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Abstract. Electron-impact excitation for Ar+ is studied using close-couplingR-matrix theory
in LS coupling. Both 28-state and 40-state close-coupling approximations are employed and
cross sections and effective collision strengths for selected excitation transitions are compared.
In addition, ionization rate coefficients for Ar+ are determined using distorted-wave theory and
compared with experiment. Finally, these data, along with experimental and theoretical radiative
rates, are entered into a collisional-radiative modelling program–(atomic data and analysis
structure) to obtainSXB ratios for the radiative transitions 3p4(3P)4p4D→ 3p4(3P)4s4P and
3p4(3P)4p2D→ 3p4(3P)4s2P. TheseSXB ratios allow one to relate spectroscopic emissivity
measurements to impurity influx from a localized source. In the present studies, we modelled the
impurity influx when only the ground term contributes to the ionization of Ar+ and showed that
theSXB ratio corresponding to the radiative transition between the doublet terms is less sensitive
to electron density and more reliable than theSXB ratio corresponding to the radiative transition
between the quartet terms. Additional collisional–radiative modelling studies of impurity influx
when the ground and metastable states contribute to the ionization of Ar+ are also proposed.

1. Introduction

Currently there is significant interest in inelastic scattering of electrons from complex atoms
and low-charge-state ions. This is primarily due to the need for accurate atomic data for
application to studies of magnetically confined plasmas near the walls of fusion reactors
and to low-temperature astrophysical plasmas. One of the elements of present interest
to experimental studies in tokamak reactors is argon. For example, at JET argon gas is
puffed into the divertor both in order to detach the plasma from the divertor plates and to
radiatively cool it (Horton 1996), while at Alcator C-Mod at MIT the recycling of argon
from the divertor surface is being studied (McCracken 1996).

It is possible to relate spectroscopic measurements of emissivities along a line of sight
directed towards a localized source of impurities to the impurity flux from that source
by employing theoretical calculations of the number of ionizations per emitted photon
(Behringeret al 1989, Badnellet al 1996). Data for any particular ionization stage of
the atomic species of interest can be employed as long as no higher ionization stages of that
atom emerge from the localized source. Thus, such spectroscopic measurements for certain
radiative transitions in Ar+, in combination with radiative rates, electron-impact excitation
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rates, and electron-impact ionization rates for that ion would allow for the determination of
the influx of argon.

In the low-density limit, the number of ionizations per emitted photon can be determined
simply from the ionization rate from the ground state divided by the excitation rate from the
ground state to the upper level of the observed spectral line times the radiative branching
ratio for that observed line; this is the zero-densitySXB ratio. However, one must still
correct the excitation rate for the effects of radiative cascades from higher-lying levels.
In addition, we will show that for certain types of transitions, even in the absence of
cascades, the zero-densitySXB ratio may differ significantly from the density-dependent
SXB ratio even at quite low electron densities. Thus, in order to employSXB ratios for
the determination of impurity influx, one must normally include the effects of collisions
on the populations of the excited states; this is especially true for the higher densities
present in the divertor region of a tokamak plasma. The atomic level populations can be
determined by using a collisional–radiative model (see for example, Summers and Hooper
1983).

Recently, Tayal and Henry (1996) reported onLS-couplingR-matrix calculations of
electron-impact excitation collision strengths from the ground term of Ar+ to various doublet
excited terms. They employed both nine-state and 19-state approximations, but included
only doublet terms in their close-coupling (CC) expansions. In the present study, we
focus on excitation from the 3p5 2P ground term to the 3p4(3P)4p4D excited term followed
by radiation to the 3p4(3P)4s4P term and excitation from the 3p5 2P ground term to the
3p4(3P)4p2D excited term followed by radiation to the 3p4(3P)4s2P term. However, we
also need rates for collisional excitation and de-excitation between a large number of excited
terms in order to determine term populations as a function of electron density. This requires
a much more extensive set of excitation calculations.

In the present work, we have employed both 28-state and 40-state CC approximations
to makeR-matrix calculations of excitation rates between a large number ofLS terms.
Great care had to be taken to carry the partial-wave expansions to sufficiently high
values of the total angular momentum so that the excitation cross sections from excited
terms, for which the threshold energies are relatively low, were sufficiently accurate at
higher energies that they could be used for the determination of the rate coefficients.
In addition, we have calculated the rate coefficient for ionization from the ground term
of Ar+ using the distorted-wave (DW) approximation and compared our result with a
rate determined from experimental measurements. The rate coefficients for excitation
and ionization and the radiative rates were then used in the quasistatic generalized
collisional–radiative level population model incorporated in the atomic data and analysis
structure (ADAS), see Summers (1994), to determineSXB ratios as a function of electron
density and temperature, and to calculate the power-loss coefficient as a function of
temperature.

This paper is organized as follows. In section 2 we describe our atomic structure
calculations, ourR-matrix calculations of electron-impact excitation, and our DW
calculations of electron-impact ionization. In section 3, we present a discussion of
population modelling and our results for the density-dependentSXB ratios and the zero-
density power-loss coefficient. In section 4 we summarize our findings and propose
additional collisional–radiative modelling studies for Ar+.
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2. Atomic theory

2.1. Atomic structure

The bound-state radial wavefunctions employed in this study were determined using
Fischer’s multiconfiguration Hartree–Fock (MCHF) programmes (Froese Fischer 1991).
The bound-state energies and radiative rates were determined from a set of configuration-
interaction (CI) calculations and include the effects of the Darwin and mass–velocity terms;
however, these relativistic corrections are relatively small for this ion. We employed two
different CI basis sets: the first included the 28 terms arising from the configurations 3s23p5,
3s3p6, 3s23p43d, 3s23p44s, and 3s23p44p; the second included the above 28 terms plus the
12 terms of the configuration 3s23p44d, and the three non-spectroscopic terms (pseudostates)
3s23p4(3P)5̄s2P, 3s23p4(3P)5̄p2D, and 3s23p4(1D)5̄p2D—a total of 43 terms. As explained
below, the latter three pseudostates, that include non-spectroscopic orbitals designated by
a line over the principal number specification, were included solely to improve the atomic
structure.

The 1s, 2s, 2p, 3s, and 3p orbitals were determined from a single-configuration Hartree–
Fock (SCHF) calculation on 3p5 2P, and these orbitals were then frozen while optimizing
all other orbitals. The 4s and 4p orbitals were determined from SCHF calculations on
3p4(3P)4s4P and 3p4(3P)4p4D, respectively. The 3d orbital was determined from a
configuration-average (CA) Hartree–Fock calculation on the 3p43d configuration. This
CA 3d orbital should provide the best overall estimate for this orbital in all the terms
of the 3p43d configuration. The 4d orbital employed in the 43-state CI calculation was
determined by performing an SCHF calculation on 3p4(3P)4d4D. This provides a good
estimate for the 4d orbital in the lower-lying quartet terms of the 3p44d configuration; in
addition, through CI between the quartet terms of 3p43d and 3p44d, it allows us to better
correct the CA 3d orbital in the important quartet terms of the 3p43d configuration for
LS term dependence. Thē5s pseudo-orbital was determined from an MCHF calculation
on 3p4(3P)4s2P plus 3p4(3P)5̄s2P to correct the 4s orbital in the2P term forLS term
dependence. Finally, thē5p pseudo-orbital was determined from an MCHF calculation on
3p4(3P)4p2D+ 3p4(1D)4p2D+ 3p4(3P)5̄p2D+ 3p4(1D)5̄p2D to correct the 4p orbital for
LS term dependence in the2D terms.

The energies for all of the terms from the 28-term CI calculation and the 40 spectroscopic
terms from the 43-term CI calculations are given in table 1, and compared with energies used
in the 19-stateR-matrix CC calculation of Tayal and Henry (1996) and the experimental
energies from Moore (1949). With respect to energy, only the highest four terms of 3p43d
(3p4(3P)3d2D, 3p4(3P)3d2P, 3p4(1S)3d2D, and 3p4(1D)3d2S) are affected much by the
extra CI included in the 43-term CI basis set, and they are all pushed down closer to the
experimental values. In the case of the 43-term CI calculation, the first eight terms of 3p44d
are in reasonably good agreement with experiment; however, in the absence of any higher
terms to compensate for CI with the lower terms, the energies of the last four terms are in
poor agreement with experiment.

Although the energies of the first 36 of the 40 spectroscopic terms included in the 43-
term CI calculation are in good overall agreement with experiment, some of the calculated
terms are out of energy order, as compared with experiment. However, our primary interest
for this study is excitations to the4D and 2D terms of 3p4(3P)4p. As can be seen from
table 1, these two terms are in excellent agreement with experimental energies; furthermore,
none of the terms that are calculated to be below these two terms are found experimentally
to be above them, and none that are calculated to be above these terms are actually below
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Table 1. Calculated term energies of Ar+ in eV relative to the ground term.

Present Present THa

Index Term 43-term CI 28-term CI 19-state CC Experimentalb

1 3p5 2P 0.00 0.00 0.00 0.00
2 3s3p6 2S 12.85 13.18 13.44 13.48
3 3p4(3P)3d4D 15.93 16.05 — 16.42
4 3p4(3P)4s4P 16.73 16.73 — 16.71
5 3p4(3P)3d4F 17.34 17.37 — 17.69
6 3p4(3P)4s2P 17.39 17.44 18.94 17.18
7 3p4(1D)3d2P 17.99 18.06 19.27 18.02
8 3p4(3P)3d4P 18.13 18.12 — 18.31
9 3p4(1D)3d2D 18.47 18.52 20.53 18.70

10 3p4(3P)3d2F 18.54 18.56 19.95 18.54
11 3p4(1D)4s2D 18.99 19.02 19.87 18.44
12 3p4(1D)3d2G 19.05 19.08 — 19.12
13 3p4(3P)4p4P 19.19 19.19 — 19.25
14 3p4(3P)4p4D 19.54 19.54 — 19.55
15 3p4(3P)4p2D 19.79 19.81 21.26 19.71
16 3p4(3P)4p2P 20.05 20.05 21.34 19.85
17 3p4(3P)4p2S 20.08 20.08 21.46 19.97
18 3p4(3P)4p4S 20.08 20.08 — 19.97
19 3p4(1D)3d2F 20.52 20.55 — 20.26
20 3p4(1D)4p2F 21.40 21.40 22.95 21.14
21 3p4(1S)4s2S 21.64 21.71 22.93 20.74
22 3p4(1D)4p2D 21.82 21.84 22.95 21.50
23 3p4(3P)3d2D 21.91 22.73 23.22 21.39
24 3p4(3P)3d2P 22.10 24.33 23.36 21.64
25 3p4(1D)4p2P 22.24 22.24 23.13 21.38
26 3p4(3P)4d4D 22.74 — — 22.79
27 3p4(1S)3d2D 22.87 25.26 — 22.79
28 3p4(3P)4d4F 22.97 — — 23.10
29 3p4(3P)4d4P 23.13 — — 23.14
30 3p4(3P)4d2F 23.26 — — 23.20
31 3p4(1D)3d2S 23.76 26.70 24.36 22.83
32 3p4(1D)4d2P 24.18 — — 23.60
33 3p4(1S)4p2P 24.51 24.51 26.10 23.82
34 3p4(1D)4d2D 24.72 — — 23.88
35 3p4(1D)4d2G 24.82 — — 24.62
36 3p4(1D)4d2F 25.14 — — 24.82
37 3p4(1D)4d2P 27.10 — — 24.74
38 3p4(3P)4d2D 27.28 — — 24.77
39 3p4(1S)4d2D 28.33 — — —
40 3p4(1D)4d2S 28.46 — 27.02 25.45

a Tayal and Henry (1996).
b Moore (1949).

them. Thus, we would expect that the disagreement between the calculated and experimental
energy order will have only a small effect on the resonance contribution to the excitation
cross section for these two terms. However, these differences in energy order could affect
the resonance contributions to excitation between other terms and thereby have some effect
on the density-dependent collisional–radiative modelling of this problem.

In table 2, we present our results for the emission oscillator strengths in both the
length and velocity gauges and the radiative rates in the length gauge for the dipole-
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Table 2. Emission oscillator strengths and radiative rates from the 3p4(3P)4p4D, 3p4(3P)4p2D
and 3p4(3P)4s2P terms of Ar+.

28-term CI 43-term CI Experiment (VW)a

Final term fL/fV A (108 s−1) fL/fV A(108 s−1) A (108 s−1)

1 3p4(3P)4p4D
3p4(3P)4s4P 0.367/0.361 1.260 0.365/0.364 1.260 1.110
3p4(3P)3d4D 0.052/0.010 0.272 0.031/0.023 0.174 0.107
3p4(3P)3d4F 0.180/0.092 0.368 0.139/0.149 0.292 0.151
3p4(3P)3d4P 0.010/0.027 0.008 0.009/0.026 0.008 —

2 3p4(3P)4p2D
3p4(3P)4s2P 0.299/0.414 0.727 0.339/0.360 0.848 0.843
3p4(1D)3d2P 0.020/0.042 0.023 0.016/0.021 0.023 —
3p4(1D)3d2D 0.006/0.010 0.004 0.008/0.005 0.006 —
3p4(3P)3d2F 0.098/0.147 0.066 0.084/0.180 0.057 —

3 3p4(3P)4s2P
3p5 2P 0.243/0.238 32.1 0.226/0.206 29.6 —

a Vujnović and Wiese (1992)

allowed transitions from the4D and 2D terms of 3p4(3P)4p. The average wavelength
for the transition between the 3p4(3P)4p4D term and the 3p4(3P)4s4P term is 436 nm,
while that for the transition from the 3p4(3P)4p2D term to the 3p4(3P)4s2P term is 490 nm.
Emissivity measurements of the spectral lines corresponding to these transitions should be
quite appropriate for the determination of the flux of Ar within the divertor of a tokamak
reactor. The improvement in agreement between length and velocity oscillator strengths
and the theoretical and experimental radiative rates seen in the 43-term CI calculation for
the above doublet transition is due to the correction forLS term dependence provided by
the inclusion of the doublet pseudostates in the 43-term CI. We also show in this table the
oscillator strengths and radiative rate for the transitions between the 3p4(3P)4s2P term and
the ground term. As we shall see in section 3, the radiative rate for this transition has an
important effect on the collisional–radiative modelling of the doublet transition at 490 nm.

Although CI has only a small effect on the energy of the4D and4F terms of 3p4(3P)3d,
it is seen from table 2 to have a pronounced effect on the oscillator strengths and radiative
rates for the transitions from the 3p4(3P)4p4D term to the 3p4(3P)3d4D and 3p4(3P)3d4F
terms. This is primarily due to the correction of the CA 3d orbital forLS term dependence
through CI with the quartet terms of 3p44d. The agreement between the length and
velocity oscillator strengths is much better and the agreement between the theoretical and
experimental radiative rates is closer for the 43-state CI basis set than for the 28-state basis.
However, there are still significant discrepancies between our calculated radiative rates and
the experimental values. We have attempted to further correct these particular radiative rates
by including certain additional pseudostates in the CI expansion. However, the changes that
resulted were relatively small; this indicates that a much larger CI expansion may be required
to obtain further improvement, and this would significantly complicate our CC calculations
of electron-impact excitation.

For our collisional–radiative modelling of Ar+, we have employed our theoretical
radiative rates for all dipole-allowed transitions, with the exception of the four transitions
for which radiative rates are given in the last column of table 2; for those transitions,
the experimental values were employed. In addition, we performed intermediate-coupling
CI calculations to determine approximate radiative rates for the dipole-forbidden radiative
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transitions from levels of the metastable terms 3p4(3P)3d4D, 3p4(3P)4s4P, 3p4(3P)3d4F,
3p4(3P)3d4P, and 3p4(3P)3d2F to the 3p5 2P ground term. However, since the levels of these
terms radiate to the levels of the ground term through weak spin–orbit mixing with levels
that make strong dipole transitions to the levels of 3p5 2P, these rates are very uncertain. In
addition to the above five terms, the levels of 3p4(3P)3d2G cannot make dipole transitions
to levels of the ground term through such mixing and the radiative rate for this term was
assumed to be zero in our calculations. Finally, we find that although the term listed with
the label 3p4(1D)3d2D in table 1 can make a dipole-allowed radiative transition to 3p5 2P,
it is strongly mixed with 3p4(3P)3d2D and through cancellation in the eigenvectors radiates
only weakly to the ground term. Thus we have as many as seven metastable terms; as we
shall see, this significantly complicates the collisional–radiative modelling of Ar+.

2.2. Electron-impact excitation

Two R-matrix CC calculations of electron-impact excitation were performed. The first, that
we refer to as the 28-state CC calculation, employed the 28-term CI basis set and included
all 28 terms within the CC expansion, while the second, that we refer to as the 40-state
CC calculation, employed the 43-state CI basis set and included the 40 spectroscopic terms
within the CC expansion. In the case of the 28-state CC calculation, the radius of the
R-matrix boundary,rB, was 18.7 au and the number of basis orbitals,NC, used to represent
the continuum for a given value of angular momentum was 22; in the case of the 40-
state CC calculation,rB was 23.3 au andNC was 31. It is well known that the inclusion
of pseudostates in a CI basis set that are not included in the CC expansion of the target
leads to the presence of pseudo resonances. In our 40-state CC calculation, these pseudo
resonances were eliminated by using a transformation and reduction method explained in
Gorczycaet al (1995).

These calculations were carried out with full exchange for allLS5 partial waves with
2S + 1 = 1, 3, and 5,L = 0–12, and both even and odd parity, using the Breit–Pauli
R-matrix codes in theLS mode (see Berringtonet al 1995). However, for excitations
between excited terms, where the threshold energies are relatively low, this partial-wave
expansion is not sufficiently complete to permit accurate calculations at high energies; thus,
in order to obtain sufficiently accurate rate coefficients for transitions between these terms,
one must include partial waves with much higher values ofL. For this reason, we also
performed 28- and 40-state no-exchange CCR-matrix calculations (see Burkeet al 1992),
from L = 13 to L = 40, and then ‘topped up’ these results, using the method described
by Burgess (1974) for dipole-allowed transitions and by assuming that the partial collision
strengths form a geometric series inL (see Burgesset al 1970) for quadrupole transitions.
Finally, these highL contributions were added to the full-exchangeR-matrix results.

In figures 1 and 2, we compare our 28- and 40-state CC calculations of the excitation
cross sections from the 3p5 2P ground term to the4D and2D terms of 3p4(3P)4p, respectively.
These are the two primary excitation transitions to be considered in this study. As can
be seen, the difference between these two calculations with respect to the background
contribution to the4D cross section is quite small. The resonance contributions from the
two calculations are somewhat different but this has a small effect on the rate coefficient for
this transition. The difference between these two calculations for the2D cross section
is somewhat larger; this is not only due to the coupling of the bound terms by the
continuum electron (coupling effects), but also to the correction forLS term dependence in
3p4(3P)4p2D that is included in the 43-term CI basis set, but not the 28-term CI basis set.
However, the resonance contribution to the cross section from the 40-state CC calculation
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Figure 1. Electron-impact excitation cross section
for the transition 3p5 2P→ 3p4(3P)4p4D in Ar+
from a 28-stateR-matrix CC calculation (broken
curve) and a 40-stateR-matrix CC calculation
(full curve).

10 20 30 40 50 60

Energy(eV)

0

5

10

15

20

25

C
ro

ss
S

e
ct

io
n

(M
b

)

Figure 2. Electron-impact excitation cross section
for the transition 3p5 2P→ 3p4(3P)4p2D in Ar+
from a 28-stateR-matrix CC calculation (broken
curve) and a 40-stateR-matrix CC calculation
(full curve).

is somewhat larger than that from the 28-state CC calculation, while the reverse is true
for the background contribution; thus, the overall difference between the rate coefficients
determined from these two calculations is relatively small.

In figures 3 and 4, we compare the 28- and 40-state CC cross sections for excitation
from the ground term to 3p4(3P)4s4P, and the cross section for excitation from 3p4(3P)4s4P
to 3p4(3P)4p4D, respectively. Collectively, these two excitations represent an important
indirect mechanism for populating the4D term of 3p4(3P)4p. As will be discussed in
section 3, this is due to the large cross section for the second excitation (see figure 4) coupled
with a relatively small radiative rate from 3p4(3P)4s4P to the ground term. Although it is
difficult to tell on the scale of figure 3, the extra coupling effects included in the 40-state
calculation, as compared with the 28-state calculation, reduce the background cross section
for the excitation from the ground term to 3p4(3P)4s4P by about 30% at 30 eV; however,
this difference decreases rapidly with energy. We see from figure 4 that the resonance
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Figure 3. Electron-impact excitation cross section
for the transition 3p5 2P → 3p4(3P)4s4P in Ar+
from a 28-stateR-matrix CC calculation (broken
curve) and a 40-stateR-matrix CC calculation (full
curve).
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Figure 4. Electron-impact excitation cross
section for the transition 3p4(3P)4s4P →
3p4(3P)4p4D in Ar+ from a 28-stateR-matrix
CC calculation (broken curve) and a 40-state
R-matrix CC calculation (full curve).

contribution to the strong dipole-allowed excitation from 3p4(3P)4s4P to 3p4(3P)4p4D is
quite small and that the extra coupling effects included in the 40-state calculation reduce the
background cross section at the 20% level at 10 eV. One could also introduce pseudostates,
that were constructed using e.g. Laguerre orbitals, into theCC expansionas opposed to
just the CI expansion (Bray and Stelbovics 1993). This would allow for target coupling to
highly-excited bound states and to the continuum, within theR-matrix calculation (Bartschat
et al 1996). This could further reduce the background cross section by∼ 20%. However,
such a calculation is currently impractical for an ion as complex as Ar+.

In figures 5 and 6, we compare the 28- and 40-state CC calculations of excitation
from the ground term to 3p4(3P)4s2P and excitation from 3p4(3P)4s2P to 3p4(3P)4p2D,
respectively. Again these excitations provide an indirect path for populating the
3p4(3P)4p2D term; however, as we shall see, this path is suppressed at lower electron
densities by the large radiative rate from 3p4(3P)4s2P to the ground term (see table 2).
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Figure 5. Electron-impact excitation cross section
for the transition 3p5 2P→ 3p4(3P)4s2P in Ar+
from a 28-stateR-matrix CC calculation (broken
curve) and a 40-stateR-matrix CC calculation
(full curve).
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Figure 6. Electron-impact excitation cross
section for the transition 3p4(3P)4s2P →
3p4(3P)4p2D in Ar+ from a 28-stateR-matrix
CC calculation (broken curve) and a 40-state
R-matrix CC calculation (full curve).

Here the corrections included within the 43-term CI basis forLS term dependence, as
well as the additional coupling effects included in the 40-state CC expansion, account for
the differences between the two calculations of the cross sections for these dipole-allowed
transitions.

The effective collision strength,ϒ , first introduced by Seaton (1953) is defined by the
equation

ϒij =
∫ ∞

0
�(i → j) exp

(−εj
kTe

)
d

(
εj

kTe

)
, (1)

where� is the collision strength for the transition from termi to term j and εj is the
continuum energy of the final scattered electron. The effective collision strength is very
convenient for interpolation with respect to the electron temperature,Te, because it has a
much more gradual variation with temperature than that of the rate coefficient.

The rate coefficients for collisional excitation,qi→j , and de-excitation,qj→i , are then
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Table 3. Selected effective collision strengths for Ar+ from the 40-state (28-state) CC
calculation.

Temperature (eV)

Transitiona 0.35 0.69 1.72 3.45 6.89 17.2 34.5 68.9

1–14 0.91 0.97 0.94 0.84 0.69 0.48 0.33 0.22
(0.89) (0.96) (0.93) (0.84) (0.71) (0.50) (0.35) (0.24)

1–15 1.08 1.08 1.00 0.86 0.72 0.59 0.51 0.42
(0.94) (0.98) (0.96) (0.87) (0.77) (0.66) (0.57) (0.46)

1–4 2.36 2.32 1.94 1.55 1.20 0.80 0.54 0.35
(2.69) (2.61) (2.18) (1.73) (1.33) (0.89) (0.60) (0.38)

4–14 65.1 72.2 87.7 108 145 230 322 433
(65.2) (73.4) (93.1) (119) (162) (253) (341) (440)

1–6 2.60 2.30 1.69 1.31 1.14 1.46 2.22 3.40
(2.73) (2.53) (1.90) (1.53) (1.42) (1.88) (2.70) (3.83)

6–15 39.1 42.5 52.0 64.9 86.9 136 186 242
(37.8) (41.7) (52.6) (66.7) (89.9) (137) (182) (232)

a The term indices for the transitions are those listed in table 1.

determined from the equations

qi→j = 2
√
παca2

0

ωi

√
IH

kTe
exp

(
−1Eij
kTe

)
ϒij , (2)

and

qj→i = ωi

ωj
exp

(
1Eij

kTe

)
qi→j , (3)

where 2
√
παca2

0 = 2.1716× 10−8 cm3 s−1, IH = 13.6058 eV,1Eij is the threshold
energy for the transition from termi to termj , andωi andωj are the statistical weights of
the initial and final terms, respectively. These rate coefficients are calculated internally in
ADAS from the values of the effective collision strengths.

In table 3, we give the effective collision strengths for all transitions shown in figures 1–
6. As would be expected from the cross section plots, there are relatively small differences
between the effective collision strengths determined from the 28-state CC calculation and
those determined from the 40-state CC calculation. This reasonably good agreement between
the effective collision strengths from these twoR-matrix calculations is found for most
other transitions as well. However, the 40-state CC calculation still has the advantage of
providing a more complete picture of the effects of higher-lying terms on our collisional–
radiative modelling of this system. The calculated values ofϒ for all transitions between
the 28 terms in the 28-state CC calculation and the first 36 terms from the 40-state CC
calculation were entered into the ADAS database for our collisional–radiative calculations
for Ar+.

2.3. Electron-impact ionization

Accurate theoretical calculations of ionization from neutral and near-neutral species remains
a difficult problem. Recent progress has been made in incorporating correlation between
the scattered and ejected electrons for hydrogen and hydrogen-like targets using a variety of
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methods such as the converged CC method (Bray and Stelbovics 1993), the intermediate-
energy R-matrix method (Burkeet al 1987), theR-matrix with pseudostates method
(Bartschatet al 1996, Bartschat and Bray 1996), and time-dependent methods (Pindzola
and Schultz 1996, Pindzola and Robicheaux 1996). The converged CC method and the
R-matrix method with pseudostates has also been applied to some simple non-hydrogenic
systems; however, none of these methods have been attempted on a species as complex as
singly ionized argon.

The DW approximation has been quite successful for the determination of ionization
cross sections for highly ionized species, where the effects of correlations are usually not
significant. We have developed a DW programme that employs a CA approximation
(Pindzolaet al 1986), as well as a term-to-term DW programme that can incorporate a
limited amount of electron correlation (Griffinet al 1995). In the case of the CA calculations,
it is possible to resolve the cross sections to individualLS terms orLSJ levels using purely
algebraic transformations (Sampson 1986), and this is normally the technique we employ
to generate ionization data for collisional–radiative modelling calculations (Pindzolaet al
1995a). However, the discrepancies between experiment and DW theory are often quite
significant for complex neutral and near-neutral species, and first-order DW-Born theory,
when applied to such systems, can be very sensitive to the scattering potential (Pindzolaet
al 1995b) and bound-state and continuum-electron correlations (Griffinet al 1995).

In figure 7, we show a CA DW calculation of the rate coefficient for ionization from
the ground term of Ar+ in comparison with a rate coefficient determined from a fit to
the experimental cross section of Müller et al (1985). In this calculation, the prior form
of the scattering amplitude was employed in which the incident, scattered, and ejected
electrons were calculated in theV N−1 potential of Ar2+. As can be seen, the theoretical
rate coefficient is slightly below the one determined from experiment. This is somewhat
surprising since electron correlation normally reduces the first-order DW cross section, as
it does in the case of the corresponding atom, neutral Cl (Griffinet al 1995). To ensure
the most accurate ionization rate possible for the collisonal-radiative (CR) modelling of this
problem, we entered the ionization rate determined from the experimental cross section into
the ADAS database.
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Figure 7. Electron-impact ionization rate
coefficient for ionization from the 3p5 2P
ground term of Ar+ from a configuration-
average distorted-wave calculation (full curve)
and calculated from a fit to the experimental
cross section measurements of Müller et al
(1985) (short-broken curve).
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3. Population modelling theory

3.1. Three-state model of impurity influx from only the ground state

A simple three-state model can be used to explain qualitatively many of the basic features in
the determination of impurity influx when only the ground term contributes to the ionization
of Ar+. We begin by considering line emission from the 3p4(3P)4p4D → 3p4(3P)4s4P
transition as our diagnostic example, and therefore limit ourselves to the following three
population densities:N1(3p5 2P), N2(3p4(3P)4s4P), and N3(3p4(3P)4p4D). The CR
equations are given by

dN1

dt
= C11N1+ C12N2+ C13N3, (4)

dN2

dt
= C21N1+ C22N2+ C23N3, (5)

dN3

dt
= C31N1+ C32N2+ C33N3, (6)

whereCij are elements of the CR matrix. If we assume that the CR matrix only contains
collisional-excitation rates,Neqi→j ; collisional de-excitation rates,Neqj→i ; and radiative
decay rates,Aj→i ; then

Cii = −
∑
j<i

Ai→j −Ne

∑
j 6=i

qi→j , (7)

Cij = Aj→i +Neqj→i (j > i), (8)

Cij = Neqj→i (j < i), (9)

whereNe is the electron density. We assume that the population of each of the excited terms
is in quasistatic equilibrium with respect to the population of the ground term; therefore,
we set dN2/dt = dN3/dt = 0. The population of the third term is then given by:

N3 = NeF
exc
1→3N1, (10)

where

NeF
exc
1→3 =

−C22C31+ C32C21

C22C33− C23C32
. (11)

F exc
1→3 is defined as the effective contribution to the excited population of term 3 via excitation

from the ground term 1. Upon substitution from equations (7)–(9) we obtain:

NeF
exc
1→3 = [(A2→1+Neq2→1+Neq2→3)(Neq1→3)+ (Neq2→3)(Neq1→2)]

×[(A2→1+Neq2→1+Neq2→3)(A3→1+ A3→2+Neq3→1+Neq3→2)

−(A3→2+Neq3→2)(Neq2→3)]
−1. (12)

If we assume thatA2→1 is not equal to zero, then in the zero density limit we obtain:

F exc
1→3 =

q1→3

A3→1+ A3→2
. (13)

If we consider the situation of atoms emerging from a localized surface and being
ionized successively, the total impurity flux,0, along a line-of-sight directed at the surface
is given by:

0 =
∫ ∞

0
NeS1N1(x) dx, (14)
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whereS1 is the ionization rate coefficient from the ground term andN1(x) is the population
density of the ground term at positionx. If the line-of-sight emissivity is given by:

I =
∫ ∞

0
A3→2N3(x) dx, (15)

then equation (10) may be used to obtain a direct relation between impurity flux and
emissivity:

0 = SXB1,3→2I, (16)

where

SXB1,3→2 = S1

A3→2F
exc
1→3

. (17)

In the zero-density limit, we obtain:

SXB1,3→2 = S1

q1→3B3→2
, (18)

where

B3→2 = A3→2

A3→1+ A3→2
(19)

is the branching ratio for radiative decay from term 3 to term 2.
We carried out three-state model calculations not only for the 3p4(3P)4p4D →

3p4(3P)4s4P transition in Ar+, but also for the 3p4(3P)4p2D → 3p4(3P)4s2P transition.
We extracted the necessary effective collision strengths for these calculations from the 40-
stateR-matrix CC calculation. The excitation, de-excitation, and ionization rate coefficients
employed, at the three temperatures considered—3.45, 17.2 and 34.5 eV—are given in
table 4. Collisional–radiative calculations with ADAS for the ionization balance of Ar
indicate that the peak fractional abundance of Ar+ occurs at about 1.8 eV and has a value
greater than 0.1 over 1–3 eV. These findings are virtually independent of the electron
density, up to∼ 1015 cm−3. However, ourSXB ratios are perfectly valid at much higher
temperatures, which we show here to better illustrate their variation with temperature.

In figures 8 and 9, we show theSXB ratios for the 3p4(3P)4p4D→ 3p4(3P)4s4P and
3p4(3P)4p2D→ 3p4(3P)4s2P radiative transitions, respectively, as calculated from equation

Table 4. The excitation, de-excitation and ionization rate coefficients employed in the three-stateSXB ratio
calculations.

Te q1→2 q2→1 q1→3 q3→1 q2→3 q3→2 S1

(eV) (cm3 s−1) (cm3 s−1) (cm3 s−1) (cm3 s−1) (cm3 s−1) (cm3 s−1) (cm3 s−1)

1. 3p4(3P)4p4D→ 3p4(3P)4s4P

3.45 9.3× 10−11 5.9× 10−9 2.1× 10−11 1.8× 10−9 1.7× 10−7 2.3× 10−7 1.1× 10−11

17.2 9.7× 10−10 1.3× 10−9 5.8× 10−10 6.2× 10−10 3.1× 10−7 2.2× 10−7 1.3× 10−8

34.5 7.6× 10−10 6.2× 10−10 4.3× 10−10 2.3× 10−10 3.4× 10−7 2.2× 10−7 3.3× 10−8

2. 3p4(3P)4p2D→ 3p4(3P)4s2P

3.45 6.0× 10−11 9.3× 10−9 2.0× 10−11 3.7× 10−9 2.4× 10−7 9.8× 10−8 1.1× 10−11

17.2 1.7× 10−9 4.7× 10−9 6.0× 10−10 1.1× 10−9 3.8× 10−7 2.6× 10−7 1.3× 10−8

34.5 3.0× 10−9 5.0× 10−9 6.6× 10−10 7.0× 10−9 4.0× 10−7 2.5× 10−7 3.3× 10−8
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Figure 8. SXB ratios as a function of
electron density for the radiative transition
3p4(3P)4p4D → 3p4(3P)4s4P in Ar+ from a
three-state CR model at electron temperatures of
3.45 eV (short-broken curve), 17.2 eV (long-
broken curve), and 34.5 eV (full curve).
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Figure 9. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p2D→
3p4(3P)4s2P in Ar+ from a three-state CR model
at electron temperatures of 3.45 eV (short-broken
curve), 17.2 eV (long-broken curve), and 34.5 eV
(full curve).

(17) at these three temperatures and as a function of electron density. In the zero-density
limit, the SXB ratios are given by equation (18), while in the high-density limit the product
NeF

exc
1→3 becomes a constant and theSXB ratios from equation (17) are a linear function

of the electron density.
There are striking differences between these two sets of curves. In the case of the

3p4(3P)4p4D→ 3p4(3P)4s4P radiative transition, theSXB ratio curves drop significantly
from their zero-density limiting values beginning at a density of about 1012 cm−3, reach
a minimum at about 1015 cm−3, and then begin to rise in a linear fashion. On the other
hand, for the 3p4(3P)4p2D→ 3p4(3P)4s2P radiative transition, the curves remain equal to
their zero-density limiting values until we reach a density of about 1014 cm−3 and then they
begin to rise; however, that increase does not become linear until the density is greater than
1017 cm−3.
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These pronounced differences can be understood by considering the size of the radiative
rate from the second term to the ground term (A2→1) in the three-state models for these two
transitions. In the case of the 3p4(3P)4p4D→ 3p4(3P)4s4P radiative transition, the value of
(A2→1) from our intermediate coupling calculation is only 5.29×106 s−1; this spin-changing
radiative rate would be zero except for weak spin–orbit mixing of the levels of 3p4(3P)4s4P
with the levels of 3p4(3P)4s2P, and its value has low reliability. On the other hand, the
value of (A2→1) in the three-state model for the 3p4(3P)4p2D→ 3p4(3P)4s2P transition is
2.96× 109 s−1 (see table 2), and its value should be quite reliable.

In the models for both of these transitions, the values ofq2→3 are of order 10−7 cm3 s−1

(see table 4). Thus, for the quartet radiative transition, the collisional rate from term 2 to
term 3 (Neq2→3) is comparable withA2→1 when the density reaches a value of order
1013 cm−3; at such intermediate densities, the indirect process of collisional excitation to
term 2 followed by collisional excitation to term 3 will begin to increase the value of
F exc

1→3 significantly, and thereby lower theSXB ratio. This reduction in theSXB ratio will
continue until the density becomes large enough that the terms in equation (12) that are
proportional toN2

e begin to completely dominate;NeF
exc
1→3 will finally approach a constant,

at which point theSXB ratio will increase linearly with density.
In the model for the doublet transition this same indirect process for populating term 3

will also contribute; however, sinceA2→1 is now of order 109 s−1, the rate for collisional
excitation from term 2 to term 3 (Neq2→3) will not be comparable withA2→1 until the
density is of order 1016 cm−3; indeed, it is precisely this process that causes a noticeable
decrease in the positive slope of theSXB ratio versus density in figure 9 above 1016 cm−3.

We have also investigated the sensitivity of theSXB ratio to the value of the radiative
rate from term 2 to term 1 in the three-state model for both types of radiative transitions.
In figure 10, we show theSXB ratio corresponding to the quartet radiative transition at an
electron temperature of 17.2 eV, as we vary the value ofA2→1 from zero (chain curve), to
half the calculated value of 5.29×106 s−1 (short-broken curve), to the calculated value (full
curve), and finally to twice the calculated value (long-broken curve). The value of zero was
included since the radiative rate from the 3p4(3P)4s4P5/2 level to the levels of the 3p5 2P
term is zero. In this case, theSXB ratio in the low-density limit differs from that obtained
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Figure 10. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p4D→
3p4(3P)4s4P in Ar+ from a three-state CR model at
an electron temperature of 17.2 eV withA2→1 =
0.0 s−1 (chain curve): A2→1 = 2.65× 106 s−1

(short-broken curve);A2→1 = 5.29× 106 s−1 (full
curve); andA2→1 = 10.58× 106 s−1 (long-broken
curve).
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Figure 11. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p2D →
3p4(3P)4s2P in Ar+ from a three-state CR model at
an electron temperature of 17.2 eV withA2→1 =
1.48×109 s−1 (short-broken curve);A2→1 = 2.96×
109 s−1 (full curve); andA2→1 = 5.92× 109 s−1

(long-broken curve).

from equation (18) by nearly three orders of magnitude. However, even the variation of
A2→1 by a factor 4 causes significant differences in theSXB ratios shown by the short-
broken and long-broken curves, and it is doubtful that our calculated value is known to
this accuracy since it is so sensitive to very small variations in the intermediate-coupling
eigenvectors.

In addition to the uncertainty in the average radiative rate for this transition, its variation
with the levels of 3p4(3P)4s4P is also large. As mentioned above, the radiative rate from
3p4(3P)4s4P5/2 to the levels of the ground term is zero, while the radiative rate from
3p4(3P)4s4P3/2 to the levels of 3p5 2P is calculated to be 1.3 × 107 s−1 and that from
3p4(3P)4s4P1/2 is found to equal 5.3× 106 s−1. Even more troubling is the fact that this
large variation in theSXB ratio with the value ofA2→1 is most significant in precisely the
density range most applicable to a fusion plasma in the divertor region.

In figure 11, we show theSXB ratio corresponding to the doublet radiative transition at
an electron temperature of 17.2 eV, as we vary the value ofA2→1 from half the calculated
value of 2.96×109 s−1 (short-broken curve), to the calculated value (full curve), and finally
to twice the calculated value (long-broken curve). In this case, the variation in the radiative
rate has little effect on theSXB ratio until we reach a density of about 1014 cm−3. Although
above this density the difference in theSXB ratios becomes large, it is important to keep
in mind that our calculated value ofA2→1 should be accurate to much better than a factor
of 2 and the variation of the radiative rate to the levels of the ground term from the two
levels of 3p4(3P)4s2P is negligible. Thus, we would expect the accuracy of our calculated
SXB ratio to be better for the doublet transition than for the quartet transition.

3.2. Many-state calculations of impurity influx from only the ground state

Next, we again assumed that only the ground term contributes to the ionization of Ar+, but
carried out full CR calculations for theSXB ratios for the same two optical transitions in
Ar+ discussed above, using the effective collision strengths from both our 28- and 40-state
R-matrix CC calculations. We first performed calculations in which only the first 22 terms
listed in table 1 were included in the CR model and rates from both the 28- and 40-state CC
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Figure 12. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p4D→
3p4(3P)4s4P in Ar+ from a 22-state CR model
(broken curves) and a 36-state CR model (full
curves) at electron temperatures of 3.45, 17.2 and
34.5 eV.
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Figure 13. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p2D→
3p4(3P)4s2P in Ar+ from a 22-state CR model
(broken curves) and a 36-state CR model (full
curves) at electron temperatures of 3.45, 17.2 and
34.5 eV.

calculations were employed. The first 22 terms were selected since the energies resulting
from the two CI calculations are in good agreement up to that point (see table 1). As we
might expect, the variation of theSXB ratios with these two sets of collisional-excitation
data for both radiative transitions was quite small.

We then investigated the variation of theseSXB ratios with the number of terms included
in the CR modelling. In figures 12 and 13, we show our results for the quartet and
doublet radiative transitions, respectively, at the same three temperatures (3.45, 17.2 and
34.5 eV) used in the three-state calculations when the lowest 22 terms from the 40-state
CC calculation are included (long-broken curves) and when the lowest 36 terms from the
40-state CC calculation are included (full curves). We see that the differences between
these calculations are more pronounced in the case of the quartet transition. We also note
that in figure 12 theSXB ratios begin to decrease at a lower density and do so more
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gradually than in the case of the three-state model calculations for this same transition in
figure 8. On the other hand, the differences with respect to shape between the three-state
model shown in figure 9 and these more complete CR models for the doublet transitions are
less pronounced. However, the intermediate-densitySXB ratios are no longer completely
independent of density, as they were in the simple three-state model.

The more gradual decline in theSXB ratios for the quartet transition in the 22- and
36-state modelling calculations appears to be due to the effect of excitation to the quartet
metastable terms of 3p43d (q1→3,5,8) followed by excitation from these metastable terms to
3p4(3P)4p4D. These indirect processes will increase the effective contribution to the excited
population,F exc

1→14, whereN14 is the population of 3p4(3P)4p4D, since these metastable
terms have small radiative rates to the ground term and relatively large collisional-excitation
rates to 3p4(3P)4p4D. This was confirmed by repeating the 36-state modelling calculation
with all of the collisional rates from these quartet metastable terms to 3p4(3P)4p4D set to
zero. The shape of the resulting curve of theSXB ratio as a function of density was much
more like that of the three-state model shown in figure 8.

There are small dips which appear in theSXB ratio curves in the more complete CR
models shown in figure 13, for the doublet transition just below a density of 1014 cm−3, that
do not appear in the three-state model curves shown in figure 9. These are primarily due to
the indirect process of excitation to the 3p4(3P)3d2F term (q1→10) followed by excitation to
3p4(3P)4p2D (q10→15). The values ofq10→15 are of order 10−7 cm3 s−1 while the radiative
rate from 3p4(3P)3d2F to the ground term (A10→1) is calculated to be 2.38×106 s−1. Thus,
at a density of about 1013 cm−3, the value ofNeq10→15 will begin to increase the effective
contribution to the excited population,F exc

1→15, whereN15 is the population of 3p4(3P)4p2D,
and thereby decrease theSXB ratio.

In the case of both the doublet and quartet transitions, the low-density limits are quite
different when more states are included in the CR modelling. For example, at a temperature
of 34.5 eV, the low-densitySXB ratio for the quartet transition from the three-state model
is 75.3, while in the case of the 36-state model it is equal to 41.4. For the doublet transition
at the same temperature, the low-densitySXB ratio is 49.3 from the three-state model, but
decreases to a value of 14.8 when we apply the 36-state model. The reduction in these
SXB ratios is primarily due to radiative cascades from higher terms; however, in the case
of the quartet transition, the decrease in theSXB ratio due to cascades is partially off-set
by an increase in theSXB ratio due to radiative branching to lower terms (see equation
(18)).

We have analysed these cascades in some detail for the case of the doublet transition.
The effective contribution to the excited population,F exc

1→15, is strongly enhanced by
cascade from certain higher-lying terms, resulting in a much smallerSXB ratio than
that predicted by the three-state model. The main cascade contribution comes from
the 3p5 2P → 3p4(1D)3d2F collisional excitation (q1→19) followed by radiative decay
to the 3p4(3P)4p2D term (A19→15). The cascade contribution generally involves the
weaker excitation transitions. Although the strongest ground-term excitation for Ar+ is
the 3p5 2P → 3p4(3P)3d2D transition (q1→27), it contributes almost nothing to cascade
because the reverse radiative transition (A27→1) is also very strong.

We have supported this explanation of the cascade contribution to the doublet
transition by performing a four-state modelling calculation which included only the 3p5 2P,
3p4(3P)4s2P, 3p4(3P)4p2D, and 3p4(1D)3d2F terms. The value of theSXB ratio from
this calculation was 19.5, indicating that the most important cascade originates with the
3p4(1D)3d2F term. A portion of the remaining reduction in theSXB ratio seems to come
from the 3p4(1D)4p2F and 3p4(1D)4p2D terms radiatively cascading to 3p4(1D)3d2F. This
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Figure 14. SXB ratios as a function of
electron density for the radiative transition
3p4(3P)4p4D→ 3p4(3P)4 4P in Ar+ from a 36-
state CR model without ionization out of the
excited states (broken curves) and with ionization
out of the excited states (full curves) at electron
temperatures of 3.45, 17.2 and 34.5 eV.

10
8

10
10

10
12

10
14

10
16

10
18

Ne(cm
-3
)

0.1

1.0

10.0

100.0

1000.0

SX
B

Figure 15. SXB ratios as a function of electron
density for the radiative transition 3p4(3P)4p2D→
3p4(3P)4s2P in Ar+ from a 36-state CR model
without ionization out of the excited states (broken
curves) and with ionization out of the excited states
(full curves) at electron temperatures of 3.45, 17.2
and 34.5 eV.

was confirmed by performing a six-state modelling calculation which included these two
additional terms. Finally, we get additional reduction in thisSXB ratio through excitation
from the ground term to 3p4(3P)4d2F (q1→30), followed by emission from 3p4(3P)4d2F to
3p4(3P)4p2D (A30→15).

We have repeated the 36-state CR calculations for both the quartet and doublet transitions
with the inclusion of ionization out of the excited terms. The rate coefficients for this
additional collisional process were generated internally in ADAS from the exchange classical
impact parameter method (Burgess and Percival 1968). We present our results with and
without excited-state ionization in figures 14 and 15 for the quartet and doublet transitions,
respectively. As one would expect, this process has little effect on theSXB ratios at lower
densities, but increases theSXB ratios by a large amount at higher densities. It is interesting
to note that theSXB ratio for the doublet transition becomes a linear function of density
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at much lower densities when ionization out of excited states is included. In figure 15, the
full curves represent the recommendedSXB data, and the more comprehensive data for
this transition are now available in the ADAS database.

3.3. Power loss

Finally, in order to demonstrate the importance of accurate atomic data in the modelling
of plasma cooling of Ar+, we have also carried out calculations of the radiated power
loss (coefficient) from Ar+ using our atomic structure and collisional-excitation data and
compared the results with those generated from Born calculations of the excitation rates.
The total zero-density line power-loss coefficient for excitation from the ground state is
given by

P zL,1 =
∑
j

1Ej1q1→j , (20)

where1Ej1 is the energy of the excitation transition from the ground state to the upper
statej . This power-loss coefficient is often parametrized for use in plasma modelling by
grouping together the transitions into, for example, four representative ones each with an
average transition energy and rate. The parametrized data are chosen so as to match the
original data at a single temperature, normally at peak abundance.

A more sophisticated approach to the power-loss coefficient results from CR modelling.
The line power-loss coefficient associated with the ground state or a metastable statei is
given by

PL,i =
∑
j,k

1EjkAj→kF exc
i→j , (21)

where1Ejk is the transition energy for thej → k radiative transition. The previous zero-
density expression (equation (20)) and subsequent results are recovered by solving the CR
population rate equations at a suitably low density. Numerical data resulting from equation
(21) are used in more accurate modelling.
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Figure 16. Zero-density line power-loss coefficient
for Ar+ as a function of electron temperature calcu-
lated from ‘Born’ data (chain curve); parametrized
‘Born’ data (dotted curve); present 43-state CC data
(full curve); and parametrized 43-state CC data (bro-
ken curve).
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In figure 16, we present results for the total zero-density line power-loss coefficient
for Ar+ over 1–100 eV, which covers the temperature range of peak abundance (1–3 eV).
Parametrized data are compared with the original data for both the atomic data presented
in this paper as well as for that used by ADAS as a default and labelled ‘Born’. These
latter data are from plane-wave Born calculations of collisional excitation and are generated
automatically for the complete isonuclear sequence of an element using a development of
Cowan’s programme (Cowan 1981); these are the lowest-quality collisional data that are
used by ADAS for this purpose. They provide the required energy levels, radiative rates,
and Born collisional-excitation rates in a form automatically accessible by ADAS. Level
bundling to produce term-resolved data is also handled automatically.

At ∼2 eV, the temperature of peak equilibrium fractional abundance of Ar+ for electron
densities up to 1015 cm−3, we see that the ‘Born’ data underestimate the power-loss
coefficient by a factor of 3. This is not surprising given the sensitivity of the collision
strengths to distortion, coupling effects, and resonant contributions. We see that the
parametrization works well for the ‘Born’ data, only starting to diverge at very high
temperatures. The parametrization of our new data does not work quite so well but it
is satisfactory in the temperature range where Ar+ is most abundant. We note that the bulk
of the radiated power for argon in the divertor occurs from higher charge states, i.e. at
higher temperatures. Finally, parametrized data following equation (20) and numerical data
following equation (21) for Ar+ are now available in the ADAS database together with the
related spectral line emissivity data.

4. Summary

We have carried out extensive theoretical calculations of atomic structure, radiative decay,
electron-impact excitation, and electron-impact ionization in order to generate the data
necessary to model Ar+ in a plasma environment. Using these data, we have performed
a series of CR calculations ofSXB ratios in which we assumed that only the ground
term contributes to the ionization of Ar+. We have analysed theSXB ratios associated
with a radiative transition between two quartet terms and a second transition between two
doublet terms. We have also calculated the zero-density line power-loss coefficient using
our collisional-excitation data and compared our results with the power-loss coefficient
determined from plane-wave Born excitation data.

Using a simple three-state CR model, we first found that the indirect process of excitation
to the intermediate term followed by further sequential excitation to the upper term has a
significant effect on theSXB ratio for the quartet transition in the intermediate density
regime. The effect of this process on the doublet transition does not occur until we reach
higher densities. Furthermore, we discovered that uncertainties in the radiative rate from the
intermediate term to the ground term can have large effects on theSXB ratios, especially
for the quartet radiative transition. These same effects are found again in a full many-state
calculation of theSXB ratios, complicated by the presence of many more intermediate-term
pathways. In addition, the process of radiative cascade from terms higher in energy than
the upper terms involved in the radiative transition was found to have a pronounced effect
on theSXB ratios for both types of transitions. Finally, we discovered that the zero-density
line power-loss coefficient for Ar+ is increased by a factor of 3, at the peak abundance of
this ion, when one employs the present collisional-excitation data rather than plane-wave
Born collisional-excitation data.

The results of our modelling calculations of theSXB ratios certainly provide insight into
the types of CR processes most important to impurity influx in the divertor of a tokamak
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reactor. However, additional modelling studies, using the data generated here, may be
necessary in order to provide an accurate determination of the influx of argon in such a
reactor. For example, ionization out of metastable terms, as well as ionization out of the
ground term, may contribute to the total ionization of Ar+. In order to treat this possibility
within our CR modelling calculations, we would no longer assume that the populations of
the metastable terms are in quasistatic equilibrium with the population of the ground term.
This would eliminate the dependence of our results on the populations of the long-lived
states. However, there are significant practical problems associated with this approach.
There are as many as seven terms in Ar+ that could be considered metastable. In order
to determine the influx of argon, one must produceSXB ratios corresponding to a set of
radiative transitions equal in number to the number of metastable terms plus the ground
term (see Badnellet al 1996). This would require eight radiative transitions. One would
have to calculate theoretical values for the effective contributions to the excited populations
(F exc
i→j ) for all eight upper terms in the radiative transitions via excitation from the ground

term and all seven metastable terms. Of course, this treatment would also require electron-
impact ionization rates from the ground term and each of the seven metastable terms. These
data could all be produced from a combination of our theoretical calculations and the use
of ADAS. However, it seems impractical to require the measurement of the emissivities
for eight optical transitions, in conjunction with these theoretical calculations, in order to
determine the total influx of argon.

A more reasonable approach might be to bundle those metastable terms not involved in
the optical transitions by spin and produce total rates to, and average rates from, each of these
bundled metastable terms. In this case, it would then be possible to reduce the number of
required radiative transitions to four. The actual transitions to be used should be determined
in collaboration with on-going experimental efforts. However, possible candidates are:
3p4(3P)4p4P → 3p4(3P)4s4P and 3p4(3P)4p2P → 3p4(3P)4s2P, in addition to the two
radiative transitions 3p4(3P)4p4D → 3p4(3P)4s4P and 3p4(3P)4p2D → 3p4(3P)4s2P,
already considered in this study. One would then treat the 3p4(3P)3d4D, 4F, and4P terms
as one bundled quartet metastable term, and the metastable terms 3p4(3P)3d2F and2G as
a second bundled doublet metastable term. Ionization out of the 3p5 2P ground term, the
3p4(3P)4s4P metastable term, the bundled quartet metastable term, and the bundled doublet
metastable term would then be included in the CR modelling of the impurity influx.

Acknowledgments

This work was supported in part by the US Department of Energy under grant no DE-
FG02-96-ER54367 with Rollins College and grant no DE-FG05-96-ER54348 with Auburn
University, and by the JET Joint Undertaking and a NATO travel grant CRG 940134 with
the University of Strathclyde.

References

Badnell N R, Gorczyca T W, Pindzola M S and Summers H P 1996J. Phys. B: At. Mol. Opt. Phys.29 3683
Bartschat K and Bray I 1996J. Phys. B: At. Mol. Opt. Phys.29 L577
Bartschat K, Hudson E T, Scott M P, Burke P G and Burke V M 1996J. Phys. B: At. Mol. Opt. Phys.29 115
Behringer K, Summers H P, Denne B, Forrest M and Stamp M 1989Plasma Phys. Control Fusion31 2059
Berrington K A, Eissner W B and Norrington P H 1995Comput. Phys. Commun.92 290
Bray I and Stelbovics A T 1993Phys. Rev. Lett.70 746
Burgess A 1974J. Phys. B: At. Mol. Phys.7 L364
Burgess A, Hummer D G and Tully J A 1970Phil. Trans. R. Soc.266 225



Electron-impact excitation and ionization ofAr+ 3565

Burgess A and Percival I C 1968 Adv. At. Mol. Phys.4 109
Burke P G, Noble C J and Scott M P 1987Proc. R. Soc.410 289
Burke V M, Burke P G and Scott N S 1992Comput. Phys. Commun.69 76
Cowan R D 1981The Theory of Atomic Structure and Spectra(Berkeley, CA: University of California Press)
Froese Fischer C 1991Comput. Phys. Commun.64 369
Gorczyca T W, Robicheaux F, Pindzola M S, Griffin D C and Badnell N R 1995Phys. Rev.A 52 3877
Griffin D C, Pindzola M S, Gorczyca T W and Badnell N R 1995Phys. Rev.A 51 2265
Horton L 1996 Private communications
McCracken G 1996 Private communications
Moore C E 1949Atomic Energy LevelsNSRDS-NBS no 35 vol I (Washington, DC: US Govt Printing Office)
Müller A et al 1985J. Phys. B: At. Mol. Phys.18 2993
Pindzola M S, Griffin D C, Badnell N R and Summers H P 1995aNucl. Fusion Suppl.6 117
Pindzola M S, Griffin D C and Bottcher C 1986NATO ASI SeriesB 145 75
Pindzola M S, Griffin D C and Majek J H 1995bPhys. Rev.A 51 2186
Pindzola M S and Robicheaux F 1996Phys. Rev.A 54 2142
Pindzola M S and Schultz D R 1996Phys. Rev.A 53 1
Sampson D H 1986Phys. Rev.A 34 986
Seaton M J 1953Proc. R. Soc.A 231 400
Summers H P 1994 Atomic data and analysis structure user manualJET Joint Undertaking ReportH JET-IR(94)06
Summers H P and Hooper M B 1983 Plasma Phys.25 1311
Tayal S S and Henry R J W 1996J. Phys. B: At. Mol. Opt. Phys.29 3443
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