation.

The remainder of this paper is organized as follows. In section 2, we discuss our atomic
structure and scattering calculations for these four ions and present some of our results for
energies, radiative rates and effective collision strengths for Si2+ and Fe14+. In section 3, we
consider line-emission intensity ratios as can be obtained using a collisional–radiative program
such as that included in the Atomic Data and Analysis Structure (ADAS)—Summers (1994).
Finally in section 4, we summarize our findings.

2. Atomic theory

2.1. Bound-state calculations

The bound-state radial wavefunctions for all four Mg-like ions included in this study were
calculated using Froese Fischer’s Hartree–Fock program (Froese Fischer 1991). The 1s, 2s, 2p
and 3s orbitals were generated from a configuration-average Hartree–Fock (CAHF) calculation
on the configuration 3s2; while the 3p, 3d, 4s, 4p and 4d orbitals were determined from CAHF
frozen-core calculations on the configurations 3s3p, 3s3d, 3s4s, 3s4p and 3s4d, respectively.
The bound-state energies and radiative rates were calculated from configuration-interaction
Breit–Pauli calculations that included the 25 even-parity levels arising from the configurations
3s2, 3p2, 3s3d, 3s4s, 3s4d and 3d2; and the 20 odd-parity levels arising from the configurations
3s3p, 3p3d and 3s4p. In Si2+, the nine levels of the 3d2 configuration are autoionizing, while
in the other three ions they are bound.

In tables 1 and 2, we present our calculated energies for the bound levels of Si2+ and
Fe14+, respectively, in comparison with available experimental data (Martin and Zalubas 1983
for Si2+, Sugar and Corliss 1985 for Fe14+). As can be seen, our results for these two ions
are in quite good agreement with the experimental energies. To obtain further improvement
would require a much larger basis set, and this would significantly complicate our scattering
calculations. The agreement between experiment and theory for the energies of the levels of
Ar6+ and Ti10+ are comparable with the results presented here for Si2+ and Fe14+.

In table 3, we present our radiative rates calculated in the length gauge for a set of selected
transitions in Si2+ in comparison with the calculated rates for these transitions presented by
Duftonet al (1983). The data of Duftonet al (1983) were chosen for comparison because their
collisional–radiative modelling calculations as well as those of Kenanet al (1989) for this ion
were based on these particular radiative rates. With the exception of the intercombination line
3s3p3P1 → 3s2 1S0, the rates given in Duftonet al (1983) were taken from the calculations
of Baluja and Hibbert (1980). The rate for the transition 3s3d1D2→ 3s3p1P1 was not given
in Dufton et al (1983), but was determined from the calculated energies and the oscillator
strength presented by Baluja and Hibbert (1980). We see that the rates for the 3s3p3P1→ 3s2

1S0 and 3s4s1S0→ 3s3p1P1 transitions differ substantially, but the average deviation between
the rates for the other nine transitions is only 3.5%. We will consider this comparison again in
section 3. We have also calculated the radiative rates for Si2+ in the velocity gauge and found
that for the ten dipole-allowed transitions shown in table 3, they differ from these results in the
length gauge by an average of 12%. On the basis of these comparisons and others that we have
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Table 1. Energies in eV relative to the ground level of the 36 bound levels included in the 45-state
R-matrix close-coupling calculation on Si2+.

Theor. Expta Theor. Expta

Index Level energy energy Index Level energy energy

1 3s21S0 0.00 0.00 2 3s3p3P0 6.31 6.54
3 3s3p3P1 6.32 6.55 4 3s3p3P2 6.35 6.59
5 3s3p1P1 10.56 10.28 6 3p2 1D2 14.87 15.15
7 3p2 3P0 15.88 16.08 8 3p2 3P1 15.93 16.10
9 3p2 3P2 15.96 16.13 10 3s3d3D1 17.74 17.72

11 3s3d3D2 17.74 17.72 12 3s3d3D3 17.74 17.72
13 3s4s3S1 19.01 19.01 14 3p2 1S0 19.36 19.02
15 3s4s1S0 20.32 19.73 16 3s3d1D2 21.27 20.55
17 3s4p3P0 21.70 21.73 18 3s4p3P1 21.70 21.73
19 3s4p3P2 21.71 21.74 20 3s4p1P1 22.23 21.88
21 3p3d3F2 24.91 24.66 22 3p3d3F3 24.92 24.68
23 3s4d3D1 24.94 25.00 24 3s4d3D2 24.94 25.00
25 3s4d3D3 24.94 25.00 26 3p3d3F4 24.94 24.69
27 3p3d1D2 25.23 25.42 28 3s4d1D2 25.65 25.00
29 3p3d3P2 26.78 26.80 30 3p3d3P1 26.80 26.82
31 3p3d3P0 26.80 26.82 32 3p3d3D1 26.92 26.95
33 3p3d3D2 26.93 26.96 34 3p3d3D3 26.93 26.97
35 3p3d1F3 29.58 — 36 3p3d1P1 30.25 —

a Martin and Zalubas (1983).

made for the radiative rates in Si2+, we estimate that our radiative rates for the dipole-allowed
transitions between the lowest 16 levels shown in table 1 should be accurate to better than
20%. However, the radiative rates for dipole-allowed transitions involving the upper 20 levels
in table 1 will be somewhat more uncertain because of the lack of configuration mixing with
still higher levels. The dipole-forbidden transitions should only be considered estimates since
they depend critically on very weak spin–orbit mixing of the levels.

In table 4, we show our radiative rates calculated in the length gauge for transitions to
3s2 1S0, 3s3p3P0,1,2 and 3s3p1P1 in Fe14+. We have compared our results with the rates
included in the NIST data base (Fuhret al 1988), since they are widely available on the
Internet, as well as to a set of rates determined from some of the oscillator strengths calculated
by Deb and Msezane (1998). The agreement between our rates and those in the NIST data base
is, in general, quite good; however, the accuracy ratings associated with the NIST data for this
ion are not very high, especially for weak transitions that are only possible due to spin–orbit
mixing of the levels. The oscillator strengths for the transitions by Deb and Msezane (1998)
were determined using a 45-term, 87-level calculation and therefore those rates should be
expected to be more accurate than our results determined from a 25-term, 45-level calculation.
Our radiative rates differ from those of Deb and Msezane by 10% on average. We have also
calculated these rates in the velocity gauge and found that, for the dipole-allowed transitions
shown in table 4, they differ from the rates calculated in the length gauge by an average of 7%.
On the basis of these comparisons, we estimate that the radiative rates for all dipole-allowed
transitions between the levels given in table 2, should be accurate to about 15%. This improved
accuracy is primarily due to the reduced effects of correlation in this highly ionized species.
The spin–orbit mixing is much stronger in this fifteen times ionized species and the accuracy
of the spin-forbidden transitions should be better than in the case of Si2+. Indeed, we have
found that the agreement between the rates determined in the length and velocity gauges for the
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Table 2. Energies in eV relative to the ground level of all levels included in the 45-stateR-matrix
close-coupling calculation on Fe14+.

Theor. Expta Theor. Expta

Index Level Energy Energy Index Level Energy Energy

1 3s21S0 0.00 0.00 2 3s3p3P0 28.79 29.00
3 3s3p3P1 29.48 29.71 4 3s3p3P2 31.14 31.47
5 3s3p1P1 44.06 43.63 6 3p2 3P0 68.77 68.74
7 3p2 1D2 69.19 69.38 8 3p2 3P1 69.91 70.00
9 3p2 3P2 71.87 72.12 10 3p2 1S0 82.19 81.78

11 3s3d3D1 84.60 84.16 12 3s3d3D2 84.75 84.28
13 3s3d3D3 84.99 84.48 14 3s3d1D2 96.02 94.49
15 3p3d3F2 115.28 115.11 16 3p3d3F3 116.46 116.32
17 3p3d1D2 117.73 — 18 3p3d3F4 117.81 117.74
19 3p3d3D1 122.39 — 20 3p3d3P2 122.47 —
21 3p3d3D3 123.84 — 22 3p3d3P0 123.87 —
23 3p3d3P1 123.93 — 24 3p3d3D2 124.01 —
25 3p3d1F3 133.63 — 26 3p3d1P1 135.17 —
27 3d2 3F2 170.55 — 28 3d2 3F3 170.79 —
29 3d2 3F4 171.09 — 30 3d2 1D2 175.05 —
31 3d2 3P0 175.08 — 32 3d2 3P2 175.18 —
33 3d2 3P1 175.52 — 34 3d2 1G4 176.12 —
35 3d2 1S0 186.42 — 36 3s4s3S1 219.42 218.67
37 3s4s1S0 223.26 – 38 3s4p3P0 234.11 —
39 3s4p3P1 234.30 — 40 3s4p3P2 234.97 —
41 3s4p1P1 236.23 234.32 42 3s4d3D1 253.07 251.85
43 3s4d3D2 253.12 251.94 44 3s4d3D3 253.23 252.08
45 3s4d1D2 253.91 252.34

a Sugar and Corliss (1985).

Table 3. Radiative rates for selected transitions in Si2+ in units of s−1.

Transition Present results Duftonet al (1983)

3s3p3P1–3s2 1S0 0.92× 104 1.46× 104

3s3p1P1–3s2 1S0 2.77× 109 2.67× 109

3p2 3P1–3s3p3P0 7.89× 108 7.64× 108

3p2 3P0–3s3p3P1 2.31× 109 2.27× 109

3p2 3P1–3s3p3P1 5.89× 108 5.71× 108

3p2 3P2–3s3p3P1 5.94× 108 5.74× 108

3p2 3P1–3s3p3P2 9.72× 108 9.45× 108

3p2 3P2–3s3p3P2 1.77× 109 1.71× 109

3p2 1D2–3s3p1P1 2.31× 107 2.43× 107

3s4s1S0–3s3p1P1 1.81× 108 2.84× 108

3s3d1D2–3s3p1P1 5.06× 109 (4.82× 109)a

a Calculated from the energies and oscillator strength given in Baluja and Hibbert (1980).

dipole-forbidden transitions in this ion are much better than in the case of Si2+, although not
nearly as good as for the dipole-allowed transitions. Thus, when possible, plasma diagnostics
using these data should still be based primarily on dipole-allowed radiative transitions.

For sake of brevity, we have not included here our calculated radiative rates for Ar6+ or
Ti10+. We estimate that the rates for all dipole-allowed transitions for these two ions should
be good to about 20%, while the dipole-forbidden transitions are less accurate. All the energy
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Table 4. Radiative rates for transitions to 3s2 1S0, 3s3p3P0,1,2, and 3s3p1P1 for Fe14+ in units of
s−1.

Upper level Lower level Present results NISTa DMb

3s3p3P1 3s2 1S0 3.55× 107 4.1× 107 —
3s3p1P1 3s2 1S0 2.28× 1010 2.28× 1010 2.22× 1010

3s4p1P1 3s2 1S0 2.79× 1011 2.94× 1011 2.29× 1011

3p2 3P1 3s3p3P0 7.10× 109 6.9× 109 6.29× 109

3s3d3D1 3s3p3P0 1.42× 1010 1.38× 1010 1.36× 1010

3s4s3S1 3s3p3P0 2.80× 1010 3.20× 1010 —
3s4d3D1 3s3p3P0 1.92× 1011 — 2.33× 1011

3p2 1D2 3s3p3P1 1.10× 109 1.1× 109 —
3p2 3P0 3s3p3P1 1.85× 1010 1.77× 1010 —
3p2 3P1 3s3p3P1 5.03× 109 4.91× 109 —
3p2 3P2 3s3p3P1 4.54× 109 4.5× 109 4.85× 109

3p2 1S0 3s3p3P1 2.82× 108 3.2× 108 —
3s3d3D1 3s3p3P1 1.02× 1010 9.8× 109 —
3s3d3D2 3s3p3P1 1.85× 1010 1.80× 1010 1.77× 1010

3s3d1D2 3s3p3P1 3.04× 108 3.5× 108 —
3s4s3S1 3s3p3P1 8.50× 1010 9.80× 1010 —
3s4d3D2 3s3p3P1 2.61× 1011 — 3.11× 1011

3p2 1D2 3s3p3P2 2.03× 109 2.0× 109 —
3p2 3P1 3s3p3P2 7.40× 109 7.1× 109 —
3p2 3P2 3s3p3P2 1.30× 1010 1.30× 1010 1.34× 1010

3s3d3D1 3s3p3P2 6.25× 108 6.2× 108 —
3s3d3D2 3s3p3P2 5.70× 109 5.5× 109 —
3s3d3D3 3s3p3P2 2.30× 1010 2.20× 1010 2.18× 1010

3s3d1D2 3s3p3P2 1.15× 107 1.6× 107 —
3s4s3S1 3s3p3P2 1.48× 1011 1.60× 1011 —
3s4d3D3 3s3p3P2 3.56× 1011 — 4.11× 1011

3p2 1D2 3s3p1P1 1.50× 109 1.6× 109 —
3p2 3P0 3s3p1P1 5.37× 107 6.4× 107 —
3p2 3P1 3s3p1P1 7.23× 106 8.4× 106 —
3p2 3P2 3s3p1P1 4.51× 108 4.7× 108 —
3p2 1S0 3s3p1P1 2.00× 1010 1.97× 1010 2.10× 1010

3s3d3D1 3s3p1P1 2.26× 107 2.6× 107 —
3s3d3D2 3s3p1P1 1.68× 107 3.0× 107 —
3s3d1D2 3s3p1P1 4.41× 1010 4.20× 1010 4.36× 1010

3s4s1S0 3s3p1P1 2.57× 1011 1.90× 1011 —
3s4d1D2 3s3p1P1 3.12× 1011 3.40× 1011 2.49× 1011

a Fuhret al (1988).
b Deb and Msezane (1998).

levels and radiative rates for all four ions are now available on the Internet in ADAS format at the
Oak Ridge National Laboratory (ORNL) Controlled Fusion Atomic Data Centre (CFADC)†.

2.2. Excitation calculations

The effective collision strength,ϒ , first introduced by Seaton (1953) is defined by the equation

ϒij =
∫ ∞

0
�(i → j) exp

(−εj
kTe

)
d

(
εj

kTe

)
, (2)

† Webpage html: www-cfadc.phy.ornl.gov/dataandcodes



2144 D C Griffin et al

where� is the collision strength for the transition from leveli to levelj andεj is the continuum
energy of the final scattered electron. It is this effective collision strength that is used for the
input of excitation data to the ADAS suite of programs (Summers 1994) that we employ to
carry out collisional–radiative modelling. It is especially convenient for interpolation with
respect to the electron temperature,Te, because it has a much more gradual variation with
temperature than that of the rate coefficient.

The rate coefficients for collisional excitationqi→j and de-excitationqj→i can then be
determined from the equations

qi→j = 2
√
παca2

0

ωi

√
IH

kTe
exp

(
−1Eij
kTe

)
ϒij , (3)

and

qj→i = ωi

ωj
exp

(
1Eij

kTe

)
qi→j , (4)

where 2
√
παca2

0 = 2.1716× 10−8 cm3 s−1, IH = 13.6058 eV,1Eij is the threshold energy
for the transition from leveli to level j , andωi andωj are the statistical weights of leveli
and levelj , respectively. These rate coefficients are calculated internally in ADAS from the
values of the effective collision strengths.

We now describe the computational procedures we used to determine the effective
collision strengths. For all four Mg-like ions, we performed excitation calculations using
the intermediate-coupling frame transformation (ICFT) method, which has been summarized
in section 1 and described in detail in Griffinet al (1998). In order to further test the accuracy
of this method, we also performed a full Breit–Pauli calculation for Fe14+. For theLS portion
of the ICFT calculations, we performed full-exchange calculations on allLS5 partial waves
up to L = 12. This allowed us to generate the contributions from allJ5 partial waves
from J = 0.5–10.5 through our transformation technique. TheLS close-coupling expansions
included all 25 terms arising from the configurations 3s2, 3s3p, 3p2, 3s3d, 3p3d, 3d2, 3s4s, 3s4p
and 3s4d. In the case of Fe14+, we performed our Breit–Pauli calculation with full exchange
for all J5 partial waves fromJ = 0.5–10.5 and the close-coupling expansion included all 45
levels listed in table 2.

For all four ions, we employed 25 basis orbitals to represent the continuum for each value
of the total orbital angular momentum, and the radius of theR-matrix box was equal to 22.05 au
for Si2+, 9.47 au for Ar6+, 6.07 au for Ti10+ and 4.49 au for Fe14+. It is also important to note
that we do include the long-range potentials perturbatively within the context of MQDT in
our modified version of the unpublished asymptotic code STGF (Seaton 1985), using methods
described in the appendix of Gorczycaet al (1996). For these ions, the long-range potentials
have been found to make important contributions to the collision strengths.

The expansion inJ5 partial waves up toJ = 10.5 is not sufficiently complete for the
determination of effective collision strengths, especially for transitions between excited levels
where the threshold energies are relatively low. For this reason, we have also performed no-
exchange calculations inLS coupling forL = 10–50, and used the unphysicalK-matrices
from this calculation and the ICFT method to determine the contributions forJ = 11.5–
48.5. These highJ contributions were then topped-up as follows: the dipole transitions were
topped-up using a method originally described by Burgess (1974) forLS coupling, but which
we have implemented in intermediate coupling as well, while the non-dipole transitions were
topped-up assuming a geometric series inJ . Finally, these high partial-wave results were
added to the results from our calculations for the lowJ5 partial waves to determine the final
collision strengths.
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One of the difficulties associated with these calculations is obtaining a sufficiently fine
energy mesh to resolve the resonance structures. This problem is more severe for highly
ionized species where the width of the resonances can become especially narrow. If the mesh
is too coarse, one can miss some resonance contributions and this will cause the calculated
effective collision strengths to be too small. Conversely, one can also pick up a resonance that
is actually narrower than the separation between adjacent mesh points, causing the resonance
contribution to the calculated effective collision strength to be overestimated. These problems
arising from an insufficiently fine energy mesh in the resonance region are of course most
pronounced for weaker non-dipole transitions, where the contribution from direct excitation
is relatively small.

We tested for problems associated with the energy mesh in the following way. We first
calculated the effective collision strengths from equation (2), using a file of collision strengths
calculated using a given energy mesh; we then eliminated any resonances from this file that
had widths less than or equal to the separation between adjacent mesh points. If the effective
collisions strengths from these two calculations changed significantly, we employed a finer
energy mesh.

We were able to use sufficiently fine meshes in the case of Si2+, Ar6+ and Ti10 so that
the differences between the two sets of effective collision strengths were small. In fact, the
results were nearly identical for all transitions in the case of Si2+; for Ar6+ and Ti10+, they
differed by around 10% for a few of the weaker transitions at the lowest temperatures, but
were much closer for the vast majority of transitions. However, as expected, more mesh points
were required within the resonance region in the case of Ti10+ than for Si2+ or Ar6+.

For Fe14+ the problems associated with the energy mesh were somewhat more pronounced.
Even with the inclusion of 10 000 mesh points within the resonance region, we found that the
effective collision strengths for a few of the weakest transitions, calculated in the two ways
described above, differed by between 30 and 40% at the lower temperatures. However, the
vast majority of the effective collision strengths were very close and it was decided not to
go to a finer mesh because of the amount of computational time involved, especially for the
Breit–Pauli calculation.

Next we consider the results of our excitation calculations for Fe14+. It is important to
note that with the number of levels included in this calculation, the Breit–Pauli calculation
was extremely time consuming, mainly due to the size of the(N + 1)-electron matrix that
must be diagonalized inside theR-matrix box for each value ofJ and5. The inner-region
portion of the Breit–Pauli calculation took about 38 times as long as the same portion of the
ICFT calculation inLS coupling, while the asymptotic part of the Breit–Pauli calculation for
10 000 energy mesh points took about 2.5 times as long as the asymptotic part of the ICFT
calculation. With fewer mesh points, the savings associated with the ICFT method for the
asymptotic part of the problem was even more significant. In addition, it is worth noting that
the asymptotic portion of our Breit–Pauli calculation was also performed using MQDT (see
Badnellet al 1998), and this affords significant time savings over the standard asymptotic
methods employed inR-matrix calculations. Thus the savings in computational time for the
ICFT method over standard Breit–PauliR-matrix calculations would be even more significant.

In table 5, we compare Breit–Pauli and ICFT effective collision strengths from the 3s2 1S0

ground level to the levels of the configurations 3s3p, 3p2, 3s3d and 3s4s in Fe14+. Overall, the
agreement between these two sets of effective collision strengths is very good. The largest
differences occur for the weak excitation to the 3p2 3P0 level at lower temperatures. These
are due primarily to differences in the very narrow resonance structures between these two
calculations. The average difference of the ICFT results from the Breit–Pauli results for the
data shown in this table is 2.4%. This is probably smaller than the uncertainty associated with



2146 D C Griffin et al

Table 5. Effective collision strengths from level 3s2 1S0 to the levels of the configurations 3s3p,
3p2, 3s3d and 3s4s in Fe14+ from a Breit–Pauli calculation (first row) and from an ICFT calculation
(second row).

Electron temperature (K)

To level 2.25× 105 4.50× 105 1.13× 106 2.25× 106 4.50× 106 1.13× 107 2.25× 107

3s3p3P0 1.96× 10−2 1.45× 10−2 9.07× 10−3 6.01× 10−3 3.83× 10−3 2.00× 10−3 1.18× 10−3

2.00× 10−2 1.52× 10−2 9.49× 10−3 6.26× 10−3 3.96× 10−3 2.05× 10−3 1.21× 10−3

3s3p3P1 1.28× 10−1 9.20× 10−2 5.83× 10−2 4.21× 10−2 3.19× 10−2 2.40× 10−2 2.05× 10−2

1.26× 10−1 9.24× 10−2 5.93× 10−2 4.30× 10−2 3.27× 10−2 2.47× 10−2 2.14× 10−2

3s3p3P2 1.12× 10−1 8.88× 10−2 5.56× 10−2 3.61× 10−2 2.24× 10−2 1.13× 10−2 6.57× 10−3

1.02× 10−1 8.22× 10−2 5.22× 10−2 3.41× 10−2 2.13× 10−2 1.09× 10−2 6.35× 10−3

3s3p1P1 2.76× 100 2.81× 100 2.85× 100 2.92× 100 3.01× 100 3.08× 100 3.08× 100

2.78× 100 2.82× 100 2.86× 100 2.92× 100 3.01× 100 3.08× 100 3.11× 100

3p2 3P0 1.09× 10−3 7.58× 10−4 4.37× 10−4 3.48× 10−4 4.70× 10−4 6.75× 10−4 6.62× 10−4

1.44× 10−3 9.68× 10−4 5.26× 10−4 3.90× 10−4 4.89× 10−4 6.84× 10−4 6.70× 10−4

3p2 1D2 1.03× 10−1 9.67× 10−2 8.97× 10−2 8.73× 10−2 8.59× 10−2 7.56× 10−2 6.04× 10−2

1.03× 10−1 9.68× 10−2 8.96× 10−2 8.73× 10−2 8.59× 10−2 7.59× 10−2 6.09× 10−2

3p2 3P1 2.01× 10−3 1.39× 10−3 7.09× 10−4 3.97× 10−4 2.16× 10−4 9.54× 10−5 5.10× 10−5

2.01× 10−3 1.38× 10−3 7.00× 10−4 3.91× 10−4 2.13× 10−4 9.39× 10−5 5.03× 10−5

3p2 3P2 2.38× 10−2 2.18× 10−2 1.97× 10−2 1.89× 10−2 1.85× 10−2 1.62× 10−2 1.30× 10−2

2.37× 10−2 2.17× 10−2 1.96× 10−2 1.89× 10−2 1.85× 10−2 1.63× 10−2 1.31× 10−2

3p2 1S0 1.02× 10−2 7.93× 10−3 5.46× 10−3 4.08× 10−3 3.10× 10−3 2.11× 10−3 1.50× 10−3

1.02× 10−2 8.03× 10−3 5.49× 10−3 4.08× 10−3 3.09× 10−3 2.11× 10−3 1.50× 10−3

3s3d3D1 1.44× 10−2 1.38× 10−2 1.13× 10−2 8.60× 10−3 6.06× 10−3 3.47× 10−3 2.16× 10−3

1.43× 10−2 1.39× 10−2 1.14× 10−2 8.64× 10−3 6.08× 10−3 3.49× 10−3 2.17× 10−3

3s3d3D2 2.37× 10−2 2.30× 10−2 1.89× 10−2 1.44× 10−2 1.02× 10−2 5.83× 10−3 3.63× 10−3

2.42× 10−2 2.34× 10−2 1.92× 10−2 1.46× 10−2 1.02× 10−2 5.87× 10−3 3.65× 10−3

3s3d3D3 3.26× 10−2 3.16× 10−2 2.61× 10−2 2.00× 10−2 1.41× 10−2 8.09× 10−3 5.03× 10−3

3.31× 10−2 3.21× 10−2 2.64× 10−2 2.01× 10−2 1.42× 10−2 8.13× 10−3 5.06× 10−3

3s3d1D2 1.97× 10−1 1.98× 10−1 1.94× 10−1 1.95× 10−1 1.96× 10−1 1.75× 10−1 1.41× 10−1

1.94× 10−1 1.95× 10−1 1.92× 10−1 1.94× 10−1 1.96× 10−1 1.76× 10−1 1.42× 10−1

3s4s3S1 1.07× 10−2 6.88× 10−3 3.87× 10−3 2.59× 10−3 1.73× 10−3 9.73× 10−4 6.10× 10−4

9.93× 10−3 6.48× 10−3 3.70× 10−3 2.50× 10−3 1.68× 10−3 9.57× 10−4 6.04× 10−4

3s4s1S0 7.91× 10−2 7.18× 10−2 7.61× 10−2 8.28× 10−2 8.55× 10−2 7.59× 10−2 6.06× 10−2

7.92× 10−2 7.18× 10−2 7.62× 10−2 8.28× 10−2 8.55× 10−2 7.62× 10−2 6.11× 10−2

unresolved resonances discussed above. Since there are no experimental data with which to
compare our calculated excitation cross sections or other theoretical effective collision strengths
for this ion, it is somewhat difficult to estimate the overall accuracy of our results. However, we
would estimate that the effective collision strengths for the dipole-allowed excitations should
be accurate to at least 20%. As we will discuss in section 3, the accuracy of these data for the
non-dipole allowed transitions are somewhat less certain because of uncertainties associated
with the very strong resonant contributions to these transitions.

We now consider briefly our ICFT calculations for Si2+, Ar6+ and Ti10+. It should be noted
here that in our earlier work on the low-energy differential and total excitation cross sections in
LS coupling for Si2+ and Ar6+, we employed quite different basis sets (see Griffinet al 1993).
However, the total cross sections for excitation to the3P and1P terms presented in that study
are in good agreement with the present results, although the details of some of the resonance
structures are slightly different. Furthermore, those results agree well with the low-energy
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Table 6. Effective collision strengths from level 3s2 1S0 to the levels of 3s3p, 3p2, 3s3d and 3s4s
in Si2+ from an ICFT calculation.

Electron temperature (K)

To level 9.00× 103 1.80× 104 4.50× 104 9.00× 104 1.80× 105 4.50× 105 9.00× 105

3s3p3P0 7.37× 10−1 5.90× 10−1 4.12× 10−1 2.90× 10−1 1.90× 10−1 9.97× 10−2 5.86× 10−2

3s3p3P1 2.25× 100 1.78× 100 1.24× 100 8.74× 10−1 5.72× 10−1 3.00× 10−1 1.75× 10−1

3s3p3P2 3.83× 100 3.00× 100 2.07× 100 1.46× 100 9.54× 10−1 5.01× 10−1 2.94× 10−1

3s3p1P1 5.77× 100 6.43× 100 7.48× 100 8.53× 100 1.02× 101 1.42× 101 1.78× 101

3p2 1D2 8.27× 10−1 8.81× 10−1 9.74× 10−1 1.04× 100 1.13× 100 1.30× 100 1.30× 100

3p2 3P0 2.68× 10−2 2.31× 10−2 1.54× 10−2 9.94× 10−3 5.95× 10−3 2.80× 10−3 1.54× 10−3

3p2 3P1 8.08× 10−2 6.99× 10−2 4.66× 10−2 3.00× 10−2 1.79× 10−2 8.40× 10−3 4.57× 10−3

3p2 3P2 1.36× 10−1 1.17× 10−1 7.76× 10−2 5.00× 10−2 2.99× 10−2 1.42× 10−2 7.83× 10−3

3s3d3D1 2.18× 10−1 2.03× 10−1 1.72× 10−1 1.43× 10−1 1.11× 10−1 7.14× 10−2 4.71× 10−2

3s3d3D2 3.67× 10−1 3.41× 10−1 2.89× 10−1 2.40× 10−1 1.86× 10−1 1.19× 10−1 7.87× 10−2

3s3d3D3 5.12× 10−1 4.78× 10−1 4.06× 10−1 3.36× 10−1 2.61× 10−1 1.67× 10−1 1.10× 10−1

3s4s3S1 1.94× 10−2 1.37× 10−2 8.06× 10−3 5.32× 10−3 3.47× 10−3 1.89× 10−3 1.16× 10−3

3p2 1S0 2.11× 10−1 1.94× 10−1 1.81× 10−1 1.79× 10−1 1.83× 10−1 1.92× 10−1 1.81× 10−1

3s4s1S0 1.31× 10−2 1.27× 10−2 1.28× 10−2 1.32× 10−2 1.36× 10−2 1.30× 10−2 1.10× 10−2

3s3d1D2 9.10× 10−1 9.14× 10−1 9.39× 10−1 9.68× 10−1 1.02× 100 1.08× 100 1.03× 100

experimental measurements for excitation to the 3s3p3P and 3s3p1P levels in Si2+ (Wallbank
et al 1997, Reisenfeld 1997) and excitation to the 3s3p3P and 3s3p1P levels in Ar6+ (Chung
et al 1997).

Our calculated effective collision strengths for Si2+ for transitions from the ground level
to the levels of the 3s3p, 3p2, 3s3d and 3s4s configurations are presented in table 6. We expect
that the agreement between the results of a full Breit–Pauli calculation and these ICFT results
for all possible transitions between the bound-state levels should be even better than in the case
of Fe14+, since the effects of the spin–orbit interaction are much smaller for this doubly ionized
species. Furthermore, the overall accuracy of the effective collision strengths for transitions
between the lower 16 levels shown in table 1 for Si2+ should be comparable with the accuracy
of our Fe14+ results. However, the effective collision strengths for transitions to the upper 20
bound levels in table 1 are less accurate because of the greater importance of correlation in the
ion with still higher levels not included in our configuration-interaction expansion of the target.
Our effective collision strengths for Ar6+ and Ti10+ are not presented here but the accuracy of
our results for these ions for all transitions should be comparable with that of Fe14+. Along
with the energy levels and radiative rates, the collision strengths for all transitions between the
bound levels included in our calculations for these four Mg-like ions are available in ADAS
format on the Internet at the site given above.

3. Emission-line intensity ratios

The radiative and collisional atomic data for Si2+, Ar6+, Ti10+ and Fe14+ described in section 2
may be used to predict level populations and emission-line intensity ratios for a range of
electron densities and temperatures appropriate to many laboratory and astrophysical plasmas.
The atomic data sets available at the ORNL CFADC web site are in a general format (adf04)
developed to interface with the ADAS collisional–radiative modelling codes (Summers 1994).
Quantum numbers and energies for each atomic level are listed first, followed by radiative
rates and effective collision strengths for all possible pairs of levels. The effective collision
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strengths are listed at eight electron temperatures selected on the basis of the ionization stage of
the atomic species. Although specific for ADAS, the general nature of the atomic data format
should allow easy incorporation into most plasma modelling codes.

A number of line-ratio studies have been made on Si2+ in order to interpret solar
observational data. Duftonet al (1983) employed calculations of radiative rates by Baluja
and Hibbert (1980) and collisional rates by Balujaet al (1980, 1981) to determine the four
emission-line intensity ratios:

R1 = 3p2 3P1→ 3s3p3P0

3s3p3P1→ 3s2 1S0
,

R2 = 3p2 3P0→ 3s3p3P1

3s4s1S0→ 3s3p1P1
,

R3 = 3p2 3P0→ 3s3p3P1

3p2 3P1→ 3s3p3P0
,

and

R4 = 3p2 3P0→ 3s3p3P1

3p2 3P1→ 3s3p3P2
.

In a later analysis, Keenanet al (1989) studied the effects of non-Maxwellian rates on these
same four line ratios. These particular ratios were chosen because they all provide density
diagnostics for electron densities greater than 1010 cm−3, with R1 andR2 being the most
sensitive to changes in density.

However, for purelyab initio calculations, bothR1 andR2 are difficult to determine
accurately. The radiative rate involved in the denominator ofR1 depends on very weak
mixing between the 3s3p3P1 and 3s3p1P1 levels through the spin–orbit parameter of the
3p electron. Baluja and Hibbert (1980) originally determined a radiative rate for this transition
of 1.21×104 s−1, compared with our value of 0.94×104 s−1. Kwonget al (1983) obtained an
experimental value for this rate of 1.67×104 s−1. Then, by repeating the calculation of Baluja
and Hibbert (1980) with the diagonal energies of the Hamiltonian matrix adjusted to reproduce
the experimental energies, Duftonet al (1983) arrived at an improved value of 1.46×104 s−1.
Finally, Ojhaet al (1988) re-evaluated this rate using improvements on the methods employed
by Baluja and Hibbert (1980) to obtain a value equal to the experimental rate. However,
without accurate experimental rates as a guide, the use of very weak intercombination lines
for the interpretation of plasma conditions is suspect.

The radiative rate in the denominator ofR2 is also very sensitive to the details of the
calculation. For example, Baluja and Hibbert (1980) found that the oscillator strength for the
3s4s1S→ 3s3p1P transition was reduced by a factor of 2.4 when they included a 5s pseudo
state in their calculation. The length and velocity values of their oscillator strengths were
actually in slightly better agreement without the inclusion of this pseudo state, but it brought
them into better agreement with the model potential calculation of Victoret al (1976). With
this lower value of the oscillator strength and experimental energies, one obtains the radiative
rate for this transition employed by Duftonet al (1983) of 2.84× 108 s−1. Repeating this
procedure for the oscillator strength determined by Victoret al (1976), one obtains a rate of
2.03× 108 s−1. In comparison, our completelyab initio value for this rate is 1.81× 108 s−1.
Thus, we again have an uncertainty in this radiative rate which could have an important impact
on this calculated line ratio. Indeed, we obtained nearly a 50% reduction in this line ratio if
we used the rate employed by Duftonet al (1983), rather than our value.

Of course, when selecting line ratios for the interpretation of astrophysical and laboratory
plasmas, one must also be concerned about the accuracy of the collisional rates. Those
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transitions with very weak direct excitation cross sections are often dominated by resonant
contributions. The strength of the resonant contributions can often be very sensitive to the
exact energies of the various resonant states; this has already been demonstrated in, the case
of the 3s2 1S→ 3s3p3P excitation in the Mg-like ions (see Griffinet al 1994, Badnellet al
1994). Furthermore, as discussed in the last section, it is often difficult to find an energy mesh
that is sufficiently fine to resolve the myriad of narrow resonances that tend to dominate these
cross sections. Therefore, in this case, there is more uncertainty associated with the accuracy
of effective collision strengths for excitation from the 3s2 1S0 ground level to the 3s3p3P and
3p2 3P levels than the much stronger dipole excitations from the ground level.

However, for diagnostic purposes, the emission-line intensities from levels that are directly
excited by strong dipole excitations tend to show much less density dependence than those that
are directly excited by weaker non-dipole excitations. Thus all four of the line ratios employed
by Duftonet al (1983) as density diagnostics involve upper levels that are directly excited by
non-dipole transitions from the ground level. Furthermore,R1,R3, andR4 involve the 3p2 3P1

level and this can be populated by the indirect mechanism of excitation to the 3s3p3P0 and 3s3p
3P2 metastable levels followed by strong dipole excitations from the metastables. Therefore
they all show the needed density dependence but are less certain in terms of the accuracy of
the theoretical collision strengths that most directly affect the populations of the upper levels.

Another possible line ratio for the analysis of plasma conditions in these ions was suggested
to us by Raymond (1998) and is given by

R5 = 3p2 3P1→ 3s3p3P0

3s3p1P1→ 3s2 1S0
.

The collisional and radiative rates which directly affect the denominator and the radiative rate
which directly affects the numerator in this line ratio should be quite accurate. However,
since the excitation cross section from 3s2 1S0 to 3p2 3P1 is completely dominated by narrow
resonances, the accuracy of this collision strength is more uncertain. The same holds true
for excitation from the ground level to the 3s3p3P0 and 3s3p3P2 metastable levels, which as
mentioned above, can indirectly populate the 3p2 3P1 level.

For Si2+, Ar6+ and Ti10+, we have found that our energy mesh is sufficiently fine to resolve
most of the narrow resonant structures. In the case of Fe14+, this is less sure. However, as
can be seen from table 5, the agreement between the ICFT and Breit–Pauli collision strengths
for excitation directly to 3p2 3P1 is very good. On the other hand, the agreement between the
Breit–Pauli and ICFT calculations with regard to the indirect mechanism for populating this
level is less certain because of the somewhat larger differences between the effective collision
strengths for the transitions from the ground level to the two metastable levels of 3s3p3P.

In figure 1, we illustrate the application of these collisional–radiative data by presenting
our results for the line ratioR5 as a function of temperature for all four atomic ions. The higher
curve for each ion is calculated at an electron density of 1014 cm−3, while the lower curve is
for an electron density of 108 cm−3. For both Si2+ and Ar6+ this particular line ratio may serve
as a temperature diagnostic, as well as a density diagnostic for densities above 1010 cm−3.
However, the variation of this line ratio with both temperature and density decreases as a
function of ionization stage. For Fe14+, it still may be useful as a temperature diagnostic but
clearly could not be employed for the detection of variations in density.

As a check on the electron impact excitation calculations, we have also compared the line
ratiosR3, R4 andR5 for Fe14+ calculated from the ICFT effective collision strengths to these
line ratios calculated using the Breit–Pauli effective collision strengths. The radiative rates are
of course the same in each calculation. Differences in the line ratios are due primarily to small
changes in the detailed resonance structures between the two calculations. Resonances in the
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Figure 1. Line-emission intensity ratioR5 for (a) Si2+, (b) Ar6+, (c) Ti10+ and (d) Fe14+. For each
ion, the lower curve corresponds to a density of 108 cm−3, while the upper curve corresponds to a
density of 1014 cm−3.

cross sections affect the effective collision strengths for each ion studied here, but Fe14+ is the
most sensitive to the details of the narrow resonances and the energy mesh size. The differences
between the ICFT and Breit–Pauli calculations for the line ratiosR3 andR4 were less than
15%, while these differences forR5 are approximately 10%. In the case ofR3 andR4, these
are due both to variations in the collision strengths for the transition directly from the ground
level to 3p2 3P0 as well as the collision strengths from the ground level to the metastables,
while in the case ofR5, they are caused almost entirely by variations in the collision strength
to the metastables.

We have examined one other line ratio as a possible temperature diagnostic:

R6 = 3s3d1D2→ 3s3p1P1

3s3p1P1→ 3s2 1S0
.

Although the effective collision strength to 3s3d1D2 from the ground level is small compared
with the effective collision strength to 3s3p1P1 from the ground level, it is far less sensitive to
the contributions from narrow resonances than, for example, the effective collision strength to
the 3p2 3P0 level. Furthermore, as can be seen from the comparisons given in tables 3 and 4,
the radiative rate for the transition 3s3d1D2 → 3s3p1P1 appears to be fairly accurate. This
line ratio is not useful in the case of Si2+ because the experimental wavelengths are within
0.01 Å of each other. However, for the other three ions considered here, these lines are well
separated. Our calculations indicate that for densities below 1012 cm−3, this line ratio is not
sensitive to density; however, it could serve as a temperature diagnostic for Ar6+, Ti10+ and
Fe14+.
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4. Conclusions

We have completed extensive level-to-level Breit–Pauli calculations of radiative rates and ICFT
calculations of effective collision strengths for the Mg-like ions Si2+, Ar6+, Ti10+ and Fe14+.
For Fe14+, we have also determined the effective collision strengths using a full Breit–Pauli
calculation and compared the results with the ICFT values. For almost all transitions, the ICFT
and Breit–Pauli results are in excellent agreement. There are some differences in the effective
collision strengths for a few of the weaker transitions and these are due to small differences in
the detailed resonance structures.

We have also discussed the use of these data for line-ratio calculations and have presented
our results for a selected line ratio. It is clear that line ratios for use in the interpretation of
astrophysical and laboratory plasmas must be chosen not only on the basis of their wavelength
range or their ability to reveal density or temperature dependence, but also on the basis of
the accuracy of the underlying atomic data. This calls for close collaboration between those
generating the data and those using it as a plasma diagnostic.

The ICFT method opens up the possibility of such studies for more complex atomic species
that would be extremely time consuming or impractical using a full Breit–Pauli approach.
However, further work is still needed to test the accuracy of this method with regard to the
situation of low-lying resonances of one series embedded in high-lying resonances attached to
a lower threshold when the energy dependence of the low-lying resonances is not factored-out
by equation (1). Therefore, our next application of this method will focus on cases where there
are large ‘correlation’ resonance structures in the low-energy regime.
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