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We have carried out extensive calculations of elastic and inelastic scattering of electrons from

neutral argon and chlorine.

The elastic and excitation cross sections are determined from the

R-matrix method, in which the effects of dipole polarizability are included through the use of

polarization pseudostates within the close-coupling expansions.

For elastic scattering, our cross

sections for Ar are compared to a number of other calculations and measurements. This provides a
measure of the reliability of similar calculations for Cl. Our calculations of excitation include only
transitions to the metastable levels of these atoms, where polarization effects are found to be quite
important. Finally, ionization cross sections for these atoms are determined using the distorted-wave
approximation; here, final-state correlation effects are found to be large.

PACS number(s): 34.80.Bm, 34.80.Dp

I. INTRODUCTION

Accurate calculations of electron scattering from com-
plex neutral atoms and low-charge-state ions present a
significant challenge to theoretical atomic physics. The
effects of correlation within the target states of the atom
or ion are often quite large, and coupling of the target
states by the continuum electron can have large effects
on the cross sections. In addition, polarization of the
target by the continuum electron is difficult to represent
accurately, and yet has a large effect on the size and
shape of elastic and inelastic cross sections. Neverthe-
less, there is significant interest in calculations of electron
scattering from such systems, primarily because of their
applications to magnetically confined plasmas near the
walls of fusion reactors, to plasma processing of micro-
electronic structures, and to low-temperature astrophys-
ical plasmas.

There have been many measurements [1-6] and calcu-
lations [7-10] of elastic scattering from Ar, and compari-
son of any calculations with these results provides a mea-
sure of the accuracy of the theoretical methuds employed.
On the other hand, for elastic scattering from Cl, there
is only one published calculation, which is at electron en-
ergies below 1.0 eV [11], and there are no measurements;
this atom presents a somewhat greater theoretical chal-
lenge, because of the open 3p subshell.

There has been one calculation, using first-order many-
body perturbation theory [12], and one R-matrix close-
coupling calculation [13] of total excitation from the
ground state to the metastable levels of Ar; however, no
effort was made in these calculations to characterize the
effects of polarization. In addition, there have been sev-
eral measurements of excitation to the metastable levels
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in Ar, but there exist only a few experimental points for
total cross section in the low-energy region. There have
been no published calculations or measurements of exci-
tation from the ground state to the metastable states of
Cl. Finally, there have been many measurements (see, for
example, Ref. [14]) and a number of calculations [15-17]
for the ionization of Ar, but none for Cl.

In this paper, we present results for R-matrix close-
coupling calculations of elastic scattering of electrons
from neutral argon and chlorine, as well as electron-
impact excitation to the lowest-lying metastable states
of these atoms. We pay special attention to the effects of
polarization of the core electrons on the scattering cross
sections. In particular, we include polarization pseu-
dostates within our close-coupling expansions in order to
represent the effects of dipole polarizability on the scat-
tering events. In addition, we employ the distorted-wave
approximation to calculate the ionization cross sections
for these atoms.

The remainder of this paper is arranged as follows. In
the next section, we describe briefly the methods used
to make these calculations. In Sec. III, we present our
calculations for elastic scattering from Ar and Cl, and
we make detailed comparisons of our results for Ar with
other theoretical results and experimental data for this
atom. In Sec. IV, we present our theoretical cross sec-
tions for excitation to the metastable states of Ar and
Cl, using various levels of approximation. In Sec. V, we
describe our distorted-wave results for ionization of Ar
and Cl. Finally, in Sec. VI, we summarize our findings
and discuss their implications.

II. COMPUTATIONAL METHODS

The R-matrix method provides an efficient means for
solving the close-coupling equations. For this work, we
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employed modified versions of the R-matrix programs,
developed for the Opacity Project [18], to solve the scat-
tering problem within the inner region. For the solu-
tions in the asymptotic region, we employed the program
FARM (Flexible Asymptotic R-Matrix package) devel-
oped by Burke and Noble [19]. It solves the scattering
problem in the external region using a combination of
R-matrix propagator techniques.

Fischer’s multiconfiguration-Hartree-Fock (MCHF)
programs [20] were employed to generate most of the
bound-state radial wave functions. These codes allow for
the generation of nonspectroscopic pseudo orbitals, that
can be employed to represent core relaxation, term de-
pendence, and configuration interaction within the target
states.

In addition to the HF orbitals, we employed pseudo
orbitals to allow for the polarization of the target by the
scattering electron. Using a method introduced by Dal-
garno and Lewis [21], the radial part of a pseudo orbital
Py (r), used to represent the polarization of a target
electron with a radial wave function P,;, can be deter-
mined, in the dipole approximation, by solving a differ-
ential equation of the form:

1d2 Zz U{l'+1)
(-—EW B WO R + Var(r) — €nl) Pry(r)
= rPar(r) = > 80,1, (Pt 7] Paite) Pt (7). (1)
n;l;

In this equation, Vg is used to represent both the direct
and exchange Hartree-Fock potential functions; in addi-
tion, we include projection operators within this func-
tion to force orthogonality with bound orbitals having
the same angular momentum [22]. €,; is the eigenvalue
of the Hartree-Fock equations for the target electron and
the sum over n;l; is over all bound electrons with the
same angular momentum as the pseudo orbital.

These polarization pseudo orbitals are subsequently
normalized and used to form a set of pseudostates that,
when included in the close-coupling expansion, approxi-
mate the effects of polarization on the scattering event.
The limitation of this method is based primarily on the
number of such states that can be reasonably included
within a close-coupling calculation. As we will see, for
open-shell systems, the number of pseudostates needed
to provide a proper representation of the effects of polar-
ization can become quite large.

Polarization effects have also been incorporated in
both bound and continuum calculations in atoms and
low-charge-state ions through the use of various semi-
empirical polarization potentials. For example, a polar-
ization potential of the form:

«

Vpol = opa

[1 — exp(—r®/r¢)] (2)

was first introduced by Norcross and Seaton [23], where o
is the dipole polarizability and r. is a cutoff radius. It has
been employed successfully for a number of bound-state
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and electron-impact excitation calculations involving one
free electron above a closed shell (see for example, the
calculations in Ca* by Mitroy et al. [24]). In addition,
the potential first introduced by Baylis [25]:

,’.2

GERE

o
Vo = =5 (3)
has been applied by Brage et al. [26] to perform bound-
state calculations in Ca I and Ca II. The use of either of
these two polarization potentials for scattering calcula-
tions is much simpler than the extensive use of polariza-
tion pseudostates. For that reason, we have tested the
use of Eq. (3) in the case of elastic scattering from Ar
and employed it to represent the effects of polarization
on the ionization cross section of both Ar and Cl.

The calculations of ionization cross sections were per-
formed using our distorted-wave ionization cross section
program [27]. This configuration-average ionization code
has been modified to allow for ionization from a given
LS term of the target atom to a particular LS term of
the final ion. This program also allows for the inclusion
of configuration interaction in the target states and the
variation of the radial wave function for the ejected con-
tinuum electron with LS term (i.e., term dependence in
the continuum).

The calculations of elastic and inelastic cross sec-
tions discussed in this paper were performed in LS cou-
pling. For excitation of these atoms, an intermediate-
coupling representation, using a Breit-Pauli Hamiltonian,
would be more appropriate; this is especially true of Ar,
where the excited states are best represented in j-K
coupling. However, this would significantly complicate
already complex calculations; furthermore, because we
have restricted our excitation calculations to the 3p —
4s transition to the metastable states of these atoms, the
LS representation is still meaningful. We determine the
cross section to particular metastable levels by multiply-
ing the excitation cross section to the corresponding LS
term by the appropriate statistical factor.

III. ELASTIC SCATTERING

A. Argon

There exists a large number of calculations and mea-
surements of elastic scattering from neutral argon. Sum-
maries of the more recent of these are given by Dasgupta
and Bhatia [9] and by Saha [10]. The available data pro-
vide an opportunity to test the accuracy of theoretical
methods, before making other calculations of electron
scattering in this region of the periodic table.

We studied elastic scattering in Ar, using a restricted
set of target states. Our primary motivation was to de-
termine how well one could represent the scattering event
with a single spectroscopic state and a small number of
polarization pseudostates. As we shall see, restricting the
calculation to a small number of states becomes partic-
ularly important for calculations of open-shell systems,
such as Cl. Polarization of Ar occurs primarily within
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the 3p subshell. Therefore, one should be able to rep-
resent most of the effects of polarization on elastic scat-
tering by performing a close-coupling calculation, which
includes only the ground state and those pseudostates
which can be reached by a dipole excitation out of the 3p
subshell. '

Thus, we started our work on Ar by performing a two-
state calculation, which included only 3p® 'S and 3p®3d
1P. The 1s, 2s, 2p, 3s, and 3p orbitals were determined
from a single-configuration Hartree-Fock calculation on
3p® 15, while Pj,, the radial part of the 3d pseudo or-
bital, was determined by solving Eq. (1), with Vgr equal
to the potential for a d orbital within a p°d ! P term, and
with nl = 3p. We found that we could obtain conver-
gence in the scattering calculation for electron energies
up to 20 eV by including partial waves from L=0 through
L=4, where L is the total angular momentum of the atom
plus free-electron system. The results for the total elastic
cross section from this calculation agreed reasonably well
with measurements and other calculations above about
5 eV. However, it did not show a Ramsauer minimum.
Using this 3p®3d ! P pseudostate, we also calculated the
dipole polarizability of Ar, and obtained a value of 10.2
a3, compared to the experimental value of 11.1a3 [28].

Next, we generated a 3p®4s 1P polarization pseu-
dostate (to complete the possible dipole excitations out of
the 3p subshell) and performed a three-state calculation.
This additional state had only a small effect on the to-
tal cross section above 5 eV, but significantly affected its
shape below that energy; it then had a Ramsauer mini-
mum close in shape and position to that obtained exper-
imentally. However, with the addition of this 3p®4s'P
state, we calculated a dipole polarizability of 12.8a3. It
is somewhat surprising that the low-energy portion of the
cross section agrees well with experiment, when the value
of the polarizability is about 15% above the experimental
value.

Finally, we added a 3s3p®4p 'P polarization pseu-
dostate, corresponding to a dipole excitation out of the
3s subshell, and performed a four-state calculation. As
one might expect, this had a very small effect on the size
and shape of the cross section, as well as the value of
the dipole polarizability. We show the results of our fi-
nal four-state calculation for the total cross section, in
comparison to other calculations and measurements, in
Figs. 1 and 2. Over all, the comparison with these other
data is quite good. From Fig. 1, we see that in the higher-
energy region, our calculated cross section is somewhat
low compared to the measurements; however, as men-
tioned by Dasgupta and Bhatia [9], this may be at least
partially due to contributions of inelastic processes within
the measured cross sections that should onset at about
11.6 eV. The agreement of our calculated cross section
with the experimental measurements near the Ramsauer
minimum is shown clearly in Fig. 2.

Our calculated cross section appears to be in the best
agreement with the calculations of Dasgupta and Bhatia
[9], who employed the polarized orbital method due to
Temkin [29]. They used only a single 3p°3d !P pseu-
dostate; however, their 3d pseudo orbital was renormal-
ized to give the experimental polarizability. Our results
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FIG. 1. Total cross section for elastic scattering from Ar.
Solid curve, present 4-state R-matrix calculation; dashed
curve, calculation of Saha [10]; dotted curve, calculation of
Dasgupta and Bhatia [9]; dash-dot curve, calculation of Amu-
sia [7]; dash-double-dot curve, calculation of Bell et al. [8];
open squares, measurements of Jost et al. [3]; plus signs, mea-

surements of Ferch et al. [5]; open triangles, measurements of
Nickel et al. [4].

are in good agreement with the calculations of Bell et al.
[8] in the low-energy region, but are lower than their cross
section in the higher-energy region. This is somewhat
surprising, since their results are also based on R-matrix
close-coupling calculations. However, they employed a
single multiconfiguration ! P pseudostate that was rep-
resented by a linear combination of 3p®3d, 3p°4s, and
3p®4d configurations using the method developed by Vo

T
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FIG. 2. Total cross section for elastic scattering from Ar in
the region of the Ramsauer minimum. Solid curve, present
4-state R-matrix calculation; dashed curve, calculation of
Saha [10]; dotted curve, calculation of Dasgupta and Bhatia
[9]; dash-dot curve, calculation of Amusia [7]; dash-double-dot
curve, calculation of Bell et al. [8]; open squares, measure-

ments of Jost et al. [3]; plus signs, measurements of Ferch et
al. [5].
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Ky Lan et al. [30]. In Figs. 1 and 2, we notice some
discrepancy with both the many-body perturbation the-
ory calculations of Amusia et al. [7] and the more recent
continuum multiconfiguration Hartree-Fock calculations
of Saha [10]; however, the spread in the cross sections
in the higher-energy region is only about 12% which ap-
pears acceptable in light of the simplicity of the present
calculations.

In Fig. 3, we show our results for the momentum-
transfer cross section for elastic scattering in Ar, in com-
parison to experimental measurements and other calcu-
lations. Our cross section is somewhat low compared to
the other calculations, but the spread within the various
theoretical calculations, near the peak in the cross sec-
tion, is about the same as that within the experimental
results.

Because of the simplicity of polarization potential
methods compared to the extensive use of pseudostates,
we also performed a calculation of the total elastic cross
section in Ar, using the potential of Eq. (3) and a sin-
gle 3p% 'S state. The results for the total elastic cross
section from that calculation, in comparison to our four-
state calculation, with four values of r. from 1.0 to 2.0
are shown in Fig. 4. As can be seen, for r. = 2.0, we ob-
tain excellent agreement with our four-state calculation
above about 5 eV. Because of the greater sensitivity of
the calculation to the details of the scattering potential
at low electron energies, the discrepancy is greater below
5 eV. A value of 7. = 1.66 (the average radius of the
3p orbital) may give the best overall results. There is a
larger discrepancy in the higher-energy region; however,
this is no greater than the spread between the various
theoretical calculations shown in Fig. 1. Furthermore,
the agreement with the four-state calculation is better
below 5 eV. Nevertheless, it is disappointing that one
does not see a Ramsauer minimum in the cross section
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FIG. 3. Momentum-transfer cross section for elastic scat-
tering from Ar. Solid curve, present 4-state R-matrix calcula-
tion; dashed curve, calculation of Saha [10]; dotted curve, cal-
culation of Dasgupta and Bhatia [9]; dash-double-dot curve,
calculation of Bell et al. [8]; open squares, measurements of
Williams et al. [1]; plus signs, measurements of Srivastava et
al. [2]; open triangles, measurements of Andrick [6].
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FIG. 4. Total cross section for elastic scattering from Ar.
Solid curve, present 4-state R-matrix calculation. Other
curves, single-state calculation using the Baylis polarization
potential, Eq. (3), with a = 11.1 and various cutoff radii:
dotted curve, r. = 2.00; dashed curve, r. = 1.66; dash-dot
curve, r, = 1.33; dash-double-dot curve, r. = 1.00.

until 7. = 1.0, and then the shape in the cross section
is quite different from that obtained from the four-state
calculation.

B. Chlorine

Based on the results obtained for elastic scattering in
Ar, we have performed a similar calculation in Cl, using
3d, 4s, and 4p polarization pseudo orbitals. However, be-
cause of the open 3p subshell in this atom, single-electron
promotions out of the 3s and 3p subshells lead to many
more states. In fact, a calculation comparable to the four-
state calculation in Ar requires seventeen states in Cl.
The terms employed in the Cl calculation are listed in Ta-
ble I. For each value of L and S, the single-configuration
terms listed for the sixteen even-parity states were then
allowed to mix within a configuration-interaction calcu-
lation to form the final sixteen even-parity states in-
cluded within the seventeen-state close-coupling expan-
sion. Boyle [31] has recently developed an average poten-
tial for open-shell systems that includes all the first-order
correlations in the diagrammatic series of the dipole po-
larizability. We employed this potential in Eq. (1) to de-
termine the 3d and 4s pseudostates used to represent the
effects of dipole excitations out of the 3p subshell. The ef-
fects of dip+:ie excitations out of the 3s subshell are small,
and by leaving out these promotions, the close-coupling
calculation could have been reduced to ten states with
very little loss in accuracy.

Again, partial waves up to L = 4, were sufficient to ob-
tain convergence up to the maximum energy considered,
which for Cl was 16.0 eV. The results of our calculation
for the total and momentum-transfer cross sections for
elastic scattering in Cl are shown in Fig. 5. The cross
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TABLE I. The terms used for the 17-state calculation of elastic scattering ir Cl.
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3s23p° 2P°

3s3p® 28°
3s3p° (1 P)dp %8¢
3s3p°(*P)dp 2 P°
3s23p*(*D)3d *D*

3s%3p*(*D)3d ?S°
3s?3p*(*P)3d *P°
3s3p°(*P)dp 2 P°

3s%3p*(* D)4s *D*

35%3p*(1S)4s%S°
3s23p*(*D)3d 2P
3523p*(*S)3d *D*
3s3p°(3P)dp 2D°

3s3p°(*P)dp 2S°
3523p*(*P)4ds 2 pP°
3s°3p*(*P)3d ?D*
3s3p°(* P)dp 2D*

The 3d pseudo orbital was determined from Eq. (1) using the average potential of Boyle [31].
The 4s pseudo orbital was determined from Eq. (1) using the average potential of Boyle [31].
The 4p pseudo orbital was determined from Eq. (1) for the 3s3p°(®P)4dp 2D® term.

sections are similar to our results for Ar, although the
magnitude of the cross sections at the peaks is somewhat
larger. The Ramsauer minimum is at a higher energy and
is very well pronounced. On the basis of our comparisons
in Ar, we would expect that the error in the magnitude of
these cross sections would be at the ten to fifteen percent
level.

The only published calculation of elastic scattering
from Cl was performed very recently by Fabrikant [11]
by the extrapolation of potential parameters along iso-
electronic series and among corresponding neutral atoms.
However, this calculation was restricted to energies be-
low 0.6 eV. A comparison in the region of the Ramsauer
minimum is difficult, since our minimum occurs at about
0.7 eV; however, it does appear that the minimum de-
termined in Ref. [11] is somewhat lower in energy (~ 0.4
eV), and has a value of ~ 3x10716 cm?, compared to our
minimum of ~ 2.1x1071% cm?.

In addition, Rescigno recently calculated elastic scat-
tering from Cl using the complex Kohn variational princi-
ple [32]. The cross section from this calculation is similar
to ours in the higher-energy region and has a Ramsauer
minimum at approximately the same energy; however,
the minimum is less pronounced and the cross section at
the minimum is larger.

Cross Section (10 "°cm?)

0 +——r . —
0 2 4 6 8 10 12 14 16
Energy (eV)

T

FIG. 5. 17-state R-matrix calculation of elastic scattering
from Cl. Solid curve, total cross section; dotted curve, mo-
mentum-transfer cross section.

IV. ELECTRON-IMPACT EXCITATION

In this section, we consider electron-impact excitation
to the lowest-lying metastable levels of Ar and Cl. We
wish to study these excitations as a function of the num-
ber of states included within the close-coupling expan-
sions, with special attention to the amount of polariza-
tion included in the calculations.

A. Argon

As mentioned earlier, there have been two previous
calculations of excitation to the metastable states in Ar.
One by Padial et al. [12], used first-order many-body per-
turbation theory; it is essentially a distorted-wave cal-
culation in which the distorted waves are calculated in
the potential of the ground state. The other calculation
by Ojha et al. [13] was a nine-state R-matrix calcula-
tion, in which the core orbitals were determined from the
Hartree-Fock solutions for the ground state of Ar™ and
the orbitals for excited states were optimized on various
excited terms of neutral Ar. Neither of these calcula-
tions attempted to specifically incorporate the effects of
polarization.

We began our work on excitation to the metastable
states of Ar by carrying out both nine-state and sixteen-
state calculations, without the inclusion of polarization
pseudostates. The terms used in the close-coupling
expansion for these calculations are listed within the
first two parts of Table II. The 4d pseudo orbital was
generated from a MCHF calculation on 3p®3d P +
3p®4d 'P and corrects the 3d orbital, obtained from a
configuration-average Hartree-Fock calculation, for the
strong term dependence of this orbital within the 3p°3d
1P term. Again, terms of the same LSII were allowed to
mix within a configuration interaction calculation, before
the close-coupling calculation was initiated. We also in-
cluded configuration interaction of the ground state with
3p%3d? 18, 3p%4s? 1S, and 3p*4p? S. It is somewhat
difficult to compare the calculated energies with exper-
iment, since the experimental values are given in pair-
coupling notation [33]. However, identification of the
levels in LS coupling is possible for the 3p®4s and 3p®4p
configurations, and at least the ! P level of the 3p®3d con-
figuration. A comparison for these levels with respect to
the ground state indicates that the theoretical values are
all high, with deviations varying from 0.25 eV to about
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0.5 eV. In the case of the 3P term, of primary interest
here, the calculated energy is 12.0 eV compared to the
experimental value of 11.6 eV [33].

As in the case of elastic scattering, inclusion of par-
tial waves up to L = 4 was sufficient to obtain conver-
gence in the excitation calculation. A comparison of the
nine-state and sixteen-state calculations of the excitation
cross section from the ground state to the 3p®4s 3P0‘2
metastable levels is shown in Fig. 6. The total cross
sections to these two levels were determined by multiply-
ing the calculated cross sections to 3p°4s 3P by 0.667,
the fraction of the statistical weights of these levels. As
can be seen, continuum coupling with the terms of 3p°3d
has a strong effect on excitation to 3p®4s 3P, reducing
the cross section near the peak by more than a factor of
two. However, the shape of the resonance structure in
the lower-energy region is quite similar in the two calcu-
lations.

In this figure, we also show the few available measure-
ments in this energy range. The measurements of Ma-
son and Newell [34] were for total metastable produc-
tion, including excitation to higher levels which cascade
to the 3P, levels. Only their point at 12 eV is com-
pletely cascade free. The total cross sections of Chutjian
and Cartwright [35] were determined by them from the
integration of electron energy-loss measurements of the
differential cross sections. However, the only measure-
ments within this energy region were at 16 and 20 eV.
Finally, Schappe et al. [36] have very recently reported
measurements of excitation into the metastable states of
Ar by the method of laser-induced fluorescence. The
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FIG. 6. Electron-impact excitation of Ar to the 3p®4s 3Pp 5
levels. Dashed curve, 9-state R-matrix calculation; solid
curve, sixteen-state R-matrix calculation; solid triangle, mea-
surement of Mason and Newell [34]; solid circles, measure-
ments of Chutjian and Cartwright [35]; solid squares, from
the measurements of Schappe et al. [36].

points shown in Fig. 6 were determined by adding the
cross sections to the 3Py and 3P, levels from the curves
given in their paper. We show the approximate uncer-
tainty in their measurements at the peak of their cross
section. Their curves do not show any sign of a resonance
structure below 14 eV, but it is not clear from their pa-

TABLE II. The terms used in the R-matrix calculations for Ar (3p® 'S — 3p54s 3P, 2).

(Configuration interaction with 3p*3d? 'S¢, 3p*4s? 1S, and 3p*4p® 1S° is included.)

1. 9-state R matrix

3p® 18° 3p°4s 3P° 3p°4s 1P° 3p°4p 38°
3p®4p 3D° 3p°4p 1D° 3p°4p 1 P* 3p°4p 3pP°
3p°4p 1S

The 1s, 2s, 2p, 3s, and 3p orbitals are from a HF calculation for 3p® *S°.

The 4s orbital is from a HF calculation for 3p°4s 3 P°.

The 4p orbital is from a configuration-average HF calculation for 3p®4p.

2. 16-state R matrix

9 terms above plus:

3p°3d 3p° 3p°3d 3F° 3p°3d 1F° 3p°3d 'D°
3p°3d *D° 3p°3d 1 P° 3p°dd tp°

The 3d orbital is from a configuration-average HF calculation for 3p°3d.
The 4d pseudo orbital was determined from a MCHF calculation on 3p®3d 'P + 3p°id ' P.

3. 18-state R matrix
16 terms above plus the polarization pseudostates:
3p55s 1 P° 3p°5d 1 P°

The 5s polarization pseudo orbital was determined from Eq. (1) for the 3p®5s ' P term.
The 5d polarization pseudo orbital was determined from Eq. (1) for 3p°5d ' P term.

4. 33-state R matrix

18 terms above plus the additional polarization pseudostates:
3p*(*8)4s(®S)5s S° 3p*(*D)4s(®*D)5d 35°
3p*(®P)4s(®*P)5s *p° 3p*(®P)4s(*P)5d P
3p®5p *pe 3p*(*D)4s(®*D)5s *D*
3p*(*S)4s(®S)5d *D* 3p*(*D)4s(*D)5d ®D*

3p55p 3Se
3p*(®*P)4s(®*P)5d *P*
3p*(*P)4s(*P)5d *D*
3p55p 3De

3p*(3P)4s(*P)5s P°
3p*(*D)4s(*D)5d ® P*
3p*(®P)4s(*P)5d *D*

The 5p polarization pseudo orbital was determined from Eq. (1) for the 3p°5p S term.




per how many measurements were actually made in this
low-energy region.

Despite the small amount of experimental data avail-
able, it is clear that the nine-state calculation far over-
estimates the cross section. By adding more continuum
coupling, we obtain significant improvement with regard
to agreement with experiment; however, the sixteen-state
calculation still appears to be well above the measure-
ments.

It may be that the remaining discrepancy is due to
polarization effects not already included in the sixteen-
state calculation. However, it is important to note that
with the 3p54s 1 P°, 3p°3d 1 P°, and 3p°4d ' P° terms, we
have included some polarization of the ground state and
with the 3p®4p 3S¢, 3p®4p 3P¢, 3p®4p 3D* terms, we have
included some polarization of the 3p®4s 3P° term, even
though the excited orbitals were not generated for this
purpose. We examined this for polarization out of the
ground state, by making a fourteen-state calculation, in
which the 3p53d 1 P°, and 3p®4d ' P° terms were not in-
cluded. The resulting cross section is significantly lower
than that obtained using the nine-state calculation, hav-
ing a peak at 18 eV of ~ 16x107 18 cm?2. Thus, more than
two thirds of the continuum coupling, arising from the
addition of the 3p®3d configuration to the close-coupling
expansion, is not associated with the dipole polarizability
of the ground state.

We now consider additional R-matrix calculations
which attempt to include the most important effects due
to polarization of the target. We first examined the po-
larization of the ground state by adding the two polar-
ization pseudostates 3p°5s ' P° and 3p°5d ' P°, formed
by a dipole excitation of the 3p electron out of 3p® 1S,
to our close-coupling expansion. We ignored the states
formed from excitation out of the 3s subshell, since they
had such a small effect in the case of elastic scattering.
The specifics regarding the pseudo orbitals are given in
the third part of Table II. The results of this eighteen-
state calculation are shown by the dashed curve in Fig. 7.
By comparing this result to the sixteen-state calculation
(dotted curve), we see that this additional polarization
of the ground state has had a relatively small effect.

Finally, we considered the polarization pseudostates
formed from dipole excitations out of the 3p and 4s sub-
shells of 3p°4s 3P°. This led to the fifteen additional
terms listed in the fourth part of Table II. It is impor-
tant to note that the 5s and 5d pseudo orbitals used
within the states formed from excitation out of the 3p
subshell of 3p®4s 3P° were generated for excitation out
of the 3p subshell of 3p® 1S. This will introduce some er-
ror into the calculation; it could be corrected, but would
require the use of additional pseudo orbitals. The re-
sults of this 33-state calculation are shown by the solid
curve in Fig. 7. We see that this final-state polarization
has a large effect on the cross section. Above 14 eV, the
cross section appears to be in better agreement with ex-
periment and may be within the uncertainty of the most
recent measurements by Schappe et al. [36]. However,
the largest effect is on the resonance structure centered
at about 13 eV. Whether or not this enhancement of the
resonance is real will not be known until high-resolution
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FIG. 7. Electron-impact excitation of Ar to the 3p®4s
3P0'2 levels. Dotted curve, sixteen-state R-matrix calcula-
tion; dashed curve, 18-state R-matrix calculation; solid curve,
33-state R-matrix calculation; solid triangle, measurement
of Mason and Newell [34]; solid circles, measurements of
Chutjian and Cartwright [35]; solid squares, from the mea-
surements of Schappe et al. [36].

measurements in the resonance region can be made.

It should be mentioned that by including these polar-
ization pseudostates in the close-coupling expansion, we
introduce pseudoresonances into the calculation. How-
ever, these are above the positions of the real resonances,
and cause only small variations in the cross section within
the energy range shown in Fig. 7. These were eliminated
in Fig. 7, by smoothing the cross section in the energy
range above the highest possible resonances attached to
real states.

B. Chlorine

Since coupling of the 3p®4s 3P metastable term to the
terms of 3p®3d is found to be important in Ar, we be-
gan our work on Cl by performing a 29-state calculation,
which included all the terms of the 3p5, 3p*4s, 3p4p,
3p*3d, and 3s3p® configurations. The specific terms mak-
ing up the close-coupling expansion for this calculation
are listed in the first part of Table III. This corresponds
to the 16-state calculation for Ar, with one exception:
because of the presence of the 3s3p® configuration in Cl,
a 4d pseudo orbital was generated from a MCHF calcula-
tion on 3s23p*(1D)3d 25° + 3s3p® 25° + 3523p*(1D)4d
28e. The mixing between 3s23p*(1D)3d 2S¢ and 3s3p®
28¢ is very strong, and is not properly represented by a
configuration-interaction calculation with frozen orbitals;
however, by including the 4d pseudo orbital within a
MCHF calculation, one can incorporate the relaxation
in the radial orbital necessary to properly represent this
mixing.

With respect to the ground state, most of the calcu-
lated terms are higher than the experimental energies
[37], with deviations ranging from 0.04 eV to 0.78 eV;
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FIG. 8. Electron-impact excitation of Cl to the 3p*4s 4P5/2
level. Dotted curve, 29-state R-matrix calculation; dashed
curve, 37-state R-matrix calculation; solid curve, 51-state
R-matrix calculation.

however, the great majority of calculated terms differ
from the experimental values by less than 0.5 eV. In the
case of the 3p*(3P)4s*P metastable term, the calculated
energy is 9.01 compared to the experimental value of 8.93

eV [37].

Again, inclusion of partial waves up to L=4 was suf-
ficient to reach convergence in the excitation calculation
for Cl. The 29-state calculation of the cross section for
excitation from the ground state to the 3p*(3P)4s 4Ps/s
metastable level is shown by the dotted curve in Fig. 8.
This cross section was determined by multiplying the
cross section to 3p*(3P)4s *P by 0.5, the fraction of the
statistical weights for this level.

As in the 16-state calculation in Ar, the 29-state cal-
culation in Cl includes a limited amount of polarization;
however, we attempted to incorporate additional polar-
ization effects on the excitation cross section by perform-
ing calculations which include a set of polarized pseu-
dostates within the close-coupling expansions. We be-
gan by adding those pseudostates which are formed from
dipole excitations out of the 3p subshell of the 3p® 2P
ground state. These are listed in the second part of Ta-
ble III. Fortunately, we discovered that the strong mixing
between 3523p*(1D)3d 2S¢ and 3s3p°® 2S¢ could be rep-
resented as well as was done with the 4d pseudostate in
the 29-state calculation by using the 3s23p*(1D)4d 2S¢
polarization pseudostate; this eliminated the necessity of
including an additional set of states with a 5d polariza-
tion pseudo orbital. The results of this 37-state calcula-
tion are shown by the dashed curve in Fig. 8. As can be
seen, this additional polarization has an effect primarily
above 12 eV and reduces the cross section by about 45

TABLE III. The terms used in the R-matrix calculations for Cl (3p® P — 3p*4s *Py,).

(Configuration interaction with 3p®3d® 2P°, 3p®4s® 2P°, and 3p®4p® ?P° is included.)

1. 29-state R-matrix calculation

3p5 2Po

3p4(3p)4p 4Po
3p4(3p)4p 4So
3p*(®P)3d *F*
3p*(®*P)3d ?De°
3p4(1D)4p 2Do
3p*(*D)3d *D*
3p*(*D)4d 25°

3p*(3P)4s *P*
3p4(3p)4p 4Do
3p4(3P)4p ZSo
3p*(®P)3d *P°
3p*(*D)3d 2S¢
3p*(*D)3d ®G*®
3p*(*S)4s 28°

3p*(®P)4s ?P°
3174(3P)4p 2Po
3p*(*D)4s 2D*
3p*(*P)3d *F*°
3p4(1D)4p 2Po
3p*(*D)3d *F*
3p*(*S)3d D

3s3p® 28°

3p4(3P)4p ZDD
3p*(3P)3d *D*
3p*(*P)3d *P°
3p4(1D)4p ZFo
3p*(*D)3d %P
3P4(ls)4p 2Po

The 1s, 2s, 2p, 3s, and 3p orbitals are from a HF calculation for 3p° 2P°.
The 4s orbital was determined from a HF calculation for 3p*(*P)4s *P°.
The 4p orbital was determined from a configuration-average HF calculation for 3p*4p.
The 3d orbital was determined from a configuration-average HF calculation for 3p*3d.

The 4d pseudo orbital was generated from a 3p*(*D)3d 2S° + 3s3p® 25° + 3p*(* D)4dd 2S° MCHF calculation.

2. 37-state R matrix

The first 28 terms above [excluding 3p*(* D)4d 25°] plus the polarization pseudostates:

3p*(*S)5s 25° 3p*(*D)4d 25s° 3p*(®P)bs 2P 3p*(®P)4d *P*
3p*(*D)4d ?P* 3p*(*D)5s 2D* 3p*(®P)4d ?D* 3p*(*S)4d ?D*
3p*(*D)4dd ®D®

The 5s polarization pseudo orbital was determined from Eq. (1) for the 3p*(*D)5s ?D.

The 4d polarization pseudo orbital was determined from Eq. (1) for the 3p*(*P)4d %D.

3. 51-state R matrix

The 37 terms from above plus the additional polarization pseudostates:
3p%(*S)4s(°S)5s *S° 3p®(*S8)4s(3S)5s 15° 3p®(®D)4s(®D)4d *S°
3p*(®P)4s(*P)5s *P° 3p*(?P)4s(*P)4d *P° 3p*(®D)4s(®*D)4d *P°
3p®(*D)4s(®*D)5s *D° 3p%(*8)4s(°S)4d *D° 3p%(*8)4s(3S)4d *D°
3p*(*D)4s(®D)4d *D° 3p*(®P)5p *D°

The 5p polarization pseudo orbital was determined from Eq. (1) for the 3p*(*P)5p *P.

3P4(3P)5p Qso
3p4(3p)5p 4Pa

3p°(®P)4s(®*P)ad *D°
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percent at 18 eV.

Finally, we added those polarization pseudostates that
are formed from dipole excitations out of the 3p and 4s
subshells of 3p*(3P)4s *P. These are listed in the last
section in Table III. The results of this 51-state calcula-
tion are shown by the solid curve in Fig. 8. We see that
final-state target polarization has a very large effect on
the cross section, reducing the peak cross section at ~13.5
by about 70%. As in the case of Ar, the small effect due
to pseudoresonances in the energy range of interest was
eliminated in both the 37-state and the 51-state calcula-
tion by smoothing these cross sections above the highest
possible resonances attached to real states.

V. ELECTRON-IMPACT IONIZATION

Finally, we consider electron-impact ionization of Ar
and Cl. The configuration-resolved ionization method
makes use of LS-term specific angular algebra, which is
obtained from a modified version of the WEIGHTS pro-
gram of Scott and Hibbert [38]. The method may in-
clude multiconfiguration approximations for the target
atom and the resulting ion, with orbitals calculated us-
ing Fischer’s MCHF program [20]. A prior form for the
scattering amplitude is employed in which the initial and
final scattered-electron wave functions are calculated in
a V¥ potential and the ejected-electron wave function is
calculated in a VN~ potential, where N is the number of
bound electrons in the target atom [39,40]. For all initial
and final scattered-electron wave functions, and most of
the ejected-electron wave functions, the distorted-wave
potential is a configuration-average Hartree potential for
the direct interaction and a local semiclassical approxi-
mation for the exchange interaction [41]. For both Ar
and Cl, the important dipole-allowed excitation contri-
butions to the total ionization cross section include both
ground-state and final-state correlations [15,27].

Ground-state correlations are incorporated through
the use of multiconfiguration Hartree-Fock wave func-
tions and the calculation of the additional terms in the
scattering amplitude arising from the nonorthogonality of
bound pseudostates and the continuum. Final-state cor-
relations are included through the use of term-dependent
Hartree-Fock wave functions for the ejected electron.
For the photoionization of atoms, the appropriate term-
dependent Hartree-Fock wave function is determined by
choosing a potential for which all first-order final-state
interactions sum to zero. For closed-shell atoms [42,43],
this procedure produces a potential, which is equivalent
to the potential found from a variation on the energy
of the dipole-allowed continuum state. For open-shell
atoms [44,31], this procedure produces a potential which
is not equivalent, in general, to the potential found from
a variation on the energy. In fact, for almost closed-
shell atoms, like Cl, the appropriate Hartree-Fock poten-
tial, which includes all first-order final-state interactions,
is quite different from the Hartree-Fock potential deter-
mined by energy variation. The appropriate potentials
for photoionization, and for the dipole-allowed excitation
contributions to electron ionization, are characterized by
having farge positive dipole exchange terms.

2273
A. Argon

The electron-impact ionization cross section for the
3p® 1S — 3p® 2P transition of Ar is shown in Fig. 9.
Three distorted-wave calculations are presented. The
first uses configuration-average potentials for all contin-
uum orbitals. The second includes both ground-state and
final-state correlations for the dipole-allowed 3p® 1S —
3p°(2P)kd ' P excitation contribution to the total ioniza-
tion cross section. Ground-state correlations are included
through a 3p® and 3p*3d? multiconfiguration Hartree-
Fock calculation. Final-state correlations are included
by calculating the kd ejected wave in a frozen-core term-
dependent Hartree-Fock potential given by

1
V(*P kd *P) = Vca(core) + 5J3, — ngp

14, 9 4
+EK3p - £K3p ) (4)

where Vca (core) is a configuration-average Hartree-Fock
potential for the core electrons, Jg‘p are direct terms, and
K é\p are exchange terms. The large repulsive exchange
term in Eq. (4) reduces the overlap between the bound 3p
orbital and the kd ejected wave, causing a large reduction
in the ionization cross section. The effects of polarization
are included in the third distorted-wave calculation by
adding the polarization potential of Eq. (3) (with r. =
T3p) to the scattering potential for all continuum orbitals.

The total ionization cross section measurements of
Wetzel et al. [14] are also shown in Fig. 9. The com-
parison between theory and experiment is valid since
the 3s subshell ionization cross section is much smaller
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FIG. 9. Electron-impact ionization cross section for the
3p® 'S — 3p° %P transition in Ar. Dashed curve, dis-
torted-wave calculation with configuration-average contin-
uum orbitals; Solid curve, distorted-wave calculation in-
cluding both ground- and final-state correlations for the
dipole-allowed excitation contribution; Chained curve, dis-
torted-wave calculation including correlations and a polariza-
tion potential. Solid circles, experimental measurements of
Wetzel et al. [14] for the total cross section of Ar.
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than the 3p subshell cross section. The first and sec-
ond distorted-wave calculations compare well with the
previous distorted-wave results of Younger [15] and the
distorted-wave—R-matrix hybrid results of Bartschat and
Burke [16]. The recent coupled-channel-optical calcu-
lations of McCarthy and Zhou [17] are lower than the
distorted-wave calculations and, thus, are in much bet-
ter agreement with experiment.

B. Chlorine

The electron-impact ionization cross sections for the
3p® 2P — 3p*(®P,' D,' S) transitions in Cl are shown

600

400

200

Cross Section(10"°cm’)

in Fig. 10. Three distorted-wave calculations are pre-
sented for each final LS term of the resulting ion. The
first uses configuration-average potentials for all contin-
uum orbitals. The second includes both ground-state and
final-state correlations for the dipole-allowed 3p® 2P —
3p*(3P)kd %(D,P); 3p® 2P — 3p*(!D)kd %*(D,P,S);
and 3p® 2P — 3p*(*S)kd 2D excitation contributions
to the total ionization cross section. Ground-state cor-
relations are included through a 3p® and 3p33d? multi-
configuration Hartree-Fock calculation. Final-state cor-
relations are included by calculating the kd ejected waves
in various frozen-core term-dependent Hartree-Fock po-
tentials [44] given by
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FIG. 10. Electron-impact ionization cross section for the (a) 3p® 2P — 3p* *P, (b) 3p°® 2P — 3p* ' D, and (c) 3p® ?P — 3p* 'S
transitions in Cl. Dashed curve, distorted-wave calculation with configuration-average continuum orbitals; Solid curve, dis-
torted-wave calculation including both ground- and final-state correlations for the dipole-allowed excitation contribution;
Chained curve, distorted-wave calculation including correlations and a polarization potential.
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1
V (*Pkd D) = Vga(core) + 4J3, — ng,,
3 3
35

1
V(3Pkd 2P) = Vca(core) + 4J3, + gjgp

13,
+o K3, —

9 1 9 3
+—K,; — —K. s
1

V(*Dkd ?D) = Vg (core) + 4J3, — -

13, 81 .,
155 ~ 345
V(! Dkd 2P) = Vca(core) + 4J§p — %Jgp
9 3
35 3
2
V(*Dkd 2S) = Vca(core) + 4J5, — -5-J§p

2
Jip

9 1
+ K3, -

4 1 9 3
+15 e — 35K

V(1Skd 2D) = Va(core) + 4J3, — g g2

3p
13, 18 _ 3
+ 1 Kap = 52 Kop - (5)

Again the repulsive exchange terms in Eq. (5) cause a
large reduction in the ionization cross sections. The third
distorted-wave calculation includes the polarization po-
tential of Eq. (3) (with 7. = 3p) in the scattering po-
tential for all the continuum orbitals.

The effect of polarization in both Ar and Cl appears
to be to shift the peak in the ionization cross section
to lower energy. It is interesting to note that this same
effect is also seen in the excitation cross section of Ar,
when the polarization pseudostates are included in the
calculation (see Fig. 7).

VI. CONCLUSIONS

We have presented the results of calculations of elastic
and inelastic scattering from Ar and Cl, with a special
emphasis on the effects of target polarization on the scat-
tering cross sections. In the case of elastic scattering from
Ar, comparisons with measurements and other calcula-
tions indicate that we have been able to achieve reason-
able accuracy by performing R-matrix calculations for
which the close-coupling expansions include those polar-
ization pseudostates formed from dipole excitations out
of the n=3 subshell. Because of the open 3p subshell, a
similar calculation in Cl requires many more pseudostates
in the close-coupling expansion, but should be of compa-
rable accuracy. The polarization potential introduced by
Baylis [25] with the r, ~ T3p is found to yield elastic cross
sections in Ar which are in reasonably good agreement
with the more extensive pseudostate calculations in the
higher-energy region.

Our calculations of excitation to the lowest-lying
metastable states in Ar and Cl are much more difficult
than the elastic-scattering calculations. In addition to

the real spectroscopic states that must be included in the
close-coupling expansion, one must include a significant
number of polarization pseudostates in order to represent
the target polarization of the initial and final states. In
Ar this required a total of 33 states, while in Cl, 51 states
were needed. The effects of target polarization, especially
in the final state, were found to be very large. This is par-
ticularly troublesome, since there are no indications that
these calculations are converged, and many more states
would have to be included for a complete description of
polarization, even in the dipole approximation. In par-
ticular, one should include all pseudostates that can be
reached via dipole excitations out of those spectroscopic
states which couple strongly to either the initial or final
state. However, since a calculation which included such
additional pseudostates would be prohibitively large for
the atoms considered here, we have not been able to in-
vestigate the significance of this added target polariza-
tion.

In our calculations, we solved for the polarization
pseudo orbitals within a single-configuration framework,
and then generated a configuration-interaction basis set
of spectroscopic and pseudostates for use in the close-
coupling calculation. On the other hand, Vo Ky Lan et
al. [30] have generated polarization pseudostates within a
multiconfiguration framework. In general, this should re-
duce the number of explicit pseudostates which must be
included within the close-coupling expansion. As men-
tioned earlier, this was true in the case of elastic scat-
tering from Ar by Bell et al. [8], where only a single
1P pseudostate was required to represent the effects of
polarization, instead of the four ! P states included in
our expansion. However, it is not at all clear that this
multiconfiguration approach to polarization pseudostates
would lead to a significant reduction in the number of re-
quired states for complex open-shell systems, where, in
general, there are a large number of different LSIIT sym-
metries that must be represented by a unique set of radial
spectroscopic and pseudo orbitals.

Thus, the use of polarization pseudostates, which has
been shown to be quite successful for elastic scattering
calculations, does not look promising for representing the
effects of target polarization for electron-impact excita-
tion of complex atoms. The sheer number of such states
which must be included limits the applicability of this
method. In the case of Ar and Cl, the fact that so many
states were required just to represent excitation to the
lowest lying excited states does not indicate that this
method holds much promise for excitation to higher ly-
ing states, for which the number of required pseudostates
would multiply significantly.

The use of a polarization potential to incorporate the
effects of polarization within electron-impact excitation
calculations has been quite successful for species with
one electron above a closed subshell (for example, see
Ref. [24]). However, we tried that approach in the case
of Ar without any success. The difficulty arises from the
fact that a single potential cannot properly represent the
complex variation of the polarizability with atomic state.
Thus, accurate excitation cross section calculations in
complex atoms and low-charge-state ions, where target
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polarization is important, remains a significant problem
in atomic physics. It is clear that different approaches to
the problem are called for.

We have also presented results for the ionization cross
section of Ar and Cl, using a configuration-resolved
distorted-wave method. Ground- and final-state corre-
lations in the dipole-allowed excitation contributions to
the total ionization cross section are shown to be impor-
tant, reducing the cross section by more than a factor of
two at its peak. Polarization, represented here using the
polarization potential by Baylis with r. = 73, shifts the
peaks in the cross sections to lower energies. However, it
is not clear whether this improves agreement with experi-
ment in Ar, and no comparisons are available in Cl. Until
detailed comparisons with experiment are made, the ac-
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curacy obtained by using such potentials for ionization
will be suspect.
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