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Abstract. We have incorporated the two-body non-fine-structure operators of the Breit–Pauli
Hamiltonian, namely contact spin–spin, two-body Darwin and orbit–orbit, into the program
AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving
the process of autoionization.

1. Introduction

The advent and continuing development of highly charged ion sources and heavy-ion
storage rings utilizing electron coolers provides a challenge to theorists to describe
the statics and dynamics of high-Z ions, see for example Bosch (1987), Levineet
al (1989) and M̈uller (1995). Furthermore, the demands by spectroscopic modellers
of laboratory plasmas (e.g. magnetic fusion plasmas—Sheffield (1994), see also the
Joint European Torus athttp://www.jet.uk) and astrophysical plasmas (e.g. the Solar
Corona and the Solar Heliospheric Observatory satellite—Flecket al (1995), see also
http://sohowww.nascom.nasa.gov) are for ever more accurate atomic data for highly
charged ions. The computation of such atomic data requires that relativistic effects be
taken into account. This can be achieved through the use of the Dirac equation and Breit
interaction (a fully relativistic approach) or through the use of the Dirac equation and
Breit interaction in the Pauli approximation (a relativistic correction approach, using non-
relativistic wavefunctions). The latter approach is the subject of this paper, it being still in
widespread use. Also, this paper completes the work on the Breit–Pauli Hamiltonian started
by Jones (1970, 1971).

The Breit–Pauli Hamiltonian (see Bethe and Salpeter 1977) can be written as

HBP = Hnr + Hrc (1)

whereHnr contains the usual non-relativistic operators, namely electrostatic and kinetic plus
nuclear, andHrc contains the relativistic correction operators which can be grouped as

Hrc = Hrc1 + Hrc2 (2)

where Hrc1 contains the one-body operators, namely mass–velocity, Darwin and nuclear
spin–orbit, andHrc2 contains the two-body operators. The two-body operators can be
subdivided further, namely

Hrc2 = Hfs2 + Hnfs2 (3)
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whereHfs2 contains the (two-body) fine-structure operators, namely spin–orbit, spin–other-
orbit and spin–spin, andHnfs2 contains the (two-body) non-fine-structure operators, namely
contact spin–spin, Darwin and orbit–orbit.

The reasons for these groupings are as follows. The one-body operators scale roughly
asZ4α2 while the two-body operators scale roughly asZ3α2. Thus, the one-body operators
dominate in high-Z ions. Of course, when summed-over a number of electrons e.g. a
closed-shell, then some of the two-body operators behave and scale as a one-body operator
(Blume and Watson 1962). The non-fine-structure operators commute with theL2 and
S2 operators while the fine-structure operators do not and so the latter are responsible for
departures fromLS-coupling. So far as atomic structure is concerned the two-body non-
fine-structure operators are deemed to be of little interest, except perhaps for ionization
potentials (Eissneret al 1974). In low-Z ions where their size is comparable with the
one-body operators the uncertainty in theLS-coupling problem due to the use of a finite
configuration interaction expansion dominates while in high-Z ions the one-body operators
dominate. However, atomic collisions take place via a two-body interaction and in highly
charged ions configuration interaction is dominated by that within a complex. Furthermore,
the incorporation of the Breit or Breit–Pauli operators into general collision codes is less
well developed. For example, the Breit–PauliR-matrix code (see Berringtonet al 1995) that
is used by the Iron Project (see Hummeret al 1993) only includes the one-body (relativistic)
operators. Thus, it is of interest to be able to evaluate the likely effect of neglecting the
two-body operators.

Our principal interest is that of the resonance contribution to electron–ion excitation,
ionization and recombination. This we explore within the independent processes and
isolated resonance approximations using the AUTOSTRUCTURE code (see Badnell
1986). We note that there has been considerable development of the code since the
original publication and the most recent release of the code is available via (the World
Wide Web or) anonymous FTP from (ftp://) patiala.phys.strath.ac.uk. Since
AUTOSTRUCTURE incorporates SUPERSTRUCTURE (see Eissneret al 1974) it already
includes all of the one-body operators plus the two-body fine-structure operators. We
now extend it to include the two-body non-fine-structure operators. The Darwin and
contact spin–spin operators are trivial to include and are present in the BREIT program
of Hibbert et al (1991) which is part of the MCHF package of Froese Fischer (1991)
and which can be incorporated into the CIV3 program of Hibbert (1975) as well. The
orbit–orbit operator is a different beast and little has been done in the way of a general
treatment. References to earlier work and tabulations of matrix elements for configurations
with at most one open-shell have been given by Walker (1971), Saxenaet al (1972) and
Dankwort (1977). Saxenaet al (1972) also tabulated the complete orbit–orbit energy
for the ground term of all singly-charged ions, neutral atoms and negative ions from
He to Kr, as well as for excited terms of the ground configuration for several atoms.
But an automatic treatment by a ‘general’ structure code appears to be lacking. Of
course, the inclusion of the (generalized) Breit interaction by the GRASP code (see
Dyall et al 1989), for example, means that its effect is not ignored by fully relativistic
approaches but a Breit–Pauli treatment is required to best assess the effect of the inclusion
or omission of two-body non-fine (and fine-) structure operators by Breit–Pauli collision
codes.

Many authors have given expressions for the orbit–orbit matrix elements that arise
from including the orbit–orbit operator in the Hamiltonian, not necessarily completely
general and often in a form amenable to a particular implementation (in principle). The
closest prescription to that we have implemented is that due to Eissneret al (1974) in
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their original SUPERSTRUCTURE theory paper. However, in practice we found that
their prescription was not quite the most convenient to implement and also that our re-
derivation and subsequent numerical results indicated a number of (typographical) errors in
their original work. Thus, in section 2 we present the expressions that we actually used
while in section 3 we make comparisons with the results of other authors for various two-
body non-fine-structure interactions as well as present some illustrative results of our own
in section 4. We finish with a short conclusion.

2. Theory

The two-body non-fine-structure Hamiltonian is given by

Hnfs2 =
∑
i>j

[gij (css′) + gij (d) + gij (oo′)] (4)

where the contact spin–spin, Darwin and orbit–orbit operators are given by

gij (css′) = −16π

3
α2s(i) · s(j)δ(rij ) (5)

gij (d) = 1

2
α2∇2

i

( 1

rij

)
(6)

and

gij (oo′) = −α2

rij

[
pi · pj + rij · (rij · pj )pi

r3
ij

]
(7)

respectively, wherepi , rij , s etc have their usual meaning (see e.g. Eissneret al 1974).

2.1. Contact spin–spin plus Darwin

The contact spin–spin and Darwin two-body operators can be re-written so that their total
contribution to the Breit–Pauli Hamiltonian is given by (Eissneret al 1974),

gij (css′) + gij (d) = −gij (d) for all i 6= j. (8)

The corresponding matrix elements, for Slater statesa ≡ nalaµama, b etc, in the uncoupled
representation of Eissneret al (1974) are given by

−〈ab|gij (d)|cd〉 = δ (µa, µc) δ(µb, µd)δ(ma + mb, mc + md)

×
∑

λ

(−1)ma−md (2λ + 1)cλ (lama, lcmc) cλ(lbmb, ldmd)X2(ab, cd) (9)

where

cλ(lm, l′, m′) = [(2l + 1)(2l′ + 1)]
1
2

2λ + 1
C l l′ λ

0 0 0
C l l′ λ

−m m′ m′ − m
, (10)

the C···
··· being Clebsch–Gordan coefficients, and

X2(ab, cd) = α2

2

∫ ∞

0

( 1

r2

)
PnalaPnblbPnclcPnd ld dr, (11)

Pnl being the radial component of a one-electron wavefunction. Following Eissneret al
(1974), the algebraic coefficient in equation (9) differs only by a factor(2λ + 1) from that
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of the Coulomb electrostatic matrix element (see equation (18) of Eissneret al 1974) and
so the combined effect of the contact spin–spin plus Darwin operators can be obtained by
replacing each Slater integralRλ as follows:

Rλ(ab, cd) ↼↽− Rλ(ab, cd) + (2λ + 1)X2(ab, cd). (12)

2.2. Orbit–orbit

The matrix elements of the orbit–orbit interaction are given by

〈ab|gij (oo′)|cd〉 = δ(µa, µc)δ(µb, µd)δ(ma + mb, mc + md)(−1)ma−md

×
{ ∑

λ

[1 − δ(λ, 0)]cλ(lama, lcmc)cλ(lbmb, ldmd)Zλ(ab, cd)

+
∑

λ

dλ(lama, lcmc)dλ(lbmb, ldmd)Oλ(ab, cd)

}
(13)

where

Zλ(ab, cd) = λ(λ + 1)[Tλ+1(ab, cd) − Tλ−1(ab, cd)]

+[la(la + 1) − lc(lc + 1) − λ(λ + 1)][Uλ+1(ab, cd) − Uλ−1(ab, cd)]

+[lb(lb + 1) − ld(ld + 1) − λ(λ + 1)][Uλ+1(ba, dc) − Uλ−1(ba, dc)]

+[la(la + 1) − lc(lc + 1) − λ(λ + 1)][ lb(lb + 1) − ld(ld + 1) − λ(λ + 1)]

×
{

λ − 2

λ(2λ − 1)
V λ−2(ab, cd) − λ + 3

(λ + 1)(2λ + 3)
V λ(ab, cd)

}
(14)

and

Oλ(ab, cd) = 2[(λ + 1)(λ + 2)(2λ + 1)(2λ + 3)]−1 [(la + lc + λ + 2)

×(lc − la + λ + 1)(la − lc + λ + 1)(la + lc − λ)(lb + ld + λ + 2)

×(ld − lb + λ + 1)(lb − ld + λ + 1)(lb + ld − λ)]
1
2 V λ(ab, cd). (15)

The integralsTλ, Uλ andNλ are defined by equations (86), (87)† and (71) of Eissneret al
(1974). It is theNλ integrals that ourV λ are defined in terms of, namely

V λ(ab, cd) = Nλ(ab, cd) + Nλ(ba, dc). (16)

Again, as noted by Eissneret al (1974), the algebraic coefficient in front of theZλ integral
differs only by the factor [1−δ(λ, 0)] from that of the Coulomb electrostatic matrix element
and so can also absorbed into a generalizedRλ integral. The problem lies with the coefficient
in front of theOλ integral which involves the coefficientsdλ, which are of a similar form
to thecλ coefficients namely

dλ(lm, l′m′) = [
(2l + 1)(2l′ + 1)

] 1
2 C l l′ λ

0 0 0
C l l′ λ + 1

−m m′ m′ − m
, (17)

but cannot be completely absorbed into a generalizedRλ integral. One can make some
progress, as did Eissneret al (1974), by separating-out the interactions between valence
electrons from those between valence electrons and closed-shell electrons. Summing over all

† There is a factor ofr2 missing from this equation.
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common closed-shell electron states denoted byb, the valence–closed-shell matrix elements
(see equation (13)) are given by∑

b

〈ab|gij (oo′)|bc〉 = δ(µa, µc)δ(ma, mc)δ(la, lc)ξ(a, c) (18)

where

ξ(a, c) =
∑

b

[1 − δ(lb, 0)][1 − δ(lc, 0)]
la+lb+1∑

λ=1

2

λ(λ + 1)

[
C la λ − 1 lb

0 0 0

]2

×(la + lb + λ + 1)(la − lb + λ)(lb − la + λ)(la + lb − λ + 1)V λ−1(ab, bc).

(19)

This equation (19) differs by several factors from equation (92) of Eissneret al (1974). We
will make use of it as part of our testing procedure in section 3. The point of this reduction
is that the algebraic coefficient in equation (18) is the same as that for the matrix elements of
the one-body kinetic plus nuclear operators (see equation (17) of Eissneret al (1974)) and so
the ξ integral could be absorbed into the one-body non-relativistic integral. This approach,
however, is a dead-end. Eissneret al (1974) state that the valence–valencealgebraicfactor
can be absorbed into theirEUU ′ factor (see Eissneret al (1974), equation (51)) but this is
just a redefinition of the problem, it does not solve it. The interactions between valence
electrons remain and appear at first to be non-trivial to deal with.

2.2.1. Solution. We first note that the algebraic coefficients of theZλ and Oλ integrals
differ only trivially, apart from thedλ instead ofcλ coefficients. Secondly, we recognize
that thedλ coefficients arealreadybeing evaluated for the generation of the spin–orbit plus
spin–other-orbit algebra, specifically the〈ab|V (2)

ij |cd〉 term—see equation (75) of Eissneret
al (1974). It is a simple matter to store them and combine them with newly generatedOλ

integrals using the indexing that has already been set-up for the generation of the electrostatic
matrix elements. In effect we are absorbing thedλ(a, c)dλ(b, d)Oλ(ab, cd) contribution into
the cλ(a, c)cλ(b, d)Rλ(ab, cd) contribution. Thus, we do not specifically separate-out the
valence–closed-shell and valence–valence interactions. They are automatically dealt with as
the various electrostatic contributions arise, including the interactionsbetweenclosed-shells.
We see that in fact little extra computational effort is required to include the complete orbit–
orbit interactionprovided that the corresponding two-body fine-structure interactions have
been included. It is there that the computational effort resides. Since the two-body fine-
structure and non-fine-structure interactions are of the same order (inZ) it can be argued
that it makes little sense to omit the fine-structure while including the non-fine-structure.
It should be noted however that since the non-fine-structure operators (one- and two-body)
commute with theL2 and S2 operators one could include their effect while remaining
in LS-coupling rather than resorting to the more computationally demanding intermediate
coupling scheme. This is particularly relevant to the collision problem where it is common
to include the one-body non-fine-structure operators inLS-coupling calculations.

For the case of autoionization one of the atomic orbitalsPnl is replaced by a continuum
orbital. This presents no new numerical difficulties. The matrix elements of the interaction
now scale one power ofZ lower (as do the one-body bound–continuum elements) as a result
though. The non-relativistic two-body bound–continuum autoionization matrix elements
scale asZ0 while the corresponding two-body (fine- and) non-fine-structure elements scale
roughly asZ2α2.
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2.3. Validity of the Breit–Pauli Hamiltonian

The Breit–Pauli Hamiltonian is a ‘low-Z’ approximation that is valid when the expansion
parameter satisfiesα2Z2 � 1. As we have noted, it contains (in fact all) interactions of
orderα2Z3 andα2Z4 while the leading (radiative correction) term that is omitted is of order
α3Z4 (see Bethe and Salpeter 1977, section 39α). Just how high inZ we can apply the
Breit–Pauli Hamiltonian depends on a number of points. We list a few: whether we require
spectroscopic accuracy of energy levels or just cross sections to 30% say; the relative size
of the coefficients of theαmZn terms; whetherZ is in fact the nuclear charge or whether the
quantity in question depends more on a screened value. The main problem that we encounter
as we move to ever higherZ is that the one-body mass–velocity and Darwin terms become
too large to be treated as a perturbation (Cowan and Griffin 1976). More precisely, better
accord with experiment and Dirac–Fock–Breit theory is obtained when the mass–velocity
and Darwin terms are included in the solution of the radial equation, see for example
Pindzola and Badnell (1990), Spieset al (1992) and Lampertet al (1996). In principle
the relativistic correction terms of the Breit–Pauli Hamiltonian should be evaluated using
non-relativistic wavefunctions (Bethe and Salpeter 1977). However, in practice the benefit
of using semi-relativistic radial functions to evaluate the remaining relativistic corrections
outweighs either their omission or the use of non-relativistic radial functions.

3. Tests

Unless stated otherwise, the atomic orbitals were evaluated in a Thomas–Fermi–Dirac–
Amaldi model potential with thenl-dependent scaling parameters being determined by
minimization of the ground term energy for each atom.

3.1. Contact spin–spin plus Darwin

The contact spin–spin energies of the ground term of the eight neutral atoms Na–Ar were
evaluated and compared with the results of Walker (1971, table 3). The two sets of results
differed by 1% or less, except for S for which we obtain 0.068 13 au compared with the
0.060 64 au obtained by Walker (1971). Walker (1971) used Hartree–Fock radial functions.
Also, the contact spin–spin (plus Darwin) contributions to the energy levels of Fe14+ for
selected levels of the 3l3l′ configurations were compared with those obtained (Griffin 1996)
from the MCHFBREIT program of Hibbertet al (1991) using the sameradial functions.
Agreement to 4 significant figures was found in general.

3.2. Orbit–orbit

The angular algebra coefficients of the radial integrals were spot checked against those
found in the equations and tables of Walker (1971), Saxenaet al (1972) and Dankwort
(1977). Furthermore, our results for the complete orbit–orbit contribution to the ground
term energy of the eight neutral atoms Na–Ar was compared with the results of Saxenaet
al (1972, table 2) and Walker (1971, table 3). Again we obtained agreement with both sets
of results to better than 1%, except for Mg where we obtained 0.005 493 au compared to
the 0.004 628 au obtained by Walker (1971) and the 0.005 570 au obtained by Saxenaet al
(1972). This disagreement for Mg was noted by Saxenaet al (1972), who also used Hartree–
Fock radial functions, otherwise their results differed from those of Walker (1971) typically
by less than 0.1%. As a check on the dq configurations, as opposed to the pq , we also
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calculated similar results for neutral Fe and obtained 0.115 88 au compared to 0.124 61 au
obtained by Saxenaet al (1972, table 1). We attribute the greater difference in this case
to the greater sensitivity of the atomic radial functions. For Cu+ the percentage difference
has halved (0.189 73 au versus 0.184 53 au) Finally, we cross-checked our two different
methods for calculating the valence–closed-shell contribution, as discussed in section 3.2,
and obtained the same results from both of them.

4. Results

We provide some illustrative results for a variety of processes sampling a wide range ofZ so
as to demonstrate the likely effects of including or omitting the two-body non-fine-structure
operators in a given problem.

4.1. Level energies and ionization potentials of some He-like ions

Jones (1974) compared term and level energies of the He-like ions Si12+, Ca18+ and
Fe24+, calculated with SUPERSTRUCTURE, with those of Ermolaev and Jones (1974)
who obtained essentially exact non-relativistic term energies, using Hylleraas functions, as
well as level energies that included all relativistic corrections throughα2 andα3 plus some
importantα4 terms. Jones (1974) found that the agreement for the level energies (0.1%)
was much worse than for the term energies (0.01%) and attributed it to the omission of the
non-fine-structure operators by SUPERSTRUCTURE. Furthermore, the ionization potentials
differed greatly, by 1%.

We focus first on Fe24+. We use thel-dependent Thomas–Fermi model potential
available to SUPERSTRUCTURE then. On taking the scaling parametersλs = 0.98 and
λp = 1.0 (Jones did not specify the values ofλl that he used) we can reproduce his term
energies (Jones 1974, table 1) to within 0.002 Rydberg, which is much smaller than any
differences that we need to compare. The level energies obtained by Jones (1974, table 2)
were typically 0.65 Rydberg too high, relative to the ground level, compared to those of
Ermolaev and Jones (1974). On including the two-body non-fine-structure operators in our
calculations (the contact spin–spin plus Darwin dominate) we find that our excited levels are
lowered by about 0.20 Rydberg, relative to the ground level, reducing but not eliminating
the discrepancy. With regards to the ionization potentials, we present our results that
were obtained both with and without the contribution from the two-body non-fine-structure
operators in table 1 and compare them with the results of Jones (1974) and Ermolaev and
Jones (1974). We see that our results which omit the two-body non-fine-structure operators
differ hugely (1%) from those of Jones—we can offer no explanation for this—but they are in
close agreement with those of Ermolaev and Jones (1974). We see also that the inclusion of
the two-body non-fine-structure operators further improves the agreement for Fe24+, but the
contribution is small. For the lower-charged ions it is likely that this contribution is less than
the uncertainty in the ionization potential due to inaccuracies in the wavefunctions. What
our results do demonstrate is that AUTOSTRUCTURE, and in fact SUPERSTRUCTURE,
can calculate a much more accurate ionization potential than is implied by Jones (1974) and
thus, the key discussion on the accuracy of SUPERSTRUCTURE by Eissneret al (1974,
section 3.4.2).
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Table 1. Ionization potentials for the ground 11S0 level of some He-like ions.

This work
Ermolaev and Jones (1974)

Ion Jones (1974) With nfs2 Without nfs2 without nfs2

Fe24+ 648.8993 648.921 649.148 653.228
Ca18+ 376.9832 376.942 377.044 373.172
Si12+ 179.1692 179.093 179.127 178.359

4.2. Dielectronic recombination of Na-likeSe23+

We consider theLMn resonances that arise in the dielectronic recombination of Se23+. The
possible reaction pathways can be summarized schematically by

e− + 2p63s→ 2p53s3lnl′ →
{ 2p63s

2p63l

2p6nl′

}
+ e−

→
{ 2p63s3l

2p63snl′

2p63lnl′

}
+ h̄ω (20)

and

→ 2p53p2nl′ →
{

2p63p
2p6nl′

}
+ e−

→ {
2p63p2

} + h̄ω. (21)

The direct pathway is given by equation (21) while the indirect pathway (equation (21))
can only take place through configuration interaction with the direct pathway. Gorczyca
and Badnell (1996) have shown that the mixing of the direct and indirect pathways has a
very large effect on thetotal dielectronic recombination cross section reducing it by up to
a factor of two, depending on the energy. In figure 1 we show how the (energy-averaged)
dielectronic recombination cross section is affected, as a function of principal quantum
numbern for the l = 1 Rydberg states, by the effect of the two-body non-fine-structure
operators perturbing the mixing. We observe a 5–10% reduction depending onn. Note, the
absolute dielectronic recombination cross section (in Mb) can be obtained by multiplying
the cross section in figure 1 by the bin-width− 1.75 eV.

4.3. Resonant excitation of Ne-likeXe44+

Next, we look at theLMM resonances that arise in the elastic scattering of electrons from
Xe44+. This can be described by

e− + 2p6 → 2p53l3l′ → 2p6 + e−

→ 2p63l′′ + h̄ω,

where we note that we have allowed for radiation damping of the resonances.
We see from figure 2 that the main effect of the two-body non-fine-structure operators

is to shift the cross section in energy. We have chosen a broad distribution function so as
to aid the comparison. A typical (experimental) electron-cooler distribution would be an
order of magnitude finer in energy resolution and then small relative shifts in the positions of
resonances would change the resonance structure more noticeably. Here, the total integrated
LMM resonant-excitation cross section is only reduced by about 2%. If we focus on
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Figure 1. LMn energy-averaged dielectronic recombination cross sections× n3 as a function
of principal quantum numbern for the l = 1 Rydberg states of Se23++e−. – – –, including
two-body fine-structure operators only; ——, including both two-body fine-structure and non-
fine-structure operators.

Figure 2. LMM elastic resonant-excitation cross sections for Xe44+, convoluted with a
0.5 Rydberg FWHM Gaussian function. – – –, including two-body fine-structure operators
only; ——, including both two-body fine-structure and non-fine-structure operators.

individual Jπ symmetries we find that the even parity cross sections are hardly affected
while all but one of the odd symmetry cross sections are reduced by about 5%. Within a
givenJπ symmetry the autoionization rates can change quite considerably, strong and weak
rates being redistributed by mixing, but this only has a large effect on the cross section,
summed-over all resonances of a symmetry, when it affects competition between ‘forbidden’
and ‘allowed’ channels—which is not the case here—see Badnellet al (1994, table 1) for
an example.

4.4. Resonant transfer and excitation of He-likeU90+

Finally, we consider an extreme case—that of the dielectronic recombination of U90+—
for which we observe that not only is there no catastrophic breakdown of the Breit–
Pauli approximation at high-Z but also that the correct qualitative behaviour is obtained.
Actually, the quantity we view is the dielectronic recombination cross section convoluted
with the Compton profile for the H2 molecule (see Pindzola and Badnell 1990) for which
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Figure 3. KLL resonant transfer and excitation cross sections for collisions of U90+ with H2.
- - - -, no two-body operators; – – –, including two-body fine-structure operators only; ——,
including both two-body fine-structure and non-fine-structure operators.

measurements have been made by Grahamet al (1990). Because of theirZ4 dependence the
radiative rates are so large that the cross section is directly proportional to the autoionization
rates. In figure 3 we present results for theKLL resonances, which fall into three broad
groups as discussed by Pindzola and Badnell (1990).

We see that the lowest energy peak is progressively increased in height as both the
two-body fine-structure operators and then the two-body non-fine-structure operators are
switched-on. This enhancement mirrors that observed by Pindzola and Badnell (1990) with
their Dirac–Fock results obtained both with and without the inclusion of the Breit operator.
The magnitude of the Breit–Pauli cross section (including all of the two-body operators) is
about 30% less than the Dirac–Fock–Breit cross section of Pindzola and Badnell (1990)—
which itself is in quite good agreement with the measurements made by Grahamet al
(1990).

5. Conclusion

We have incorporated the two-body non-fine-structure operators of the Breit–Pauli
Hamiltonian, namely contact spin–spin, two-body Darwin and orbit–orbit, into the program
AUTOSTRUCTURE. We have shown that this entails little extra in the way of computer
resources provided that the two-body fine-structure operators are also included at the same
time, as they should be. We have provided some illustrative examples which show
that their effect is ‘small’ in general, as expected, but interesting nevertheless. It is
now possible to assess routinely the effect of the full Breit–Pauli Hamiltonian on energy
levels, radiative rates, autoionization rates and, via the correspondence principle, threshold
excitation collision cross sections. This should prove useful in assessing the likely error that
will arise due to the omission of the two-body operators (both fine- and non-fine-structure)
by Breit–Pauli collision codes, such as theR-matrix code used by the IRON Project.
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