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Abstract. Using anR-matrix code recently developed by Robicheabal which includes a
radiative optical potential, we have calculated electron-impact excitation cross sections to the
n = 2 levels of Fé>" and Md**. We focus on the i2l’ resonance structure, which we find to

be significantly damped even for low-lying resonances, and recent siviftaatrix calculations

by Kisielius et al which omit radiation damping and significantly overestimate the resonance
contribution. For dielectronic recombination resonances, we compare the extent of damping to a
different R-matrix approach by Nahar and Pradhan, which uses the inverse of the photoionization
process to calculate the radiative decay for low-lying resonances. It is demonstrated that the
present method is superior for low-lying resonances, since the radiative width is incorporated in
the total width for these resonances via the radiative optical potential.

Developments over the last few years of highly charged ion sources, such as SuperEBIT (see
Knappet al 1993) and heavy-ion storage rings, such as the one at GSI-Darmstadt (see Bosch
1987), have shed new light on the dynamics of highly charged ions. There are two effects
which become ever more prominent as the nuclear or asymptotic ion chi&ygec(eases,
namely, relativistic effects and the effect of radiation damping on resonances. In principle,
and in practice to a large extent, relativistic effects are treatable through the use of a Dirac
representation (with or without the Breit interaction) and this has been implemented within
a number of general codes to describe both atomic structure and collisions, for example,
GRASP (Dyall et al 1989), McDFB (Chen 1985) andARC (Norrington and Grant 1987).

Also, the less computationally demanding Breit—Pauli approximation has been implemented
quite generally, for example the Iron ProjeRtmatrix code (Berringtoret al 1995) and
AUTOSTRUCTURE (Badnell 1986). The situation with regard to the radiative damping of
resonances is less satisfactory. It has long been known (Seaton 1969) that the non-resonant
contribution to an electron-impact excitation cross section scales/a$ Wwhile, in the
absence of radiation damping, the resonant cross section scalg¢gaslt has also long

been recognized that resonances can be strongly radiation damped in highly charged ions,
see e.g. Burgess (1964) and Davies and Seaton (1969).

Recently, using the standarB-matrix method, Kisieliuset al (1995) studied the
electron-impact excitation of the H-like ions HegF&>" and Ut in theabsenceof radiation
damping and noted strong low-lying resonances persisting ever?lin WAlso, recently,

Zhang and Pradhan (1995) carried out a study of relativistic and radiation damping effects
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on high-n resonances present in the excitation of'feand Fé* ions. The purposes of

this letter are to: (i) draw attention to the fact that even low-lying resonances are strongly
affected by radiation damping in sufficiently highly charged ions; (ii) describe the general,
automaticab initio approach to radiation damping of Robicheaal (1995) that we have
implemented within the standarB-matrix approach—specifically within the asymptotic
code STGF (see Berringtoret al 1987)—and which applies to both low-lyingnd high-

lying resonances; (iii) apply this approach to the resonant excitation and photorecombination
(radiative plus dielectronic recombination) of & and Md*** so as to demonstrate the
importance of including radiation damping even for the lowest-lying resonances.

Radiation damping is easily and routinely included within (perturbation theory)
calculations that make use of the independent processes and isolated resonance
approximations. The independent processes approximation is quite good in general for
multiply charged ions (see Badnat al 1991, Pindzoleet al 1992). However, while the
isolated resonance approximation holds good in general for recombination (see Pindzola
et al 1992) it can fail dramatically for excitation (see Badneflal 1993). Even though
the inclusion of higher-order terms within perturbation theory can alleviate this failure (see
Badnell et al 1994) they are quite difficult to include generally in ab initio manner.
Furthermore, development of high energy resolution and state-selective recombination
measurements further shows up failings in the second-order perturbative approach (see, for
example, Pindzolat al 1995). Interacting resonances and interference between direct (non-
resonant) and indirect (resonant) processes are automatically treated through the use of the
close-coupling approximation for excitation and, through the weak-field approximation (see
Henry and Lipsky 1967, Jacobs and Burke 1972), photorecombination/ionization. However,
the radiative damping of resonances is not taken into account within this approach and its
implementation via theR-matrix method. Studies of radiation damping using Ryenatrix
method have focused on resonances near the Rydberg limit. The (core) radiative width
is independent of the principal quantum numbe) 6f the Rydberg electron while the
autoionizing width and resonance separation both scale/a% 1Thus, for sufficiently
high n, for any ion, the radiation field damps the resonances and smears them out. The
Gailitis (1963) average, for excitation, was modified somewhat intuitively by Presnyakov
and Urnov (1974) to allow for radiation damping. The radiation damping theory of Bell
and Seaton (1985), carried out within the framework of quantum defect theory, put this on a
more rigorous footing; their description did not quite correspond to that of Presnyakov and
Urnov (1974) but no significant differences were noted in practice. Through the unitarity
of the generalizedS-matrix, the Bell and Seaton theory also gives rise to dielectronic
recombination cross sections whose resonances are damped, smeared out and interacting. It
should be noted that Bell and Seaton (1985) found no significant differences between the
results of their theory and the original isolated resonance theory of Burgess (1964), when
the resonances were averaged over a suitable energy range. The Rseatfix theory
scattering matrices within the Bell and Seaton (1985) theory is the basis of the damped
R-matrix calculations of Pradhan and co-workers for highesonances in electron-impact
excitation and dielectronic recombination (see, for example, Pradhan and Seaton 1985,
Nahar and Pradhan 1994, Zhang and Pradhan 1995). Their treatment ofres@nances
is that of the standar@®-matrix method, i.e. a neglection of the radiative width. We note
that while dielectronic recombination viaZn = 0 core excitation is dominated by high-
resonances, dielectronic recombination viAa > O core excitation and resonant excitation
are both dominated by low-resonances; essentially the cross section falls off/as from
the lowest energetically accessihlestate. It is the radiation damping of these low-lying
resonances that needs to be addressed rather than the high-lying resonances.
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In the present study, we have made use of the latest Iron Project (Huetrab1993)
version of the BelfasiR-matrix codes (Berringtoret al 1995) which include spin—orbit,
mass—velocity, and one-body Darwin relativistic corrections to the Hamiltonian (see Scott
and Taylor 1982). In addition, we have modified the Hamiltonian further to include a
non-local, imaginary, energy-dependent radiative optical potential to allow for the radiative
decay of resonances. The derivation of this potential, as well as the strategy for handling
the various types of decay, has been described by RobichetalX1995). The use of this
potential for electron-impact excitation calculations, as well as the specific modifications to
the BelfastR-matrix codes, were detailed by Gorczyeral (1995).

Briefly, the additional potential, in the length gauge, takes the form

. wa
Viag=—i)_ 3 3 DIb)(b|D @
b

wherew, = E—E, is the energy difference between energies of the initial and final states,
is the dipole operator an@) represents a normalized final state. This potential contributes
an additional term to the Hamiltonian matrix:
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whereJ is the total angular momentum of the scattering-state symmetry. This accounts for
decay to bound statés) which are contained within thR-matrix box (all 18, 1s2 and 1s3

states in the present case). The use of this optical potential yields a non-unitary scattering
matrix, S, and the amount of damping is related to the non-unitary quahtitg’S (Davies

and Seaton 1969, Robicheaeakal 1995).

An alternative method for treating decay to inner-region states, as proposed by Nahar
and Pradhan (1994), is to first calculate photoionization cross sections and then to compute
the recombination cross section (which is proportional to the degree of daniping;S)
using the detailed balance relationship
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Here orc andop| are the partial recombination and photoionization cross sectigrand
gt are the statistical weights of the initial (bound) and final (continuum) levelss the
photon energy and is the electron momentum. As will be demonstrated, this procedure is
only valid when the radiative width is much less than the autoionization width, since this
method cannot incorporate the radiative width into the total width of the resonances when
the final wavefunction is calculated in the absence of the radiative potential.

The second type of damping which must be considered in the present study is that of
decay to higher-lying resonances, in particular the following processés.—13/'nl” —
1ul” (n > 3), where for pureLS-coupling,!’ = 1, but in JK-coupling, other resonances
may take part. As described by Robicheabal (1995) and Gorczycat al (1995), this
type of decay can be incorporated by modifying the the effective quantum number according
to:

Vv
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Figure 1. R-matrix calculation for the electron-
impact excitation to thea) 2si2, (b) 2py2, and
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Table 1. Target energies (Ryd) for B& and Md'+.
level Fe&st Mot
lS_|_/2 0.0 0.0
25, 5112 13521
2p1)2 511.2 1352.5
2ps; 5127 13618
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(c) 2pz/2 levels in F&5, convoluted with a 2.5 Ryd
FwHM Gaussian;<- - -), undamped; (——) damped.

wherel" is the radiative width for the/3 — 1s,, core decay. By using a quantum-defect
theoretical approach to compute a physical scattering matrix with this complex effective
guantum number, this type of damping is completely incorporated:

S = Soo — Soc (Scc - e_znm)il Seo-

®)

This same basic strategy is used by Pradhan and Seaton (1985), although their formulation
only agrees with ours provided th&t?/Z? is small, then equation (4) becomes ~

v+ilrv3/272.

The first system that we studied was the electron-impact excitation te the levels
of FE>t. The target energies used, which were obtained using the Breit—Pauli Hamiltonian
(Scott and Burke 1980), are listed in table 1. Levels umte 3 were included in order
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to provide the capture mechanism for thia/3 resonances. The resulting excitation cross
sections with and without the radiative optical potential are shown in figure 1. For these
calculations, we used 10000 energy points over the energy range shown, and convoluted
the cross sections with a 2.5 RyvHM Gaussian in order to best portray the extent of
damping. Note that the Kk resonances, primarily the 2p(n = 20) ones just above the

2512 and 2p,, thresholds, are completely damped, as are the:K®sonances for > 6

(E Z 590 Ryd). More importantly, even the KMM resonancesEat~ 535 Ryd show
roughly 10% damping.

We next repeated the above analysis for the case of electrons incident #i. Mo
This system possesses an ionic charge which is high enough that significant damping is
expected, yet low enough that our semi-relativistic treatment is still valid. We verified
this by comparing our undamped excitation results to those obtained from a Rirac
matrix calculation using th®ARcC suite of programs (Norrington and Grant 1987), and
further verified that our treatment of damping was valid by comparing present dielectronic
recombination results for the KLL resonances to those from a Dirac—Fock perturbative
calculation (Zimmermann 1995); in both cases the agreement was excellent.

Excitation cross sections to the = 2 levels are shown in figure 2, where we have
now chosen a 10 RydwHM Gaussian to convolute our 10000 energy-points results. The
effect of damping is expected to increase as the target ionic charge is increased, since the
radiative rate scales d% ~ Z*n° for the type of damping presently considered, whereas
the autoionization rate scales Bg ~ Z% 3. This is found to be the case by comparing
the Md** results in figure 2 with the F&" results in figure 1. In particular, the KMM
resonances at about 1420 Ryd show more than a factor of 2 damping. As the charge state
on the ion increases the damping factor increases further and®ywe estimate, using
AUTOSTRUCTURE that the KMM resonances are damped by more than a factor of 20. Thus,
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Figure 3. R-matrix calculation for the electron-impact excitation to thg,2devel in Mao*+
(unconvoluted); {- - -) undamped; (——) damped.

the undamped resonance cross sections of Kisielias (1995) are likely to be a substantial
overestimate. As demonstrated by Gorczgtal (1995), these KMM resonances interact
strongly with each other, and are therefore precisely the types of resonance which should
be treated with non-perturbative methods, such as the pr&samtrix method. Also, since

the final 1s8 decay states are necessarily contained inRhmatrix box, theR-matrix itself

must be modified as in equation (1).

In order to exemplify how the present method is perfectly suited for the treatment of this
type of decay, and how the treatment of Nahar and Pradhan (1994) is not applicable for such
a high-Z ion, we focus on the 3s3fP; resonance in the tp — 3s3p— 2s'p excitation.

The full, unconvoluted resonant cross section in the region of 1B i@sonances is shown

in figure 3, where the 3s3pP; resonance shows up as the large, broad feature at about
1411.5 Ryd. We do not show the complete extent of the undamped resonance for illustrative
reasons, but it peaks at a maximum cross section of about 0.006 Mb, whereas the damped
resonance peaks at about 0.0006 Mb, indicating a factor of 10 damping. More importantly,
the width of this resonance is increased dramatically when damping is included. Perturbative
calculations usingqUTOSTRUCTUREdetermined that the radiative width is about an order of
magnitude larger than the autoionizing widthseach continuum for this resonance, and
there are four continua accessible to this resonance; these values are consistent with the
degree of damping mentioned above. We next simplify the problem by focusing only on
the 'P; partial wave, and include only the 3s3p configuration in the description of the KMM
resonances, and only the 1% configuration for the final decay state. The dielectronic
recombination cross section, which is proportional to the degree of damping, is shown in
figure 4. Also shown is the result obtained by performing a photoionization calculation for
the 1s3s'Sy — 3s3p!Py — 2s’p P, resonant process, and then using equation (3), as
is done in the method of Nahar and Pradhan (1994). It is clearly seen that the dielectronic
recombination cross section is about an order of magnitude too large, and therefore the
degree of damping computed using that method is likewise an order of magnitude too large.
From a perturbative perspective (see e.g. Robicheaak1995), the inverse photoionization
method amounts to using the following Lorentzian and energy-averaged expressions for the
cross section

rar rar
~ z ' 3 and (GDR) ~ ot
(E — Ered* + (Ta/2) [a

(6)

ODR
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Figure 4. Dielectronic recombination cross sectiotP{ partial wave only) in the vicinity of

the 3s3pP; resonance:-(--), results from a photoionization calculation; (—), results using
the present radiative optical potential.

rather than using theotal width in the denominator:

.l and (oo ~ e
~ O] ~ .
(E — Ered? + (Ta+ I'/2)2 PR Tt Iy

Q)

ODR

We note that neglect of the radiative width of a resonance is potentially more serious for
dielectronic recombination than for resonant excitation, for which the cross section behaves
like

Fal'a Fal'a
~ 5 5 and (O'RE) ~ .
(E — Ered?+ Ta+T1/2) Fa+ T

8)

ORE

Of course, if all of the radiative widthd() and all of the autoionizing widthd¢) satisfy

It > I’ then neglect of the radiative width causes the same overestimation factor in both
dielectronic recombination and resonant excitation. However, a more realistic situation,
particularly for low-lyingn, is one where there is a combination of ‘weak’ resonances that
satisfy I'r > 'y and ‘strong’ resonances that satidfy < I'ys. Consider the situation of

two resonances each with the same radiative witithnd with a single capture/autoionizing
width of 'y, and 'y, respectively. On using the energy-averaged form of equations (7)
and (8), the dielectronic recombination cross section summed over both resonances is
proportional to~ 'y + It ~ Iy and the resonant excitation cross section (the resonant
part) is proportional to~ 'y aw/ Iy + Tas ~ Tas Neglecting the radiative width (see
equation (6)) results in a dielectronic recombination cross section proportionaltet+ Iy

and a resonant excitation cross section proportionattd sy + Ias ~ Fas  Although

the contribution of the weak resonance to both dielectronic recombination and resonant
excitation is overestimated by a factby/ 'y, the weak resonance now contributes the
same amount to the total dielectronic recombination cross section as the strong resonance,
while having a negligible effect on the resonant excitation cross section. This potentially
catastrophic overestimate of the dielectronic recombination cross section means that extreme
caution must be exercised in obtaining dielectronic recombination cross sections (or for that
matter, resonant photorecombination cross sections) from calculations that make use of
the weak-field approximation for photoionization/recombination. The above analysis also
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illustrates the reason why less attention has been paid to the radiation damping of resonances
in excitation.

However, experimentalists are now able to produce bare uranidfi)dnd so the first
experiments on E#, U+, U etc (see, for example, Knamgt al 1995) are now coming
online. At these high charge states even the lowest lyimgsonances are expected to be
affected by radiation damping, based on perturbation theory, for both resonant excitation
and dielectronic recombination.

In conclusion, we have demonstrated that the dominant low-lying resonances in electron-
impact excitation and, even more so, in photorecombination/ionization can be strongly
radiation damped and we have shown how damping of both low-Iyimg high-lying
resonances can be incorporated in an automaticadniditio manner within theR-matrix
approach. The effects of radiation damping can now be included routinely witimratrix
calculations of collision cross sections for highly charged ions. The perturbative approach,
using the independent processes and isolated resonance approximations, can be used to
estimate their importance in the first instance for any particular reaction.

This work was supported in part by the UK EPSRC under contract no GK/K/14346 with
the University of Strathclyde.
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