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Abstract. We have implemented a multi-channel quantum defect theory approach within the
asymptoticR-matrix codes (STGF and STGBF) which treatsall closed channels as open.
Furthermore, making use of this approach, we have implemented ananalytic preconvolution
of undampedR-matrix photoionization and photorecombination cross sections. This removes
any doubt whatsoever as to whether the resonances are fully resolved or not. We show that fully
resolved undampedR-matrix photorecombination cross sections are in very close agreement
with undamped perturbative cross sections. We demonstrate, with explicit examples, the large
and widespread effect of radiation damping on low-lying photorecombination resonances for
H-like through Ni-like ions. This refutes the recent claims made by Pradhan and Zhang and
validates the original work of Robicheauxet al and Gorczyca and Badnell with regard to the
importance of radiation damping.

The effect of radiation damping of resonances in electron–ion collisions is currently a subject
of great interest, and much dispute—see Robicheauxet al (1995), Gorczyca and Badnell
(1996, 1997), Zhang and Pradhan (1995, 1997) and Pradhan and Zhang (1997) for a flavour
of the debate. On the face of it, the issue would appear to be simple—perform calculations
both with and without damping and note the effect. Alas, this is not the case. The first
problem encountered is the actual inclusion of the effect of radiation damping—physically,
this corresponds to the inclusion of the radiative width of a resonance, which causes the
resonance profile to be broadened and the integrated cross section to be reduced. Whilst the
inclusion of radiation damping is straightforward within the context of perturbation theory, it
is not so withinR-matrix theory. (The latter method is rightly regarded as our most accurate
description of electron–ion collision processes, at least in the absence of radiation damping!)
Thus, while one may compute and observe the effect of radiation damping perturbatively,
its direct consequence for the results ofR-matrix calculations is less clear; for example, are
undamped perturbative results an accurate representation of undampedR-matrix results? A
similar question can be asked with regard to damped results; however, the answer is even less
clear here since there is disagreement over the actual form of the radiation-dampedS-matrix.
To try and make sense of the situation we first define our areas for discussion. Firstly, there is
no disagreement for electron–electron transitions, i.e. resonant excitation. Except for the case
of H-like and He-like ions, in general, one needs to go beyond the astrophysically important
elements (those up to∼Fe) before radiation damping becomes significant. The key quantity
for comparison here is that of the radiative width with thestrongestautoionizing widths,
and for the lowest-lying resonances since the resonant contribution to resonant excitation
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scales as 1/n3. The problem arises when we consider (resonances in) electron–photon
transitions, i.e. photoionization and photorecombination. Methodologies and arguments that
are valid for electron–electron transitions are not valid for electron–photon transitions: for
example, extremely narrow resonances contribute significantly now and the competition
(scaling) between autoionization and radiation behaves differently. We will return to these
points later.

We now divide the electron–photon problem into two regions, a high-n one and a low-n
one. We define the high-n region as that where the only important radiation damping is in the
core (type-I damping); i.e. the Rydberg electron does not radiate and radiative recombination
is negligible or, at best, can only be added in independently of the resonant (dielectronic)
recombination. It is widely recognized that radiation damping is important here, for some
non-trivial value ofn, since the autoionizing width scales as 1/n3 (for fixed l), while the
(core) radiative width is independent ofn. The point at issue here has been the precise form
of the high-n radiation-dampedS-matrix. Robicheauxet al (1995) have demonstrated the
formal equivalence between their optical potential theory and the radiation-damping theory
of Davies and Seaton (1969). What has been puzzling is the difference between the final
expression for the radiation-dampedS-matrix of Robicheauxet al and that derived by Bell
and Seaton (1985). Asemphasizedby Robicheauxet al in their original work, the practical
difference between the two forms is utterly insignificant. There is no basis whatsoever for
Pradhan and Zhang (1997) to claim that Robicheauxet al had reservations about the Bell
and Seaton approach or for the implication that agreement between experiment and the
results that they obtained using the Bell and Seaton formalism demonstrated the correctness
of the Bell and SeatonS-matrix over the optical potentialS-matrix. Indeed, Robicheaux
(1998) has now identified (four) approximations made by Bell and Seaton in their derivation
of the radiation-dampedS-matrix. If these approximations are not made, then theS-matrix
that results agreespreciselywith that derived in anab initio manner by Robicheauxet al
(1995), and intuitively by Hickman (1984). We emphasize again that the approximate form
of the high-n radiation-dampedS-matrix derived by Bell and Seaton, and used extensively
by Pradhan and co-workers, is a very accurate approximation.

Now we are left with the low-n problem (typically,n < 10) where, in general, the
approach of Bell and Seaton (1985) or the type-I damping case of Robicheauxet al (1995)
is insufficient. Here, both Rydberg and core damping may be important, along with radiative
recombination, and the strongest autoionizing widths are typically orders of magnitude
larger than the largest radiative widths. So why can radiation damping be important here
for photoionization and photorecombination resonances when it is a negligible effect for
resonant excitation? An answer has been given by Gorczyca and Badnell (1996). Briefly, it
is not a comparison of the strongest autoionizing widths (0as) with the radiative width (0r)
that is the key, it is theweakerautoionizing widths (0aw) which must be studied, specifically,
those that satisfy0aw� 0r. Assuming0r < 0as, the resonant (dielectronic recombination)
part of the photorecombination cross section for a weak resonance (including damping) is
∼0aw, while that for a strong resonance is∼0r, and so the contribution from the weak
resonance is negligible compared to that of the strong resonance. In the absence of radiation
damping, the situation is transformed dramatically: the contribution of a weak resonance to
the dielectronic recombination cross section is now∼0r, as big asthe contribution from
even the strongest autoionizing resonance, which is still∼0r. This model problem does
not prove that radiation damping is important, but it demonstrates that arguments based on
the strongest autoionizing widths alone are unsound; we note, in particular, the work of
Pradhan and Zhang (1997) in this respect. Furthermore, the scenario described, that of the
occurrence of ‘weak’ and ‘strong’ autoionizing widths, is very real. The change fromLS to
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intermediate coupling, for example, introduces weakly autoionizing resonances where there
were none before. Such a situation arises even inLS coupling since the high-l autoionizing
widths fall-off rapidly with l, wherel is the angular momentum of the Rydberg electron.

We now see that it is important to carry out quantitative studies of radiation-damped
and undamped photorecombination cross sections, at least to guide the way forR-matrix
calculations—the effect of radiation damping is a non-problem from a perturbative point of
view since it is always taken into account. Indeed, we have long been aware of the large
effect of radiation damping onperturbativecross sections (some of which were reported
by Gorczyca and Badnell (1996)). However, the size of the effect was such that we did
not feel confident to assert that equally large effects should be omnipresent inR-matrix
photorecombination cross sections. We have demonstrated the accuracy of thedamped
perturbative approach by comparison with experiment (see e.g. Badnellet al 1990), by
analysis of the validity of the independent processes and isolated resonance approximations
(Pindzolaet al 1992) and, most recently, by comparison with radiation-dampedR-matrix
results (Gorczycaet al 1996). However, this does not prove that the undamped perturbative
andR-matrix photorecombination cross sections would be, or should be, in equally good
agreement, although we see no theoretical reason why this should not be so. However,
the widespread use of undampedR-matrix photorecombination and photoionization cross
sections (such as with the Opacity Project (Seaton 1987)) and the agreement with experiment
for C4+ and Ar13+ (Pradhan and Zhang 1997, Zhang and Pradhan 1997) would seem to
indicate otherwise. Recently (Gorczyca and Badnell 1997), however, we have revised
our opinion—stimulated by the undampedR-matrix photorecombination results for Fe24+,
due to Zhang and Pradhan (1997), and their agreement and/or disagreement with damped
perturbative results. Subsequently, we obtained excellent agreement between our damped
perturbative and dampedR-matrix results, and with experiment, for Fe24+ (see Gorczyca
and Badnell 1997). We also noted large perturbative radiation-damping factors (two orders
of magnitude) which were much larger than the factor of two or so difference between our
dampedR-matrix results and the undampedR-matrix results of Zhang and Pradhan (1997).
On exploring the determination of undamped photorecombination resonances for Fe24+ we
found that extremely narrow, but extremely high, resonances contributed significantly to
the undampedR-matrix cross section, but contributed little to the damped cross section
(precisely the situation described above in our weak versus strong resonance model).
Millions of energies would be required to resolve eachKLn group on using a constant
step in energy or effective quantum number. Using only a few tens of thousands of such
energies completely misses, let alone resolves, the myriad of narrow resonances that are
present. Using perturbation theory to narrow down our search, we were able to determine a
fully-resolved undampedR-matrix cross section for theKLL peak, but this rapidly became
an impractical approach, even for theKLM peak. (An alternative approach is to search for
the poles of theS-matrix in the complex plane, around the complex resonance energies; see
Gorczycaet al (1996).) Nevertheless, these results indicated that undamped perturbative
and undampedR-matrix photorecombination resonance cross sections could be brought into
agreement, and that the damping factors were large—much larger than has been appreciated
up until now perhaps, but that resolution of the undampedR-matrix resonances was the key
issue. To be able to use perturbation theory as a reliable guide toR-matrix radiation-damping
factors we need to be able to evaluate fully resolved undampedR-matrix photorecombination
resonances efficiently, accurately, and reliably so as to be able to validate the undamped
perturbative results. This we can now do, and we detail it next.

Our starting point is Seaton’s unpublishedR-matrix asymptotic codes STGB, STGF
and STGBF (see Seaton (1981, 1985, 1986) and Berringtonet al (1987) for some of the
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background theory). We make use of multi-channel quantum defect theory. This method is
a powerful tool for dealing with resonance structure but it has not been exploited as fully
by the asymptotic codes used by the BelfastR-matrix suite of codes as by others, such
as the JILAR-matrix suite (see e.g. Aymaret al 1996). In particular, its use has tended
to be restricted to high-lying states such as found in connection with Bell and Seaton’s
(1985) damping theory or with Gailitis averaging. Indeed, Seaton (1983) has commented
that the lack of widespread use inab initio calculations is because it is not normally a good
approximation to assume the non-Coulomb potentials to be of short range. However, its
use with theR-matrix method means that it only need be applied outside of theR-matrix
box. Furthermore, Gorczycaet al (1996) have shown how long-range open–open and
open–closed multipole potentials can be incorporated within multi-channel quantum defect
theory. In our approach we treat all closed channels as open. Deeply closed channels can
give rise to some interesting numerical problems which we will not dwell on here; suffice
to say that they are not intractable. The physicalS andD matrices are written in terms of
slowly-varying-with-energy unphysicalS andD matrices as (Seaton 1983)

S = Saa− Sab
[
Sbb− exp(−2π iν)

]−1Sba (1)

and

D = Da− Sab
[
Sbb− exp(−2π iν)

]−1Db (2)

whereν denotes the effective quantum numbers and exp(· · ·) is a diagonal matrix. The
partitioning (a, b) is usually taken to be open, closed (o, c) but we have implemented
it in such a way that a contraction can take place followed by, for example, a Gailitis
average. Electron-impact excitation cross sections are determined fromS using the revised
STGF code, while the unphysicalS matrices are passed to the revised STGBF code and
the dipoleD matrices computed, and hence a collision strength which can be converted
to a photoionization or photorecombination cross section as desired. The unphysicalS
and D matrices are evaluated at several hundred energies and are then automatically
interpolated at any desired collision energy so that the physicalS andD matrices can
be evaluated efficiently, using just equation (1) or (2), at as many energies as are required.
However, even this becomes laborious when millions of energies are required as is the
case, say, for the photorecombination of Fe24+. Fortunately, we are now in a position
to take advantage of ananalytic preconvolution of the total photoionization cross section,
originally developed for photoabsorption by Robicheaux (1993). This eliminates at root all
problems associated with resolution. So long as we apply it below the first excited final state
following photoionization, we can perform detailed balance and obtain photorecombination
cross sections as usual. The total photoionization collision strength vector of initial states
impacted-on by a photon, preconvoluted with a Lorentzian, is given by (Robicheaux
1993)

Ω = C

3

(
αω

IH

)3

Re

[
D
(S + e−2π iν∗

S − e−2π iν∗

)
D∗
]

(3)

where ν = ν/
√

1− i0ν2/z2 for closed channels andν = i∞ for open channels, i.e.
exp(−2π iν∗) = 0. Hereω denotes the photon energy,IH the ionization potential energy of
hydrogen,α the fine-structure constant andC = 1 in intermediate coupling andC = 2S+1
in LS coupling. The preconvolution works by introducing an arbitrary, constant, complex
width (0) to broaden the resonances, just as in the case of radiation damping, but there is
no lossassociated with this procedure on using equation (3), only a redistribution. This
is in contrast to the use of a complex energy to represent radiation-damping loss via, for
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example, equation (1) withν → ν. This powerful method completely eliminates the problem
of resonance resolution and means that we can evaluate fully resolved undampedR-matrix
photorecombination cross sections using only a few thousand physical energies. Currently,
it cannot be applied to radiation-damped calculations—there is no way to redistribute the
radiation damping as a loss term and keep a broadening-only non-loss term, at least using
equation (3)—but radiation damping broadens the resonances naturally and so resolution
is much less of a problem then. Currently, there is no partitioning by final state; only
by summing over all final states is the full redistribution recovered. Note, there is no
open–closed partitioning either. In fact, equations (1) and (2) do not factor-out the energy
dependence of theS andD matrices for resonances that are fully contained within the
R-matrix box (those formed by correlation configurations). We note that Lecomteet al
(1994) have implemented a non-trivial scheme to do so in such a case. However, on using
equation (3) we find that we only require∼10 times as many ‘unphysical’ energies (i.e.
several thousand) as before so as to obtain fully resolved preconvoluted results for this case
as well. The preconvoluted undampedR-matrix calculations are now on the same footing
as damped or undamped perturbative calculations that energy-average the Lorentz profile (if
no energy averaging is carried out, then perturbative calculations suffer the same resolution
problem of the resonance profiles).

Table 1. Photorecombination rate coefficients
for Fe24+ at T = 2 keV (10−13 cm3 s−1).

Undamped Damped

KLn BPDW BPRM BPDW BPRM

KLL 18.9 18.6 2.417 2.455
KLM 30.2 30.2 1.033 1.117
KLN 40.9 40.6 0.380 0.377
KLO 57.5 57.1 0.180 0.179
KLP 78.5 78.2 0.100 0.096

Our first results are Breit–Pauli photorecombination rate coefficients for Fe24+, which
we present in table 1; only the undampedR-matrix results are new but they are significant
(see Gorczyca and Badnell (1997) for further details of the original work). We see that our
undampedpreconvolutedR-matrix results (BPRM) closely track our undamped perturbative
results (BPDW), indeed, as closely as our dampedR-matrix and perturbative results agree
with each other. The undampedR-matrix results of Zhang and Pradhan (1997, table I)
are a gross underestimate of the true fully resolved undamped cross section. The results
in table 1 demonstrate that a comparison of undamped and damped perturbative results
can accurately predict the effect of radiation damping onfully resolvedundampedR-matrix
photorecombination and photoionization cross sections. This is a powerful result since the
perturbative calculations are extremely easy to perform. Indeed, only a single calculation
of the relevant autoionization and radiative widths is required. This can be done using a
general and fully automatic code such as AUTOSTRUCTURE (Badnell 1986), which we
use here. The widths are then processed twice, once with the radiation-damping term, and
once without. The size of the damping effect for Fe24+—two orders of magnitude—means
both that lower-charged He-like ions are significantly affected, as are other isoelectronic
sequences. This we now demonstrate with explicit examples. In what follows, our
statements about the effect of radiation damping refer to energy-integrated cross section
peaks—the so-called resonance strength—rather than to the peaks of the cross sections
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Figure 1. Photorecombination of C4+ for theKLn resonances, dominated byn = 4–7. Full
curves, intermediate coupling perturbation theory, (upper) undamped and (lower) damped;
broken curve, LS-coupling perturbation theory, undamped; dotted curve,LS-coupling
preconvolutedR-matrix theory, undamped (n = 4 only)—all this work. Chain curve, undamped
R-matrix theory of Pradhan and Zhang (1997). All cross sections have been convoluted with a
0.57 eV FWHM Gaussian function and multiplied by the electron velocity.

themselves, which can be misleading. The damping factor is the ratio of the undamped-to-
damped integrated cross sections.

We present a series of results for C4+ in figure 1. We focus on the dominantKLN and
higher resonances, initially. The four main peaks correspond ton = 4–7. Our radiation-
damped results,R-matrix and perturbative—bothLS and intermediate coupling, differ little
from each other on the scale of the graph and so a single result is shown. We see that
our undamped results show large factor differences from our damped results. Forn = 6
and 7, theLS-coupling radiation-damping factor is significantly larger than the intermediate
coupling factor, but the situation is reversed at lowern (in addition, theKLL andKLM
damping factors are 1.84 and 1.86 in intermediate coupling, and 1.04 and 1.31 inLS

coupling). This contrasting behaviour is a manifestation of the relative importance of spin–
orbit mixing. Asn increases, the fine-structure splitting of the core remains constant while
the splitting of the (N + 1)-electron terms decreases. So, the spin–orbit interaction mixes
LS-forbidden andLS-allowed autoionizing states more efficiently, relatively increasing the
size of theLS-forbidden rates. It is interesting to note the slight drop in the undamped
results just above the 23S threshold (at about 298 eV) and the huge drop above the 21S and
2 3P thresholds (at about 304 eV). This can be understood in terms of the autoionization into
excited states, the widths of which do not ‘cancel’, there being no corresponding dielectronic
capture, and which then can dominate the radiative width. We see also that our undamped
preconvolutedR-matrix results are in close agreement with our perturbative results, for the
(LS-coupling)KLN peak. We cannot use equation (3) for higher energy peaks in this
low-charge ion since that would take us above the first excited state (23S), but theKLN
result suffices to validate the undamped perturbative results again. We show also in figure 1
the undampedR-matrix results of Pradhan and Zhang (1997). They used only ‘several
thousand photon energies’ and so seriously underestimate the effect of radiation damping
due to a substantial underestimate of the undamped cross section. Our radiation-damped
R-matrix results are in good agreement with those of Pradhan and Zhang (1997) and with
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experiment (Mannerviket al 1997, not shown) although, like their undamped results, the
damped results of Pradhan and Zhang (1997) are≈ 0.7 eV too low in energy compared to
experiment. A full comparison between experiment and theory has been made by Pradhan
and Zhang (1997), and by Schuchet al (1997) using our perturbative results, and so we
do not pursue it further. We note that the radiation-damped method used by Pradhan and
Zhang (1997) is not the same as the radiation-dampedR-matrix method of Robicheaux
et al (1995). Pradhan and Zhang (1997) follow the approach due to Sakimotoet al (1990).
UndampedR-matrix photoionization calculations are performed to obtain dipole matrices
which are then fitted to a known functional form (following Davies and Seaton 1969).
These are then used to obtain a radiation-damped photoionization cross section. The main
drawback to this approach, apart from having to fit all of the resonances involved, is that
the functional form imposes (in effect) an additional approximation because it is not valid
for resonances overlapping and interacting via their autoionizing width; it is valid for an
overlap due to the radiative width alone. This ‘isolated resonance’ imposition is hardly
in the spirit of theR-matrix method, in contrast to the optical potential radiation-damped
R-matrix method of Robicheauxet al (1995). Nevertheless, in a simple system such as
He-like ions this approach works well. This is not too surprising since our perturbation
theory results agree closely with ourR-matrix results as well.

Having seen the size of the effect of radiation damping on low-lying photorecombination
resonances in He-like ions (and, by implication, H-like ions, e.g. theKLL peak for C5+ is
damped by a factor of 1.57), we now turn to other sequences and present some illustrative
results as a guide to the degree of damping that might be expected for Li-like through
Ni-like ions. All of the perturbative results were computed in intermediate coupling, unless
stated otherwise, and averaged over the fine-structure levels of the ground term. Where
the damping factors are changing rapidly, withz or n, then small changes in the atomic
structure may change the damping factors somewhat, but those presented here should be
representative.

Li-like. The LMn damping factors for Fe23+ are 1.56, 1.69, 3.1 and 6.3 forn = 3–6.
Lower-charge Li-like ions are also affected by damping; for example, for Mg9+, theLMn
damping factors are 1.07, 1.31 and 1.95 forn = 4–6. Also, a particular interest for Li-like
ions concerns the relatively small energy separation of the 2s–2pJ levels, which means that
outer-electron stabilization is important for the lowest energetically accessible resonances
formed by1nc = 0 core excitations. The damping factors (which cannot be obtained from
type-I damping alone) forn = 11 and 15 are 1.10 and 1.30 for Ar15+ and are 1.33 and
1.36 for Fe23+. Roughly 75% of the recombination is due to outer-electron stabilization for
n = 11 and 50% forn = 15.

Be-like. For Fe22+, while the damping factor for theLMn (n = 3) peak is only 1.18, the
damping factors increase rapidly withn, namely 1.47, 2.7, and 4.7 forn = 4–6. For Mg8+,
the damping factors are 1.03, 1.32 and 1.60 forn = 4–6.

B-like. The addition of a 2p electron increases the damping significantly. For Fe21+, the
LMn peaks formed by 2p→ 3l promotions are damped by factors of 1.43, 2.4, 3.6 and
5.8 for n = 3–6. For Mg7+, the damping factors are 1.06, 1.20, 1.44 and 2.0 forn = 3–6.

C-like. The 2p-promotedLMM peak for Fe20+ is damped by a factor of 1.24.
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N-like. The 2p-promotedLMM peak for Fe19+ is damped by a factor of 1.32. Of particular
interest, however, is photorecombination via the 2p3 4S→ 2p3 2P, 2D core excitations. This
takes place purely via outer-electron stabilization. For Ne3+, the damping factor forn = 6
is 1.49 and it varies quite slowly withn since both the autoionization and radiative widths
scale as 1/n3. This example is illustrative of a more general class of problem—that of
low-temperature photorecombination, which in many cases involves such a non-dipole core
excitation. At high temperatures, the 2s→ 2p core excitation (in this case) dominates the
total recombination of course.

O-like. The 2p-promotedLMM peak for Fe18+ is damped by a factor of 1.24.

F-like. The 2p-promotedLMn peaks for Fe17+ are damped by a factor of 1.31, 1.89,
and 3.2 forn = 3–5. The damping factors for S7+ are 1.14 and 1.28 forn = 3 and
4, respectively, while for Mg3+ the LMM damping factor is 1.13. The2P3/2 → 2P1/2

fine-structure transition in the core gives rise to a low-temperature photorecombination
peak; again, the stabilization is purely via outer-electron transitions. For Fe17+, this low-
temperature peak opens up atn = 18 and is damped by a factor of 1.84.
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Figure 2. Photorecombination of Fe16+ for the LMn (n = 4–6) resonances. Short-broken
curve, radiation-damped perturbation theory; full curve, undamped perturbation theory; long-
broken curve, undamped preconvolutedR-matrix theory—allLS coupling, all this work. All
cross sections have been convoluted with a 1 RydFWHM Gaussian function.

Ne-like. In figure 2, we present our damped and undampedLS-coupling perturbative
results, as well as our undamped preconvolutedR-matrix results, for theLMn (n = 4–6)
resonances arising in the photorecombination of Fe16+ via 2p→ 3l core excitations. The
contribution from 2s promotions is small. Again, we note the very close agreement between
our undamped perturbative and preconvolutedR-matrix results. The damping factors are
now roughly 2, 3 and 4, forn = 4, 5 and 6, respectively. This is somewhat of a model
calculation since intermediate coupling splits the resonances further apart. (This then limits
our undamped preconvolutedR-matrix results ton = 4 only.) But it further validates
the undamped perturbative approach; which is the main point. The intermediate coupling
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perturbative results for this ion (Fe16+) are damped by a factor of 1.85, 2.4 and 4.1 for
n = 3–5. Again, lower-charge ions are affected by radiation damping; for example, the
damping factors for theLMM peak for S6+ and Mg2+ are 1.43 and 1.39, respectively.

The results that we have presented so far illustrate the sort of damping that can be
expected of low-lying photorecombination resonances that arise via 1→ 2 or 2→ 3 core
excitations in H-like through Ne-like ions. We can continue on through the periodic table.
Moving to 3→ 4 core excitations reduces the distinction between1nc = 0 and1nc = 1
core transitions somewhat, unless we go to higher charge states for example.

Al-like. For Fe13+, theMNn (n = 4) peak formed by 3p→ 4l promotions is only damped
by a factor of 1.06 but this rises through 1.06, 1.15, 1.34 to 1.73 byn = 8.

Ar-like. For Zr22+, the 3p-promotedMNN peak is damped by a factor of 2.7 while that
for Fe8+ is damped by 1.19.

K-like. For Zr21+, theMNn damping factors for 3d→ 4l promotions are 1.19, 1.79 and
2.0 for n = 4–6.

Ni-like. For Zr12+, the 3d-promotedMNN peak is damped by a factor of 1.45 while that
for Se6+ is damped by 1.19.

These results demonstrate how the radiation damping of low-lying resonances needs to
be considered right through to Ni-like ions. One could continue in a similar fashion with
4 → 5 core excitations, say. But this requires a further increase in charge and/orn to
maintain a similar level of damping to that we have seen already for 3→ 4 core excitations
and so it adds little to our story.

In conclusion, we have demonstrated that perturbation theory provides an accurate
description of the effect of radiation damping onR-matrix photorecombination and
photoionization resonances and that the effect of damping on low-lying resonances is much
more severe, and thus much more widespread, than has been fully appreciated up until now
perhaps (see, for example, Pradhan and Zhang 1997). Crucial to this work has been the use
of preconvolutedR-matrix photorecombination cross sections. This has enabled us both to
find and to fully resolve extremely narrow resonances which contribute significantly to the
undamped cross section and which are, probably, the cause of the serious underestimate
of undamped cross sections by Zhang and Pradhan (1997) and Pradhan and Zhang (1997)
which has led them to seriously underestimate the effect of damping. We note that it has not
been possible to include routinely the effect of radiation damping of low-lying resonances
in R-matrix calculations until recently, while perturbative calculations would have had
no reason to neglect it. The size of the damping effects observed does not necessarily
invalidate the large body of undampedR-matrix photorecombination and photoionization
data already in existence, such as that generated by the Opacity Project (Seaton 1987). So
long as a coarse-enough energy mesh has been used (more precisely, an energy step at least
comparable with typical radiative widths) then narrow resonances, that would be completely
damped, are not resolved at all in the first place. However, this is a rather hit-and-miss
approach—literally so. We emphasize that these findings relate solely to electron–photon
transitions. Electron–electron transitions are unaffected and so these findings do not impact
upon, for example, the general work of the Iron Project (Hummeret al 1993). It should be
noted that radiation damping has always been taken into account in perturbative calculations
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and it is a non-problem there. From our survey, we see that it is difficult to identify a
regime in which it is absolutely safe to carry out an undamped photorecombination and/or
photoionization calculation. For many isoelectronic sequences, radiation-damping effects
become negligible for a low-enough charge state and principal quantum number, but rapidly
become significant asz or n is increased. We can say that it is not safe to assume that
radiation damping can be neglected for astrophysical ions, even after excluding the case
of H- and He-like ions. It is certainly important for low-n resonances formed via 2→ 3
core excitations, while its importance for 3→ 4 transitions depends on the charge state and
resonances of interest. It can also be important for low-temperature photorecombination,
via a 2→ 2 non-dipole core excitation, for example. However, we have shown that
perturbation theory provides an accurate description of the effect of radiation damping and
so can be used to assess the validity of carrying out afully resolvedundampedR-matrix
calculation for photorecombination and/or photoionization resonances, or it can be used in
its own right. Alternatively, one can carry out a full radiation-dampedR-matrix calculation
as per Robicheauxet al (1995) or, if type-I damping dominates, a calculation using the
formalism of Bell and Seaton (1985) or the damped form (ν → ν) of equation (1) will
suffice.
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