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Abstract. We have developed an alternativeR-matrix with pseudostates (RMPS) method
for incorporating a two-electron continuum description into the wavefunction of electron–
ion collision calculations. This method is similar in spirit to various recent treatments of
the pseudostate expansion, most notably theR-matrix approaches of Meyer and Greene, and
Bartschatet al. Our approach differs in that we: (1) utilize a direct sum of several bases: the
physical He+ target orbitals, additional MCHF pseudo-orbitals for the He ground state,R-matrix
continuum orbitals, and, on occasion, Laguerre orbitals, and (2) rely on a different approach
for the creation of an orthonormal basis. Since we use the Belfast codes that are based on a
Wigner–EisenbudR-matrix treatment, we also need to introduce a modified Buttle correction.
The method is first tested on the s-wave (Temkin–Poet) model for electron-impact excitation and
ionization of He+. Then it is applied to the calculation of cross sections and angular distributions
for the photoionization–excitation processhν +He(1s2) −→ He+(nl)+ e− (n = 2, 3). We find
that these results are greatly improved by the inclusion of the two-electron continuum description,
which is more important for the ground state, but plays a role in the final photoionized states
as well. A highly correlated multiconfiguration Hartree–Fock expansion is used to represent
the ground state, and from the configuration interaction coefficients, asymptotic ratiosσn/σ1

are determined and compared with other theoretical results. Results are also compared with
recent high-energy measurements for then = 2, 3 cross section ratios and angular distribution
parameters. This pseudostate expansion allows us to predict photo–double-ionization cross
sections,hν + He(1s2) −→ 2e−. Of particular significance, we find good agreement between
our length and velocity gauge results, indicating that our ground-state correlation is sufficiently
converged for the present system.

1. Introduction

Recently, there has been a great revival of interest in photo–double-ionization. This is the
process by which one photon incident on a helium atom leads to the ejection of two atomic
electrons; helium is the obvious ideal system for the study of double ionization processes
since it is the simplest multi-electron atom. McGuireet al (1995) reviewed the theoretical
and experimental status of this field up until 1995, and a more detailed summary of various
studies up until 1992 can be found in the review by Schmidt (1992). On the theoretical
side, the treatment of this process poses a great challenge since it is necessary to describe
properly a wavefunction that allows the escape of both target electrons from the atomic
region.

Photoionization–excitation is a process similar to photo–double-ionization in that an
incident photon causes the simultaneous ejection of one atomic electron and excitation (into
a higher orbitalnl, n > 1) of the other. In either case, two diffuse electron orbitals must be
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described. Furthermore, the two competing processes may interfere with each other so that,
for instance, photoionization–excitation may be strongly influenced by the neighbouring
possibility of double ionization at higher energies, and vice versa. It can be said that
polarization of the excitation process is influenced by the target continuum, similar to the
early revelation that the continuum of the electron–proton system accounts for 18% of the
static dipole polarizability of atomic hydrogen (Castillejoet al 1960). This discovery first
had immediate and important implications in its application to electron-impact excitation.

One of the most successful and widely used numerical techniques for treating a system
composed of a scattering electron plus a target atom or ion is the continuum Hartree–Fock
method, most commonly implemented as the close-coupling approximation (Seaton 1953).
The essential part in this method is that the complete wavefunction is expanded as a sum
of product functions of the target and continuum electron wavefunctions. In general, a
complete expansion for the radial wavefunction of a two-electron system takes the form

9(r1, r2) =
{∑

i

8i(r1)fi(r2)+
∫

dk 8(k, r1)f (k, r2)

}
(1)

±
{∑

i

8i(r2)fi(r1)+
∫

dk 8(k, r2)f (k, r1)

}
, (2)

where8i are, for the present case, bound hydrogenic wavefunctions for the He+ ion,
8(k) are positive energy Coulombic orbitals in the field of aZ = +2e nucleus, and
fi(f (k)) are undetermined continuum orbitals for the incident electron. The± arises
from the required antisymmetrization of the problem, which depends on the orbital angular
momentum and spin. The usual close-coupling expansion approximates this by neglecting
the second integral term and reducing the (infinite) sum in the first term to a few ‘target’
states of interest. However, it has long been recognized that the standard implementation
of this method cannot account for the target continuum states, since the (finite) sum over
i only represents (a portion of) the bound spectrum of the He+ ion. One approach for
alleviating this restriction is to augment the sum over certain real target states with additional
pseudostates, a strategy first applied to electron–atom systems by Burkeet al (1969).

Recently, there have been marked improvements in computational facilitiesand
theoretical methods to treat the target continuum. The convergent close-coupling (CCC)
method of Bray and Stelbovics (1992) has proven to be quite successful at describing a
variety of processes affected by the target continuum (Bray and Stelbovics 1995). They
approximate the (momentum space) target continuum with a finite expansion of Laguerre
orbitals. The success of the CCC method has prompted the extension of this pseudostate
expansion to other (position space) close-coupling methods, in particular theR-matrix
method. Meyer and Greene (1994) first extended these basic ideas within the eigenchannel
R-matrix method. They represented the physical and pseudo-orbitals by an expansion in
‘box’ states for this system (orbitals with zero amplitude but, in general, non-zero derivative,
at theR-matrix boundary). Thus, they demonstrated that the finite wavefunction expansion,
properly modified to include discrete pseudostates in the continuum, could be meaningful
and yield double ionization information. This was extremely important because it meant
that computer codes developed over the years for the treatment of one-electron continuum
processes in electron–atom (ion) collisions could be extended to treat the double continuum,
at least in principle. Recently, Bartschatet al (1996a), utilizing a new development of the
BelfastR-matrix codes (Burke and Berrington 1993), known as RMATRIX II (Burkeet al
1994), have used this same essential idea in what they (and hereafter we) refer to as the
R-matrix with pseudostates (RMPS) method. Their representation of the target continuum
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is accomplished with a finite expansion of Sturmian orbitals. They have applied this method
to electron collisions with hydrogen (Bartschatet al 1996b), helium (Bartschatet al 1996c),
beryllium (Bartschatet al 1996d), and boron (Marchalantet al 1997). We note that this
RMPS version of Bartschatet al (1996a) is not presently set up to treat photoionization
processes.

In this study we will describe modifications to the latest RMATRIX I version of the
Belfast codes (Berringtonet al 1995) which can incorporate both Breit–Pauli and radiative
(e.g. photoionization) effects, as originally developed by Scott and Taylor (1982). We have
already used our method to treat electron-impact excitation (Badnell and Gorczyca 1997)
and ionization (Pindzolaet al 1997), but did not provide all of the numerical details, and
did not study any photoionization processes. We realize that there are several alternative
methods for treating two-electron continuum processes, such as the intermediate-energyR-
matrix method (Burkeet al 1987, Scottet al 1989), or the hyperspherical close-coupling
method (Tang and Shimamura 1994), all with merit of their own. For this study, however,
we are primarily concerned with features of the close coupling with pseudostates method
in its application to photoionization processes.

Photoionization calculations, unlike electron-impact excitation calculations—which need
only solve for the electron–ion scattering wavefunction—are further complicated by the
need to describe the initial ground-state wavefunction accurately. It is absolutely essential
to incorporate a high degree of interelectron correlation in the ground state in order to
obtain reliable photoionization cross sections, particularly when attempting to converge
results using different gauge forms of the dipole operator (Starace 1982, Schmidt 1992).
The eigenchannelR-matrix approach, although used to treat electron-impact excitation and
ionization within a model s-wave problem (Meyeret al 1995), was first applied to a study
on photo–double-ionization of helium by Meyer and Greene (1994). They reported well
behaved ionization cross sections in the velocity and acceleration gauges, but pointed out
that their unreported length gauge calculations gave unreasonably large cross sections. We
note that Meyer and Greene have subsequently converged results from all three gauges
using finite element methods (Meyeret al 1997). The same difficulty in the length gauge
was noted by Kheifets and Bray (1996), who did not report the length results either, but
attributed these poorer results to a lack of convergence of the ground-state correlation. Thus,
while there have been similar studies on photoionization including the target continuum,
such questions as the unreliability of the length gauge withinR-matrix calculations calls
for further independentR-matrix studies.

Little attention has been paid to the similar process of photoionization–excitation. This
process is interesting because it is also sensitive to final-state correlation, but many of
the difficulties associated with ionization calculations are not present, most importantly the
interpretation of excitation to pseudostates. Thus, it is an ideal process for investigating
initial- and final-state correlation. Moreover, there have been recent measurements for both
the angular distribution (Wehlitzet al 1993) and ratios (Wehlitz 1997) over an energy
range of hundreds of volts, without a corresponding new theoretical investigation of the
n = 3 states. Although excitation to then = 2 state has received extensive theoretical
study (Schmidt 1992), there has been very little investigation for then = 3 state. To our
knowledge, there is the standardR-matrix study of Hayes and Scott (1988) in the resonance
region below then = 4 threshold, and the many-body perturbation theory calculations
of Salomonsonet al (1989) for then = 2 and n = 3 states, who cautioned that their
n = 3 results ‘are not to be considered very accurate’. This warrants a new theoretical
investigation.

This paper is organized as follows. In section 2 we describe our new numerical methods
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that allow us to use expanded basis sets to incorporate ground-state correlation and the
target continuum. In particular, we present our new orthonormalization algorithm and the
consequential need to modify the Buttle correction. In section 3 this alternative RMPS
method is first applied to a simple s-wave scattering problem, the Temkin–Poet model. In
section 4 we outline our basic strategy for investigating the higher-order photoionization
processes for helium, including a description of our various orbital bases. In section 5
R-matrix results for photoionization–excitation using these bases, the analytic extension to
asymptotically high energies, photo–double-ionization, and a comparison with experimental
measurements are given, followed by our concluding remarks in section 6.

2. R-matrix with pseudostates method

The expansion for the spatial portion of the wavefunction within the standard application of
theR-matrix method (Burke and Berrington 1993) takes the following form for our case:

ψ(r1, r2) =
{∑
nll′
Pnl(r1)

[∑
i

bnl,il′uil′(r2)+
∑
n′
cnl,n′l′Pn′l′(r2)

]}
±
{∑
nll′
Pnl(r2)

[∑
i

bnl,il′uil′(r1)+
∑
n′
cnl,n′l′Pn′l′(r1)

]}
. (3)

The target orbitalsPnl(r) are chosen to give an accurate representation of the ionic states,
which in our case are hydrogenic states for the He+ ion. The continuum orbitals are
determined from the following differential equation:(

d2

dr2
− l(l + 1)

r2
+ V (r)+ k2

il

)
uil(r) =

∑
n

λinlPnl(r), (4)

whereV (r) is chosen so that the continuum orbitals give a good representation of the actual
scattering orbital. The Lagrange multipliers on the right-hand side of equation (4) ensure
that〈uil|Pnl〉 = 0 (the bra-ket notation denotes integration over theR-matrix region), so that
the combined basis of thePnl(r) and theuil(r) is orthonormal. However, a difficulty arises
when using pseudo-orbitals to augment the target orbital basis. (We follow the practice
of denoting these pseudo-orbitals byPnl(r) to emphasize that they are not physical He+

orbitals.) As has been previously noted (Burke and Robb 1975, Bartschatet al 1996a),
it is more efficient and meaningful to omit the pseudo-orbitals from the right-hand side
of equation (4), that is, to avoid Lagrange orthogonalizing the continuum orbitalsuil(r) to
the pseudo-orbitals. Their inclusion mimics an exchange effect which introduces unphysical
behaviour in the continuum (Bartschatet al 1996a). Thus, in general, the continuum orbitals
are not orthogonal to the pseudo-orbitals (〈uil|Pnl〉 6= 0). In the implementation of Bartschat
et al (1996a), the approach is to invoke the recursive Gram–Schmidt orthonormalization
procedure to convert these continuum orbitals into a new set,vil(r), which, together with the
physical and pseudo-orbitals, form an orthonormal set. However, this method can quickly
become unstable as the number of pseudo-orbitals and/or continuum orbitals increases, and
so they point out the need for further orthonormalization. The source of the instability
can be understood by noting that when any of the pseudo-orbitals is nearly spanned by the
resultant continuum orbital basis,uil(r), then eventually one will produce a ‘nearly-zero’
orbital in the orthogonalization, which is thus renormalized with an extremely large number
(Stoer and Bulirsch 1980). We take a different approach, which we now describe, and find
this method to be quite stable.
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2.1. Generation of a stable, orthonormal basis

For the present RMPS implementation, it is necessary to generate an orthonormal basis of
orbitals vil(r) from two distinct, overlapping bases. They are: (1) the physical orbitals
Pnl(r) plus the (orthogonal) pseudo-orbitals (MCHF or Laguerre)Pnl(r), and (2) theR-
matrix continuum orbitalsuil(r). The continuum orbitals are orthogonal to the physical
orbitals (by using Lagrange multipliers) but, in general, overlap with the pseudo-orbitals
and so we need to create a final orthonormal basis containing both sets. We represent
our orbitals by the matricesP and U so as to simplify the notation. The matrix elements
for a given orbital angular momentuml are given by(U)ij = uil(rj )

√
wj . The orbitals

are discretized onto radial mesh pointsrj , so that any integral can be expressed as∫
ui ′l(r)uil(r) dr ≈ ∑

j ui ′l(rj )uil(rj )wj ≡ (UUT)i ′i , wherewj are the weighting factors.
Thus, all integrals between orbitals can be summarized by the three matrix equations

P P
T = 1, UUT = 1, UP

T = M 6= 0. (5)

The last of these indicates that the combined basis ofP and U is not orthonormal, but
instead involves an overlap matrixM. We can express the direct sum of these two bases as
follows

V =
(

P
AP+ BU

)
. (6)

By demanding thatVVT = 1, i.e. by generating an orthonormal basis of orbitalsvil(r), we
obtain the conditions

A = −BM, (7)

which is equivalent to the orthogonalization step in the standard Gram–Schmidt procedure,
and

B(1−MMT)BT = 1, (8)

which is equivalent to the renormalization step. We note that, up to this point, the procedure
is identical to most methods for creating an orthonormal basis, for instance, the Gram–
Schmidt orthonormalization procedure. Indeed, the early pseudostate work of Burkeet al
(1969) used a nearly identical formalism, detailed in their appendix. However, an obvious
difficulty arises when the two bases are linearly dependent. (In theory, this cannot occur
since the two sets of orbitals have different logarithmic derivatives at theR-matrix boundary,
but in practice the numerical difference is negligible.) This linear dependence manifests
itself by yielding a singular matrix1− MMT, making it impossible to satisfy the second
of the above conditions numerically. The different approach that we take is to diagonalize
this matrix,OT(1−MMT)O = d, with d diagonal, and then form the matrixB = d−1/2OT

only for those rows with non-zero eigenvalue(in practice we keep those with eigenvalues
greater than 10−4, which we find is sufficient to avoid numerical instability). In other words,
this transformation avoids the linear dependence problems associated with the overlapping
basesP and U by retaining only the minimum set of spanning basis orbitals. These are
determined solely by inspecting the eigenvalues of the matrix1−MMT. While not a new
numerical approach in principle, we have found that this procedure yields a stable basis of
orbitalsvil(r) for use, in conjunction with the physical orbitalsPnl(r) and pseudo-orbitals
Pnl(r), in our RMPS method. Thus, we can choose an arbitrarily large set of appropriate
pseudo-orbitals of a varied nature. For instance, it is advantageous to include some pseudo-
orbitals that accurately describe the initial state in photoionization and others that represent
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the continuum of the target electron. For our case, a number of pseudo-orbitals and many
continuum orbitals are required.

Another difficulty presented by a direct sum of overlapping bases is that the Buttle
correction, an absolutely essential part required by the Wigner–Eisenbud (Belfast)R-matrix
method so as to obtain reliable scattering information, requires modification when using
the RMPS method. This is because the standard Buttle correction assumes that the original
R-matrix basisuil(r) is used. When additional pseudo-orbitals are included, however, the
Buttle correction must take these additional orbitals into consideration. Bartschatet al
(1996a) avoided this difficulty by instead discarding high-energyR-matrix poles arising
from these additional pseudo-orbitals, based on perfectly valid considerations of these poles
(Bartschat 1996). We retain all poles and use a new Buttle correction, on the other hand,
and feel that this approach may have certain advantages. For instance, there is no need to
determine whichR-matrix poles should be discarded.

2.2. New Buttle correction

The Buttle correction (Buttle 1967) is a nearly energy-independent correction, at sufficiently
low energies, to the single-channelR-matrix given by the difference between the actual
single-channelR-matrix and the approximate one arising from the use of a finite number
of terms in the expansion of equation (2):

RButtle = Ractual− Rapprox. (9)

The actualR-matrix is computed by solving equation (4) at the Buttle energies, whereas
the approximateR-matrix, in the absence of any pseudo-orbitals, is given by the expression
(Burke and Berrington 1993)

Rapprox= 1

2a
EUT(a)(H− E)−1 EU(a). (10)

Here H is the Hamiltonian matrix (the one-electron operator in equation (4)), which is
diagonal when acting only on the basisU. EU(a) is the vector of surface amplitudes on the
R-matrix boundaryr = a, i.e. ( EU(a))i = uil(a). Thus, the Hamiltonian matrixH can be
replaced by the diagonal matrix of eigenvalues, giving the simpleR-matrix form

Rapprox= 1

2a

∑
i

u2
il(a)

k2
i /2− E

. (11)

The above simplification does not hold when pseudo-orbitals are included. The approximate
single-channelR-matrix is instead given by

Rapprox= 1

2a
EV T(a)(H− E)−1 EV (a), (12)

indicating that it is expressed in terms of the new basisV. This is not diagonal in general
since V contains an admixture of pseudo-orbitals, although it is easily proven that all
of the eigenvalues and surface eigenvectors of equation (4) are recovered. Due to the
additional pseudo-orbitals, though, there exist additional eigenvalues with non-zero surface
eigenvectors. (All are non-zero in general since they are linear combinations of both the
pseudo-orbitalsand theR-matrix orbitals, which have non-zero amplitudes at theR-matrix
boundary.) We find that consideration of these additional terms is absolutely necessary to
obtain a meaningful Buttle correction. Using the original form we obtained completely
unphysical results. Our modified approach avoids this catastrophic error and instead gives
a smooth Buttle correction and physically meaningful cross sections.
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Figure 1. StandardR-matrix (– – –) and RMPS (——) results for e− + He+ collisions in the
Temkin–Poet s-wave model: (a) 1s→ 2s; (b) 1s→ 3s; (c) 1s→ εs. These represent sums over
the singlet and triplet partial waves, and have been convoluted with a 10 eV FWHM Gaussian.

3. s-wave results for e−–He+ scattering: Temkin–Poet model

We first show that our method is valid by investigating the s-wave excitation and ionization
cross sections for He+. For this model system, we used physical orbitals for then = 1–
3 states, and an additional 12 Laguerre orbitals to discretize the continuum of the target
electron. We also used 60R-matrix orbitals for the continuum electron. The size of the
wavefunction was thus of the order of 1000 basis functions (see equation (2)). Results are
shown in figure 1 for excitation to the 2s and 3s states of He+, and also ionization, obtained
by summing the excitation cross sections to each target state with energy greater than the
ionization energy (54.4 eV). The sum of singlet and tripletL = 0 partial waves is shown in
each case, and they have been convoluted with a 10 eV FWHM Gaussian in order to smooth
the sharp resonance structure, both physical and pseudo in nature, below each threshold.
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The main points are, first, the results are completely consistent with those from a joint study
using both the eigenchannelR-matrix and the convergent close-coupling methods (Meyeret
al 1995) and also from a recent RMPS and CCC study (Bartschat and Bray 1997). However,
the ionization results have not used any projection of pseudostates onto physical states, and
further, none of the three results have done any sort of averaging over theR-matrix box
size. Secondly, the standardR-matrix method gives an erroneously high excitation cross
section due to the omission of higher channel coupling. Thus, the inclusion of the two-
electron continuum is necessary even for excitation processes. Photoionization–excitation
involves a similar wavefunction description for the final state, so it is natural to expect the
two-electron continuum to be of similar importance there as well.

4. Details of our photoionization orbital bases

Applying the RMPS method to the photoionization of helium is complicated by the
introduction of higher angular momentum orbitals. We need to include the 3dεf 1Po

continuum in order to study excitation up ton = 3, so all continuum orbitals up tol = 3
are needed. We require the hydrogenic orbitalsPnl = {1s, 2s, 2p, 3s, 3p, 3d} to describe
accurately the He+ target states of interest. Since these alone would not be sufficient in
order to obtain an accurate initial ground state for helium, we augment this set with an
additional 12 orbitalsPnl = {4s,4p,4d,4f,5s,5p,5d,5f,6s,6p,6d,6f}, determined from
a large MCHF calculation (Froese Fischer 1991) for the ground state, including all 52
nln′l, 1 6 n, n′ 6 6, 0 6 l 6 3 configurations. This yields a ground-state energy
of E = −2.903 174 au compared with the converged theoretical value of−2.903 724 au
(Froese Fischer 1977). These pseudo-orbitals thus recover a great deal of ground-state
correlation, and they can be used to represent the continuum of the target electron as well.
The He+ energies obtained for these physical and pseudostates are given in table 1, showing
that all of the higher target energies are in the continuum. The resultant discrete energy
spectrum in the continuum is fairly sparse, however, and so the representation of the target
continuum is correspondingly crude. In order to increase the density of states, we also
tried to augment this pseudo-orbital basis with a set of Laguerre orbitals, similar to what
was done for the Temkin–Poet model of scattering. This did very little to minimize the
resulting oscillatory pseudoresonance structure, at a great increase in computational time
and memory. Thus, we will not consider the use of Laguerre orbitals any further.

We use three basis sets for the calculations performed in section 5. For each set, the
scattering electron orbital is spanned by the entire basisV consisting of physical, pseudo-,
andR-matrix orbitals, as detailed in section 2.1. The three sets differ only in the number
of target states included in the wavefunction of the initial (1S) and final (1Po) partial waves.
They are: basis (1) which includes only the six physical states in both initial and final
partial waves, basis (2) which includes in addition the 12 pseudostates for the initial (1S)
partial wave, therefore allowing higher-order correlations not included in the standardR-

matrix expansion, such as4p
2
, etc, and basis (3) which also includes 12 pseudostates in

the final (1Po) partial wave, thus providing some representation for the double ionization
wavefunction.

5. Photoionization–excitation results for helium

We started with the latest RMATRIX I version of the Belfast codes (Berringtonet al
1995) that allow both Breit–Pauli and radiative (e.g. photoionization) effects, as originally
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Table 1. Target energies for He+.

He+ designationa Absolute (au) Relative (Ryd)

1s −2.00 0.00
2s −0.50 3.00
2p −0.50 3.00
3s −0.22 3.55
3p −0.22 3.55
3d −0.22 3.55
4s 0.22 4.44
4p 0.51 5.01
4d 1.59 7.17
5s 3.02 10.04
4f 3.87 11.74
5p 4.69 13.38
5d 8.80 21.60
5f 15.26 34.51
6s 15.74 35.48
6p 20.79 45.58
6d 32.03 68.05
6f 47.05 98.10

a Those designated with an overline, e.g.4s, are actually linear combinations of the original
pseudo-orbitals

developed by Scott and Taylor (1982). These codes were then modified as detailed in
section 2. We would like to investigate not only the differences between the results of the
three bases described in section 4, but also the differences between theory and experiment.
Experimentally, it is difficult to distinguish photoionization processes between He+ target
states with the same principal quantum numbern, but different angular momental (Wehlitz
et al 1993), due to the near degeneracy of hydrogenic targets; the measurable quantity
usually involves a summation over all possible angular momentum states. We are therefore
concerned with the following cross section ratios

Rn = σn

σ0
=
∑n−1

l=0 σnl

σ1s
, (13)

whereσnl are the individual cross sections to eachnl state of He+. This ratio is particularly
useful in the present study because: (1) the experimental results have recently been reported
(Wehlitz et al 1997); (2) the ratio approaches a constant, therefore factoring out much of
the inverse-power energy dependence at high energies, and (3) the cross section to the
ground state of He+ (σ1s) is found to be insensitive to the differences in our threeR-matrix
expansions, so that the ratioRn essentially offers a concise assessment of the accuracy of
our calculated photoionization–excitation cross sections. Results obtained using basis (1)
(see figure 2) show a great disparity between length and velocity gauges as well as poor
agreement with experiment. They are greatly improved in going to basis (2), indicating that
the ground-state correlation is extremely important for these processes. However, even these
results lie above experiment in the ionization threshold region (54.5 eV). The further final-
state double-continuum description contained in basis (3) shows by far the closest agreement
between the gauges and also seems to converge to the lower experimental results near the
ionization threshold, although at the expense of introducing pseudoresonance oscillations.

We also computed effective angular distribution parameters (β). The normal angular
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Figure 2. RMPS cross section ratiosσn/σ1 for He:
basis (1), length (——) and velocity (—· —), basis
(2), length (- - - -) andvelocity (– – –), and basis (3),
length (——) and velocity (— — —) results are all
convoluted with a 10 eV FWHM Gaussian. The two
(——) curves are easily differentiated by noting that
the basis (1) length curve invariably shows the poorest
overall behaviour compared with the others. Also,
the length and velocity curves for basis (3) are often
coincidental. The experimental values (♦) are from
Wehlitz et al (1997).

distribution parameter is defined as the measure of anisotropy of the angular differential
photoionization cross section, which is given by

dσnl
d�
= σnl

4π
[1+ βnlP2(cosθ)], (14)

where σ is the total integrated cross section,P2(cosθ) is the second-order Legendre
polynomial, andθ is the angle between the axis of polarization of the incident, linearly
polarized light and the ejected electron’s wavevector. Again, since experiment cannot
distinguish betweenβ parameters of differentl for the samen, we introduce an effectiveβ
parameter which averages over thel-states, namely

βeff
n =

∑n−1
l=0 σnlβnl∑n−1
l=0 σnl

. (15)

We point out that when convoluting the effectiveβ parameters we actually convolute the
numerator and denominator separately and then take the quotient of the two convolutions.
In figure 3 we show these results and note that, although they still exhibit some sensitivity
to the two-electron continuum in the final state, this effect is reduced considerably from the
corresponding effect for the ratios. This might be becauseβ is essentially a ratio of two
cross sections, and the errors in the numerator and denominator tend to cancel. However,
it can be seen that the results from basis (3) show the least amount of difference between
gauges and agree most closely with experiment. Also, then = 3 length results from basis
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Figure 3. RMPS asymmetry parameters,βeff
n , for He. Notation is the same as in figure 2. The

experimental values (♦) are from Wehlitzet al (1993).

(1) are completely unphysical, again indicating that caution should be used when using
approximate wavefunctions with the length gauge.

5.1. Analytic asymptotic limits

It is possible to extract the high-energy asymptotic limit for the cross section ratios from our
ground-state wavefunction, with a minimal amount of work. The method ofÅberg (1970),
which was applied to velocity-gauge asymptotic ratios by Kheifets (1993), will be used
here due to its simplicity. Our slightly different form for the ground-state wavefunction,
including products of orbitals withn 6= n′,

ψg(r1, r2) =
∑
n,l

{
cnl,nlPnl(r1)Pnl(r2) (16)

+
∑
n′ 6=n

cnl,n′l√
2
(Pnl(r1)Pn′l(r2)+ Pn′l(r1)Pnl(r2))

}
, (17)

necessitates an alternative form to that used by Kheifets (1993). Rigorously speaking, this
expansion is modified slightly due to mixing with the extraR-matrix continuum orbitals,
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Table 2. MCHF ground-state data.

n′ c1s,n′s c2s,n′s c3s,n′s Pn′ (0)

1 0.9618 −0.2223 −0.0738 5.657
2 −0.2223 −0.0112 −0.0072 2.000
3 −0.0738 −0.0072 −0.0023 1.089
4 −0.1211 −0.0179 −0.0086 6.671
5 0.0136 −0.0019 −0.0012 12.688
6 −0.0022 0.0011 0.0006 14.770

Table 3. Asymptotic ratios.

n σnE
2/A σn/σ1 (%) Kheifets (1993)

1 21.138
2 1.014 4.80 4.74
3 0.125 0.59 0.60

although this is very minor since we have already included up throughn = 6 pseudo-orbitals.
One appealing aspect is that, since we use exact He+ orbitals up ton = 3 in this expansion,
there is no need to evaluate overlap integrals. Considering the alternative wavefunction and
overlap, and following the analysis of Kheifets (1993), we arrive at the following expression
for the asymptotic cross sections to thens states of He+ (the asymptotic cross section for
a givenn)

σn(E) −→ A

E2

∣∣∣∣cns,nsPns(0)+
∑
n′ 6=n

1√
2
cns,n′sPn′s(0)

∣∣∣∣2, (18)

where the constantA is independent ofn and the energyE. The MCHF coefficients and
r = 0 orbital amplitudes are known prior to theR-matrix calculation, and we list these in
table 2. Inspection of the size of the coefficients and amplitudes shows clearly that the 1s
cross section is fairly insensitive to the effect of then > 3 pseudo-orbitals; we can use
just then = 1–3 orbitals, slightly altering the mixing coefficients while still obtaining an
asymptotic result that is accurate to within a few per cent. The mixing coefficients for the
3s cross section, on the other hand, are more sensitive to the amount of correlation included.
The asymptotic ratios can be determined by using the data in table 2 and they are listed in
table 3, showing that the present results are within about 2% of those of Kheifets (1993).

5.2. Analysis of the 3lnl′ resonance region

We have primarily focused on energies above the ionization threshold, where nophysical
resonance structure is observed. However, we have seen that the background cross section
is also affected by the two-electron description. This can be important for describing
resonances that strongly interfere with the direct photoionization background.

An earlier study on resonant photoionization–excitation by Hayes and Scott (1988)
used a standardR-matrix expansion including then = 4 physical target states. They
obtained impressive agreement with the positions and overall qualitative behaviour of the
resonances seen in then = 2 andn = 3 photoionization–excitation cross sections, although
their calculated background (direct) cross section was considerably higher than experiment
for certain processes. As analysed by Fano (1961), the relative magnitudes of direct and
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resonant photoionization determine the resulting resonance profile (the Fanoq-factor), which
can range from infinity (Lorentzian) to order unity (asymmetric profile) to zero (window).
The direct photoionization process must therefore be treated accurately, and we have seen
that this is sensitive to the two-electron continuum description.

We show unconvoluted cross sections for photoionization–excitation to the 2s and 2p
target states of He+ in figure 4, using all three target bases. Of particular note, it is seen that
the agreement between the length and velocity gauges improves as first the ground state, and
then the final continuum state, each includes additional pseudostates in the wavefunction
description. Furthermore, the background cross sections are reduced as well. Without the
extra ground-state correlation, both the length and velocity results differ greatly, giving
completely contrary qualitative descriptions for these resonances.

5.3. Double ionization calculations

Photo–double-ionization cross sections have already been computed with close-coupling
methods by Meyer and Greene (1994) and Kheifets and Bray (1996). Nevertheless, this
information is readily available from our presentR-matrix calculations, and can be obtained
by summing the photoionization cross sections to every pseudostate. These results are shown
in figure 5. We note that Meyer and Greene (1994), Meyeret al (1996), and Bartschatet al
(1996), have devoted considerable effort to the interpretation of excitation to pseudostates,
which we do not attempt to repeat. The point we wish to make is that this method will
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yield fairly accurate pseudostate double ionization cross sections via excitation to the target
continuum states, as we have found in the case of electron-impact ionization (Pindzolaet
al 1997). In addition, we find good agreement between our length and velocity results,
unlike the unreliable length gauge findings of Meyer and Greene (1994) and Kheifets and
Bray (1996). As pointed out by Kheifets and Bray (1996), the length gauge is most likely
to be extremely sensitive to the long-range behaviour of the ground-state wavefunction.
Apparently, our MCHF pseudostate expansion, together with the extraR-matrix orbitals,
minimizes the inaccuracy in the long-range behaviour of our ground state.

6. Conclusion

We have successfully developed an RMPS method which is able to handle a mixture of
different, overlapping, orbital bases and which uses a modified Buttle correction. This
method gave results for electron-impact excitation and ionization within the Temkin–Poet
model that are consistent with those of other workers. The method was then applied to
photoionization–excitation of He. It was found that a large MCHF expansion in pseudo-
orbitals was necessary, in the form of double-continuum states for the ground state, to
obtain reliable length and velocity results, therefore warranting this new development.
Furthermore, the double-continuum states for the final scattering symmetry improved upon
these results, and also yielded information on photo-double–ionization. Our accurate
ground state produced asymptotic ratios in excellent agreement with other calculations.
Most importantly, even the low-energy resonances were sensitive to the double-continuum
description.
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