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Abstract. Using anR-matrix code recently developed by Robicheauxet al which includes a
radiative optical potential, we have calculated electron-impact excitation cross sections to the
n = 2 levels of Fe25+ and Mo41+. We focus on the 3lnl′ resonance structure, which we find to
be significantly damped even for low-lying resonances, and recent similarR-matrix calculations
by Kisielius et al which omit radiation damping and significantly overestimate the resonance
contribution. For dielectronic recombination resonances, we compare the extent of damping to a
differentR-matrix approach by Nahar and Pradhan, which uses the inverse of the photoionization
process to calculate the radiative decay for low-lying resonances. It is demonstrated that the
present method is superior for low-lying resonances, since the radiative width is incorporated in
the total width for these resonances via the radiative optical potential.

Developments over the last few years of highly charged ion sources, such as SuperEBIT (see
Knappet al 1993) and heavy-ion storage rings, such as the one at GSI-Darmstadt (see Bosch
1987), have shed new light on the dynamics of highly charged ions. There are two effects
which become ever more prominent as the nuclear or asymptotic ion charge (Z) increases,
namely, relativistic effects and the effect of radiation damping on resonances. In principle,
and in practice to a large extent, relativistic effects are treatable through the use of a Dirac
representation (with or without the Breit interaction) and this has been implemented within
a number of general codes to describe both atomic structure and collisions, for example,
GRASP (Dyall et al 1989), MCDFB (Chen 1985) andDARC (Norrington and Grant 1987).
Also, the less computationally demanding Breit–Pauli approximation has been implemented
quite generally, for example the Iron ProjectR-matrix code (Berringtonet al 1995) and
AUTOSTRUCTURE (Badnell 1986). The situation with regard to the radiative damping of
resonances is less satisfactory. It has long been known (Seaton 1969) that the non-resonant
contribution to an electron-impact excitation cross section scales as 1/Z4 while, in the
absence of radiation damping, the resonant cross section scales as 1/Z3. It has also long
been recognized that resonances can be strongly radiation damped in highly charged ions,
see e.g. Burgess (1964) and Davies and Seaton (1969).

Recently, using the standardR-matrix method, Kisieliuset al (1995) studied the
electron-impact excitation of the H-like ions He+, Fe25+ and U91+ in theabsenceof radiation
damping and noted strong low-lying resonances persisting even in U91+. Also, recently,
Zhang and Pradhan (1995) carried out a study of relativistic and radiation damping effects
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on high-n resonances present in the excitation of Fe21+ and Fe24+ ions. The purposes of
this letter are to: (i) draw attention to the fact that even low-lying resonances are strongly
affected by radiation damping in sufficiently highly charged ions; (ii) describe the general,
automatic,ab initio approach to radiation damping of Robicheauxet al (1995) that we have
implemented within the standardR-matrix approach—specifically within the asymptotic
code STGF (see Berringtonet al 1987)—and which applies to both low-lyingand high-
lying resonances; (iii) apply this approach to the resonant excitation and photorecombination
(radiative plus dielectronic recombination) of Fe25+ and Mo41+ so as to demonstrate the
importance of including radiation damping even for the lowest-lying resonances.

Radiation damping is easily and routinely included within (perturbation theory)
calculations that make use of the independent processes and isolated resonance
approximations. The independent processes approximation is quite good in general for
multiply charged ions (see Badnellet al 1991, Pindzolaet al 1992). However, while the
isolated resonance approximation holds good in general for recombination (see Pindzola
et al 1992) it can fail dramatically for excitation (see Badnellet al 1993). Even though
the inclusion of higher-order terms within perturbation theory can alleviate this failure (see
Badnell et al 1994) they are quite difficult to include generally in anab initio manner.
Furthermore, development of high energy resolution and state-selective recombination
measurements further shows up failings in the second-order perturbative approach (see, for
example, Pindzolaet al 1995). Interacting resonances and interference between direct (non-
resonant) and indirect (resonant) processes are automatically treated through the use of the
close-coupling approximation for excitation and, through the weak-field approximation (see
Henry and Lipsky 1967, Jacobs and Burke 1972), photorecombination/ionization. However,
the radiative damping of resonances is not taken into account within this approach and its
implementation via theR-matrix method. Studies of radiation damping using theR-matrix
method have focused on resonances near the Rydberg limit. The (core) radiative width
is independent of the principal quantum number (n) of the Rydberg electron while the
autoionizing width and resonance separation both scale as 1/n3. Thus, for sufficiently
high n, for any ion, the radiation field damps the resonances and smears them out. The
Gailitis (1963) average, for excitation, was modified somewhat intuitively by Presnyakov
and Urnov (1974) to allow for radiation damping. The radiation damping theory of Bell
and Seaton (1985), carried out within the framework of quantum defect theory, put this on a
more rigorous footing; their description did not quite correspond to that of Presnyakov and
Urnov (1974) but no significant differences were noted in practice. Through the unitarity
of the generalizedS-matrix, the Bell and Seaton theory also gives rise to dielectronic
recombination cross sections whose resonances are damped, smeared out and interacting. It
should be noted that Bell and Seaton (1985) found no significant differences between the
results of their theory and the original isolated resonance theory of Burgess (1964), when
the resonances were averaged over a suitable energy range. The use ofR-matrix theory
scattering matrices within the Bell and Seaton (1985) theory is the basis of the damped
R-matrix calculations of Pradhan and co-workers for high-n resonances in electron-impact
excitation and dielectronic recombination (see, for example, Pradhan and Seaton 1985,
Nahar and Pradhan 1994, Zhang and Pradhan 1995). Their treatment of low-n resonances
is that of the standardR-matrix method, i.e. a neglection of the radiative width. We note
that while dielectronic recombination via a1n = 0 core excitation is dominated by high-n

resonances, dielectronic recombination via a1n > 0 core excitation and resonant excitation
are both dominated by low-n resonances; essentially the cross section falls off as 1/n3 from
the lowest energetically accessiblen-state. It is the radiation damping of these low-lying
resonances that needs to be addressed rather than the high-lying resonances.
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In the present study, we have made use of the latest Iron Project (Hummeret al 1993)
version of the BelfastR-matrix codes (Berringtonet al 1995) which include spin–orbit,
mass–velocity, and one-body Darwin relativistic corrections to the Hamiltonian (see Scott
and Taylor 1982). In addition, we have modified the Hamiltonian further to include a
non-local, imaginary, energy-dependent radiative optical potential to allow for the radiative
decay of resonances. The derivation of this potential, as well as the strategy for handling
the various types of decay, has been described by Robicheauxet al (1995). The use of this
potential for electron-impact excitation calculations, as well as the specific modifications to
the BelfastR-matrix codes, were detailed by Gorczycaet al (1995).

Briefly, the additional potential, in the length gauge, takes the form

Vrad = −i
∑

b

2ω3
b

3c3
D|b〉〈b|D (1)

whereωb = E−Eb is the energy difference between energies of the initial and final states,D

is the dipole operator and|b〉 represents a normalized final state. This potential contributes
an additional term to the Hamiltonian matrix:

Hαα′ → Hαα′ − i
∑

b

2ω3
b

3c3(2J + 1)
〈α||r||b〉〈b||r||α′〉 (2)

whereJ is the total angular momentum of the scattering-state symmetry. This accounts for
decay to bound states|b〉 which are contained within theR-matrix box (all 1s2, 1s2l and 1s3l
states in the present case). The use of this optical potential yields a non-unitary scattering
matrix, S, and the amount of damping is related to the non-unitary quantity1−S†S (Davies
and Seaton 1969, Robicheauxet al 1995).

An alternative method for treating decay to inner-region states, as proposed by Nahar
and Pradhan (1994), is to first calculate photoionization cross sections and then to compute
the recombination cross section (which is proportional to the degree of damping,1 − S†S)
using the detailed balance relationship

σRC = σPI
gi

gf

ω2

c2k2
. (3)

Here σRC and σPI are the partial recombination and photoionization cross sections,gi and
gf are the statistical weights of the initial (bound) and final (continuum) levels,ω is the
photon energy andk is the electron momentum. As will be demonstrated, this procedure is
only valid when the radiative width is much less than the autoionization width, since this
method cannot incorporate the radiative width into the total width of the resonances when
the final wavefunction is calculated in the absence of the radiative potential.

The second type of damping which must be considered in the present study is that of
decay to higher-lying resonances, in particular the following processes: 1skl → 3l′nl′′ →
1snl′′ (n > 3), where for pureLS-coupling, l′ = 1, but in JK-coupling, other resonances
may take part. As described by Robicheauxet al (1995) and Gorczycaet al (1995), this
type of decay can be incorporated by modifying the the effective quantum number according
to:

νc = ν√
1 − i0ν2/Z2

(4)
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Table 1. Target energies (Ryd) for Fe25+ and Mo41+.

level Fe25+ Mo41+

1s1/2 0.0 0.0
2s1/2 511.2 1352.1
2p1/2 511.2 1352.5
2p3/2 512.7 1361.8
3s1/2 606.3 1605.9
3p1/2 606.3 1606.0
3p3/2 606.8 1607.9
3d3/2 606.8 1608.2
3d5/2 606.9 1608.8

Figure 1. R-matrix calculation for the electron-
impact excitation to the (a) 2s1/2, (b) 2p1/2, and
(c) 2p3/2 levels in Fe25+, convoluted with a 2.5 Ryd
FWHM Gaussian; (- - - -), undamped; (——) damped.

where0 is the radiative width for the 3l′j → 1s1/2 core decay. By using a quantum-defect
theoretical approach to compute a physical scattering matrix with this complex effective
quantum number, this type of damping is completely incorporated:

S = Soo − Soc
(Scc − e−2π iνc

)−1 Sco . (5)

This same basic strategy is used by Pradhan and Seaton (1985), although their formulation
only agrees with ours provided that0ν2/Z2 is small, then equation (4) becomesνc ∼
ν + i0ν3/2Z2.

The first system that we studied was the electron-impact excitation to then = 2 levels
of Fe25+. The target energies used, which were obtained using the Breit–Pauli Hamiltonian
(Scott and Burke 1980), are listed in table 1. Levels up ton = 3 were included in order
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to provide the capture mechanism for the 3lnl′ resonances. The resulting excitation cross
sections with and without the radiative optical potential are shown in figure 1. For these
calculations, we used 10 000 energy points over the energy range shown, and convoluted
the cross sections with a 2.5 RydFWHM Gaussian in order to best portray the extent of
damping. Note that the KLn resonances, primarily the 2pnl (n & 20) ones just above the
2s1/2 and 2p1/2 thresholds, are completely damped, as are the KMn resonances forn & 6
(E & 590 Ryd). More importantly, even the KMM resonances atE ∼ 535 Ryd show
roughly 10% damping.

We next repeated the above analysis for the case of electrons incident on Mo41+.
This system possesses an ionic charge which is high enough that significant damping is
expected, yet low enough that our semi-relativistic treatment is still valid. We verified
this by comparing our undamped excitation results to those obtained from a DiracR-
matrix calculation using theDARC suite of programs (Norrington and Grant 1987), and
further verified that our treatment of damping was valid by comparing present dielectronic
recombination results for the KLL resonances to those from a Dirac–Fock perturbative
calculation (Zimmermann 1995); in both cases the agreement was excellent.

Excitation cross sections to then = 2 levels are shown in figure 2, where we have
now chosen a 10 RydFWHM Gaussian to convolute our 10 000 energy-points results. The
effect of damping is expected to increase as the target ionic charge is increased, since the
radiative rate scales as0r ∼ Z4n0 for the type of damping presently considered, whereas
the autoionization rate scales as0a ∼ Z0n−3. This is found to be the case by comparing
the Mo41+ results in figure 2 with the Fe25+ results in figure 1. In particular, the KMM
resonances at about 1420 Ryd show more than a factor of 2 damping. As the charge state
on the ion increases the damping factor increases further and by U91+ we estimate, using
AUTOSTRUCTURE, that the KMM resonances are damped by more than a factor of 20. Thus,

Figure 2. R-matrix calculation for the electron-
impact excitation to the (a) 2s1/2, (b) 2p1/2 and (c)
2p3/2 levels in Mo41+, convoluted with a 10 Ryd
FWHM Gaussian; (- - - -) undamped; (——) damped.
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Figure 3. R-matrix calculation for the electron-impact excitation to the 2s1/2 level in Mo41+
(unconvoluted); (- - - -) undamped; (——) damped.

the undamped resonance cross sections of Kisieliuset al (1995) are likely to be a substantial
overestimate. As demonstrated by Gorczycaet al (1995), these KMM resonances interact
strongly with each other, and are therefore precisely the types of resonance which should
be treated with non-perturbative methods, such as the presentR-matrix method. Also, since
the final 1s3l decay states are necessarily contained in theR-matrix box, theR-matrix itself
must be modified as in equation (1).

In order to exemplify how the present method is perfectly suited for the treatment of this
type of decay, and how the treatment of Nahar and Pradhan (1994) is not applicable for such
a high-Z ion, we focus on the 3s3p1P1 resonance in the 1skp → 3s3p→ 2sk′p excitation.
The full, unconvoluted resonant cross section in the region of the 3l3l′ resonances is shown
in figure 3, where the 3s3p1P1 resonance shows up as the large, broad feature at about
1411.5 Ryd. We do not show the complete extent of the undamped resonance for illustrative
reasons, but it peaks at a maximum cross section of about 0.006 Mb, whereas the damped
resonance peaks at about 0.0006 Mb, indicating a factor of 10 damping. More importantly,
the width of this resonance is increased dramatically when damping is included. Perturbative
calculations usingAUTOSTRUCTUREdetermined that the radiative width is about an order of
magnitude larger than the autoionizing widths toeach continuum for this resonance, and
there are four continua accessible to this resonance; these values are consistent with the
degree of damping mentioned above. We next simplify the problem by focusing only on
the1P1 partial wave, and include only the 3s3p configuration in the description of the KMM
resonances, and only the 1s3s1S0 configuration for the final decay state. The dielectronic
recombination cross section, which is proportional to the degree of damping, is shown in
figure 4. Also shown is the result obtained by performing a photoionization calculation for
the 1s3s1S0 → 3s3p 1P0 → 2sk′p 1P1 resonant process, and then using equation (3), as
is done in the method of Nahar and Pradhan (1994). It is clearly seen that the dielectronic
recombination cross section is about an order of magnitude too large, and therefore the
degree of damping computed using that method is likewise an order of magnitude too large.
From a perturbative perspective (see e.g. Robicheauxet al 1995), the inverse photoionization
method amounts to using the following Lorentzian and energy-averaged expressions for the
cross section

σDR ∼ 0a0r

(E − Eres)2 + (0a/2)2
and 〈σDR〉 ∼ 0a0r

0a
(6)
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Figure 4. Dielectronic recombination cross section (1P1 partial wave only) in the vicinity of
the 3s3p1P1 resonance: (- - - -), results from a photoionization calculation; (——), results using
the present radiative optical potential.

rather than using thetotal width in the denominator:

σDR ∼ 0a0r

(E − Eres)2 + (0a + 0r/2)2
and 〈σDR〉 ∼ 0a0r

0a + 0r
. (7)

We note that neglect of the radiative width of a resonance is potentially more serious for
dielectronic recombination than for resonant excitation, for which the cross section behaves
like

σRE ∼ 0a0a

(E − Eres)2 + (0a + 0r/2)2
and 〈σRE〉 ∼ 0a0a

0a + 0r
. (8)

Of course, if all of the radiative widths (0r) and all of the autoionizing widths (0a) satisfy
0r � 0a then neglect of the radiative width causes the same overestimation factor in both
dielectronic recombination and resonant excitation. However, a more realistic situation,
particularly for low-lyingn, is one where there is a combination of ‘weak’ resonances that
satisfy 0r � 0aw and ‘strong’ resonances that satisfy0r < 0as. Consider the situation of
two resonances each with the same radiative width0r and with a single capture/autoionizing
width of 0aw and 0as, respectively. On using the energy-averaged form of equations (7)
and (8), the dielectronic recombination cross section summed over both resonances is
proportional to∼ 0aw + 0r ∼ 0r and the resonant excitation cross section (the resonant
part) is proportional to∼ 0aw0aw/0r + 0as ∼ 0as. Neglecting the radiative width (see
equation (6)) results in a dielectronic recombination cross section proportional to∼ 0r +0r

and a resonant excitation cross section proportional to∼ 0aw + 0as ∼ 0as. Although
the contribution of the weak resonance to both dielectronic recombination and resonant
excitation is overestimated by a factor0r/0aw, the weak resonance now contributes the
same amount to the total dielectronic recombination cross section as the strong resonance,
while having a negligible effect on the resonant excitation cross section. This potentially
catastrophic overestimate of the dielectronic recombination cross section means that extreme
caution must be exercised in obtaining dielectronic recombination cross sections (or for that
matter, resonant photorecombination cross sections) from calculations that make use of
the weak-field approximation for photoionization/recombination. The above analysis also
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illustrates the reason why less attention has been paid to the radiation damping of resonances
in excitation.

However, experimentalists are now able to produce bare uranium (U92+) and so the first
experiments on U88+, U90+, U91+ etc (see, for example, Knappet al 1995) are now coming
online. At these high charge states even the lowest lyingn resonances are expected to be
affected by radiation damping, based on perturbation theory, for both resonant excitation
and dielectronic recombination.

In conclusion, we have demonstrated that the dominant low-lying resonances in electron-
impact excitation and, even more so, in photorecombination/ionization can be strongly
radiation damped and we have shown how damping of both low-lyingand high-lying
resonances can be incorporated in an automatic andab initio manner within theR-matrix
approach. The effects of radiation damping can now be included routinely withinR-matrix
calculations of collision cross sections for highly charged ions. The perturbative approach,
using the independent processes and isolated resonance approximations, can be used to
estimate their importance in the first instance for any particular reaction.

This work was supported in part by the UK EPSRC under contract no GK/K/14346 with
the University of Strathclyde.
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