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We have carried out a series of isolated-resonance and R-matrix close-coupling calculations for the
electron-impact excitation of the 3s? 'S — 3s3p *P transition in the Mg-like ions Ar®*, Ti'°*, Fe'**, and
Se??*. We obtain good agreement between the results of the two theoretical methods for three-state cal-
culations, i.e., for the description of just a single Rydberg series of resonances. However, when two or
more Rydberg series are present we observe large differences, due to interacting resonance effects, over a
wide range of energies for all of the ions examined. For the case of Fe!**, we have continued the pertur-
bative studies of interacting resonances of Griffin et al. [Phys. Rev. Lett. 72, 3491 (1994)] and also find
the predominant effect to be due to direct configuration interaction between the resonant states rather
than being due to their coupling through a common continuum. Our inclusion of these interacting reso-
nance effects removes the major discrepancies between the perturbative and nonperturbative results for
Fe'** reported previously [Badnell et al., Phys. Rev. A 48, R2519 (1993)]. This is of importance for the
study of indirect processes which are strongly radiation damped, for which the perturbative approach is
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widely used and the standard formulation of the close-coupling approximation is not applicable.

PACS number(s): 34.80.Kw

I. INTRODUCTION

Resonant processes frequently dominate low-energy
electron-ion collision cross sections and, via the tail of the
Maxwellian distribution function, strongly affect the level
populations of ions and hence plasma diagnostics over a
wide range of temperatures and densities. The standard
R-matrix approach [1] to atomic collisions has largely su-
perseded the nonresonant distorted-wave method due to
its efficient solution of the close-coupling equations and
its inclusion of resonances; the latter is of more impor-
tance for multiply charged ions, particularly as the non-
resonant cross section scales as Z ~* while the resonant
contribution scales as Z ~ (at least initially). The lack of
explicit coupling to the atomic radiation field in the stan-
dard R-matrix approach, however, means that resonance
widths are determined purely by their autoionizing width
(except near the Rydberg limit where the Gailitis average
can be applied [2]). So for “sufficiently”” highly charged
ions the resonance contribution is grossly overestimated
[3]. This is true both for the electron-electron and
electron-photon scattering channels, in the latter case,
this neglect of the radiative width is sometimes referred
to as the weak-field approximation [4]. For example, ra-
diation damping reduces the excitation-autoionization
contribution to the ionization of Fe!** by 40% and the
dielectronic-capture double-autoionization contribution
by a factor of 2. In Fe®*™ this rises to about a factor of 3,
in Kr¥3* a factor of 6, and Xe’!" a factor of 25, while
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Be-like and B-like ions, etc., show similar reductions.
Also, dielectronic recombination cross sections are re-
duced by radiation damping (in the width) by a factor of
6 and 20 for the 23S and 2 IS metastable states of N°*, a
factor of 5 for 51 =0 transitions in Ar’>*, and a factor of
300 for 8n =1 transitions in Se*>", for example. Conse-
quently, an alternative (perturbative) approach has been
pursued for highly charged (and not so highly charged)
ions, namely the independent-processes and isolated-
resonance approximation using distorted waves (denoted
the IPIRDW approximation). It is straightforward to al-
low for all types of radiation damping transitions within
the IPIRDW approximation [5]. It has long been known
that distorted waves are generally a good approximation
for an electron scattering off of an ion that is several
times ionized [6]. More recently, we have shown that in-
terference effects between the resonant and nonresonant
contributions to electron-impact excitation diminish rap-
idly as the charge state increases [7]; only dipole transi-
tions in near neutral ions retain a strong enough back-
ground to interfere strongly with the resonant contribu-
tion, which is small in this case. In the case of electron-
ion recombination we have shown that the interference
between dielectronic and radiative recombination is al-
most always negligible [8]. Thus we have now begun to
explore the validity of the isolated-resonance approxima-
tion [8,9]. Recently, we carried out a series of isolated-
resonance and R-matrix close-coupling (CCR) calcula-
tions for the electron-impact excitation of the
35218 —3s3p 3P transition in Fe'*t, using the same
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atomic structure, and demonstrated the apparent break-
down of the isolated-resonance approximation [9]. Fur-
thermore, we have begun to investigate the nature of in-
teracting resonances using perturbative interacting reso-
nance theory [10]. In this paper, we present the results of
an isoelectronic study of the apparent breakdown of the
isolated-resonance approximation for the electron-impact
excitation of Mg-like ions and analyze selected resonance
structures in the 3s% 'S —3s3p 3P cross section of Fe'*™".
This sequence is one which we had begun to study in con-
nection with electron energy-loss spectroscopy experi-
ments at Oak Ridge National Laboratory, and consisted
only of R-matrix results for Si>* and Ar®* [11].

The layout of the paper is as follows. In Sec. IT we de-
scribe the theory behind the isolated-resonance, perturba-
tive interacting resonance, and CCR calculations. In Sec.
III we present and discuss our results while in Sec. IV we
draw our conclusions.

II. THEORY

In the independent-processes approximation [5], the
total excitation cross section o  from an initial state i to
a final state f is given by

where oyng(i—f) is the nonresonant background cross
section and ogg(i—f) is the resonant-excitation cross
section. We note that it is possible to allow perturbative-
ly for interference between the resonant and nonresonant
processes. However, in its simplest representation this
interference term vanishes identically when energy aver-
aged [12] and we do not consider it further. In the
isolated-resonance approximation, the resonant-
excitation cross section at an incident energy k7 is given
by

(aghi)’m w;j A(j—DA,(j—f)
k} 9 20, (E—E;*+1iI;}

where the total width ['; is given by

rj=ﬁ2h A, (j—h)+A4,(j—g) . (3)
8

Here, the autoionization rate A, is given by
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with the electrostatic operator V given by
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where the elements of the dimensionless coupling matrix
Q) are given by
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and the radiative rate A, is given by

4,(j—g)=2m|(gIDj}|*, ()
where D is the electric dipole interaction given by
37122
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where P is the dipole moment with polarization €,
N+1
P= r,g . (8)

s=1

Finally, @ J is the statistical weight of the (N +1)-electron
doubly excited state j with energy E;, o; is the statistical
weight of the N-electron initial state i with energy E;, and
I is the ionization potential of the hydrogen atom. The
continuum normalization is taken to be k ~!/2 times a
sine function [13]. In general, the states (i| are
configuration mixed, i.e., {i|=(ilt){(t| where {t|
denotes our initial basis. In LS coupling t=CBSLm
while in intermediate coupling ¢t =CBSLJ7 (see Refs.
[14,15] for further details).

We identify two aspects of the interacting resonance
problem, viz., direct configuration mixing, which is of or-
der V in perturbation theory, and interactions through
common continua, which are of order V2. Direct
configuration mixing is included within the -close-
coupling formalism through interactions between closed
channels. However, in the IPIRDW approximation,
direct configuration mixing is included within the N-
electron target states but is generally neglected between
the (N +1)-electron autoionizing states, excepting paren-
tal mixing or the case of low-lying resonances, e.g., KLL,
MNN, etc. The reason for this is that in principle it
would be necessary to diagonalize a Hamiltonian contain-
ing an entire Rydberg series of states; in practice, a pre-
liminary pass through the resonant states would identify
SL or J states that were close enough in energy to
warrant subsequent interaction. This is in effect the ap-
proach that we take in this paper to evaluate direct
configuration mixing, albeit with pairs of resonances at a
time for one transition in one ion for now.

In addition, resonance interactions through common
continua can be evaluated perturbatively using Feshbach
theory [16]. In this case, the resonant-excitation cross
section is given by

9

f
In the pole approximation,

A= iR

; 5 [A,(k—j)+ A (k—j)], v

where the generalized autoionization coupling rate is
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given by
. 81y
A k—j)=—= SGIvIoClvik) (12)

and the generalized radiative coupling rate is given by

A,(k—j)=273(jID|g){g|Dlk) . (13)

« g
We note that Eq. (9) corresponds to the one that we used
in our study of interacting resonances in dielectronic
recombination [8], except there { f|V|k ) was replaced by
(g|D|k) where g denotes a photon continuum rather
than an electron continuum f. We note that the
isolated-resonance approximation is recovered on setting
Q’jk.=8jk ir? Eq. (9), since Ay =8, Ay in Eq. (10) for
noninteracting resonances.

The solution of the close-coupling equations for
electron-impact excitation at closed-channel energies au-
tomatically generates interacting Feshbach resonances.
We make use of the R-matrix method to solve the close-
coupling equations [1]. Here, the total (N +1)-electron
wave function is expanded, in an inner region that en-
closes the ion, in terms of a finite set of bound-continuum
and bound-bound functions; the latter are included both
to satisfy the orthogonality conditions imposed on the
former and, optionally, to allow for electron-electron
correlation. For the ions considered here, we found that
including configurations beyond those required by ortho-
gonality had a negligible effect on the collision results.
The continuum function is expanded additionally in
terms of a finite set of basis functions that are indepen-
dent of the scattering energys; it is this feature that facili-
tates the solution of the scattering problem at the many
thousands of energies that are required to delineate the
resonance structure. The continuum expansion
coefficients are determined by a diagonalization of the
(N +1)-electron Hamiltonian within the inner region and
by the imposition of suitable boundary conditions. We
make use of the nonrelativistic R-matrix program
developed for the Opacity Project [17]. This version of
the R-matrix program treats the long-range coupling
terms in the outer region perturbatively. However, below
each new excitation threshold the existing numerical ap-
proach breaks down and so the perturbative corrections
are turned off automatically until the new threshold
opens up. Although this is of little importance for total
rate coefficients, it results in a step function in the cross
section at each new threshold. In the Appendix to this
paper, we show how to reformulate the solution in the
outer region so that the perturbative corrections can be
applied at all energies.

The perturbative (IPIRDW and IPDW) calculations of
the resonant-excitation cross section were carried out us-
ing the AUTOSTRUCTURE computer program [15,18]
which Schmidt-orthogonalizes the continuum and Ryd-
berg orbitals to the target and/or core orbitals and
neglects the effects of the 3/3/'3/"configurations on the
remaining collision problem. We found that the
IPIRDW threshold partial collision strengths for the
3s21S—353d 3D and 3s3p 3P—3s3d D transitions
differed by less than 209% from those of the CCR calcula-
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tion, the largest differences arising on the smallest
partial-wave contributions. All of the calculations were
carried out in the LS-coupling scheme. The nonresonant
contribution to the excitation cross section was calculat-
ed by combining the free-free collision algebra of STG2
of the R-matrix codes [17] with nonorthogonal atomic
and continuum distorted-wave radial functions.

We used the same nonrelativistic N-electron atomic
structure in both our perturbative and CCR calculations.
We generated the 13-term configuration interaction tar-
get expansion arising from the 3s2, 3s3p, 3s3d, 3p3d, and
3d? configurations using the multiconfiguration Hartree-
Fock programs of Froese Fischer [19], the orbitals for
which were generated from a single configuration
Hartree-Fock approximation. We then adjusted the re-
sulting term energies to the (2J + 1) weighted average of
the observed energies [20], for both sets of collision calcu-
lations. In the CCR calculations these corrections are
added to the diagonal of the(N + 1)-electron Hamiltonian
before its diagonalization. In the case of the IPIRDW
calculations it makes little difference whether the correc-
tions are made before or after diagonalization of the said
Hamiltonian since virtually all of the configuration mix-
ing takes place within the N-electron core. In the pertur-
bative direct configuration mixing calculations it is im-
portant to adjust the target (and thus core) energies be-
fore diagonalization of the (N + 1)-electron Hamiltonian.

III. RESULTS

We now present the results of a series of IPIRDW and
CCR calculations for the electron-impact excitation of
the 352 'S —3s3p 3P transition in Ar®*, Ti!°*, Fe!**, and
Se??*. Care was taken to ensure that the CCR reso-
nances were sufficiently energy resolved so as to give a
converged result when convoluted with a 0.25-1.0 eV
full width at half maximum (FWHM) Gaussian function
(depending on the ion in question). The IPIRDW reso-
nances were energy-averaged analytically before convolu-
tion and so there is no resolution problem in this approxi-
mation. In Fig. 1 we present our three-state results for
the leading resonances of the 3s3d 3Dnl Rydberg series
present in the 3s2'S—3s3p 3P excitation cross section
for Ar®*. We see that the IPIRDW and CCR results are
in good agreement. Similarly, we present three-state
IPIRDW and CCR results for the leading resonances of
the 3s3d 'Dnl and 3s3p 'Pnl Rydberg series in Figs. 2 and
3, and five-state results showing the leading resonances of
the 3p2 (1S, °P and D )nl series in Fig. 4. Again, we find
good agreement between the IPIRDW and CCR results.
Figure 4 indicates that there is little interaction between
the three Rydberg series attached to the terms of the 3p?
configuration. As expected from our earlier work [7], in-
terference effects between the resonant and nonresonant
contributions are small. However, in Fig. 5 we show the
net result of all of the interacting resonances in a compar-
ison of eight-state (3s2'S, 3s3p 3P, 3s3d 3D, and
3p?1s,3P,'D) IPIRDW and CCR results. The IPIRDW
results are merely a superposition of the results shown in
Figs. 1-4 while the CCR results allow for interaction be-
tween the various series of resonances. We observe
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FIG. 1. Electron-impact excitation cross sections for the FIG. 3. Electron-impact excitation cross sections for the

3521S—3s3p 3P transition in Ar®", convoluted with a 0.25-eV
FWHM Gaussian function. Three-state calculations including
the 3s3d °D term; , IPIRDW results; ----, CCR results;
both this work.

widespread differences over the entire energy range
shown; factors of 2 and 3 differences between the strong-
est resonance features are noted. There is little of interest
to see above 21 eV because the 3s3p 'P channel opens up
then and suppresses resonances in the 3s3p P channel.
We have carried out similar studies of three- and five-
state calculations for the other ions, and the results of a
detailed analysis have already been presented for Fe!*™
[9]. However, it is of interest here only to present the
final eight-state results to illustrate the widespread effects
of interacting resonances. Thus we present our eight-
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FIG. 2. Electron-impact excitation cross sections for the
35218 —3s3p *P transition in Ar®*, convoluted with a 0.25-eV
FWHM Gaussian function. Three-state calculations including
the 3s3d 'D term; , IPIRDW results; ----, CCR results;
both this work.

35218 —3s3p 3P transition in Ar®*, convoluted with a 0.25-eV
FWHM Gaussian function. Three-state calculations including
the 3s3p 'P term; , IPIRDW results; ----, CCR results;
both this work.

state results for Til°", Fe'**, and Se?*™ in Figs. 6-8, re-
spectively; the Fe'*™ results are included as they are to be
the subject of a detailed study below. Typically, we see
factors of 2 or 3 difference between resonance peak
heights. There is no obvious isoelectronic trend, al-
though we note that the Se??™ results (Fig. 8) show the
smallest differences between the IPIRDW and CCR re-
sults. As expected, radiation damping effects are small
for this 6n=0 outer shell excitation (about 5% for
Se? ™).

We now look in more detail at the nature of interacting
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FIG. 4. Electron-impact excitation cross sections for the
3s21S—3s3p 3P transition in Ar®*, convoluted with a 0.25-eV
FWHM Gaussian function. Five-state calculations including
the 3p2'S, °P, and 'D terms; , IPIRDW results; ----, CCR
results; both this work.
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FIG. 5. Electron-impact excitation cross sections for the
3s2'S —3s3p 3P transition in Ar®*, convoluted with a 0.25-eV
FWHM Gaussian function. Eight-state calculations including
the 3s2'S, 3s3p 3P, 3s3d 3D, and 3p?'S, P, and 'D terms;
—, IPIRDW results; ----, CCR results; both this work.

resonance effects, and for the case of Fe!*™ in particular.
We see from Fig. 7 that the largest interacting resonance
effects occur for the structures at about 29 eV, 39 eV and,
to a lesser extent, 42.5 eV. The structure at 39 eV is due
to the resonances 3s3d('D)7f *F° and 3s3d(®D)8p *F°,
i.e., the differences are confined to a single symmetry. In
Fig. 9 we present our four-state IPIRDW and CCR re-
sults for this 2F° symmetry without any convolution of
the cross section; the resonance lying at the higher energy
is the 3s3d('D)7f 2F°. In Fig. 10 we present our pertur-
bative interacting resonance results that allow for direct
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FIG. 6. Electron-impact excitation cross sections for the
3521S—3s3p 3P transition in Ti'°", convoluted with a 0.5-eV
FWHM Gaussian function. Eight-state calculations including
the 3s2'S, 3s3p 3P, 353d D, and 3p?'S, °P, and 'D terms;
, IPIRDW results; ----, CCR results; both this work.
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FIG. 7. Electron-impact excitation cross sections for the
352'S—3s3p °P transition in Fe!**, convoluted with a 0.5-eV
FWHM Gaussian function. Eight-state calculations including
the 3s2'S, 3s3p 3P, 3s3d >D, and 3p?'S, P, and 'D terms;
, IPIRDW results; ----, CCR results; both this work.

configuration mixing between the two resonances con-
cerned, but neglect their Feshbach coupling through the
continuum still, and compare them with the CCR results.
We see a dramatic increase in the cross section through
the higher-energy resonance 3s3d(!D)7f *F°. The two
2F° resonances are in fact highly mixed but we continue
to label them as in the single configuration approxima-
tion. The reason for this increase in the resonant-
excitation cross section becomes apparent when we exam-
ine the autoionization rates in detail. In Table I we com-
pare the autoionization rates contributing to each reso-

Cross section (Mb)

40 50 60 70
Energy (eV)

FIG. 8. Electron-impact excitation cross sections for the
352'S—3s3p 3P transition in Se??*, convoluted with a 1.0-eV
FWHM Gaussian function. Eight-state calculations including
the 3s2'S, 3s3p"3P, 3s3d *D, and 3p?'S, °P, and 'D terms;
, IPIRDW results; ----, CCR results; both this work.
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FIG. 9. The 353d('D)7f *F° and 3s3d (3D )8p 2F° resonances
in the 352'S—3s3p 3P excitation cross section of Fe!**; —
IPIRDW results; ----, CCR results; both this work.

nance, both with and without direct configuration mix-
ing, where we have summed over the continuum electron
angular momenta. We also compare the resulting
resonant-excitation cross section energy-averaged over an
arbitrary bin-width. The resonant-excitation cross sec-
tion is most sensitive to changes in the weaker of the
entrance-channel autoionization rate and exit-channel au-
toionization rate. We see that the weaker autoionization
rate (to the 352 'S continuum) for the 3s3d(*D )8p 2F° res-
onance hardly changes between the mixed and unmixed
results. However, the weaker autoionization rate (to the
3s53p 3P continuum) for the 3s3d(!D)7f *F° resonance is
increased by a factor of 20 due to mixing with the much
stronger rate (to the 3s3p 3P continuum) for the
353d(°D)8p 2F° resonance and this results in a factor of 6
increase in the resonant-excitation cross section through
the 3s3d(1D)7f 2F° resonance. The 3s3d(*D)8p *F° au-
toionization rate (to the 3s3p 3P continuum) is corre-
spondingly reduced by this mixing but this only results in
a small (5%) decrease in the resonant-excitation cross
section through the 3s3d(®D )8p 2F° resonance. Next, we

Energy (eV)

FIG. 10. As Fig. 9, except that direct configuration mixing
between the two resonances is now included in the perturbative
results.

compared our perturbative interacting resonance results
both with and without coupling through the continuum,
both including direct configuration mixing. We found
that there was only a small difference between the two
sets of results, mainly to the shape of the resonances than
to the integrated cross section (the area under the curve).
The resonances need to be physically overlapping before
(destructive) interference through the continuum strongly
affects the integrated cross sections; this point was noted
in our earlier study on dielectronic recombination [8].
The structure at 29 eV is due to resonances of the form
3s3d(°D)71 and 3s3p('P)14l’ and it has been the subject
of a recent preliminary examination by Griffin et al. [10].
The differences between the IPIRDW and CCR results
are due to a number of the LS7 symmetries, predom-
inantly 2F°, 2G, 2H°, and *I. In their study of the 2H°
symmetry, Griffin et al. [10] found that the behavior of
interacting resonances due to direct configuration mixing
and coupling through a common continuum was similar
to that which we have observed for the 2F° at 39 eV.
Furthermore, they also studied direct configuration mix-

TABLE 1. Energy levels, autoionization rates, and energy-averaged resonant-excitation cross sec-
tions AE(ogg) (in MbeV) for the 3s3d(°D)8p%F° and 3s3d('D)7f%F° resonances in the
3521S —3s53p *P transition of Fe!*". The numbers in brackets denote multiplicative powers of ten.

Direct
configuration
mixing Energy (eV) A,(3s*1S+e7) A,(3s3p3P+e™) AE(ogg)
3s3d(®D)8p *F°
No 39.324 1.55 [12] 5.69 [13] 1.33
Yes 39.321 1.49 [12] 4.15 [13] 1.26
3s3d('D)7f *F°
No 39.362 1.11 [13] 1.35 [12] 1.06
Yes 39.392 1.18 [13] 2.15 [13] 6.71




50 INTERACTING RESONANCE EFFECTS ALONG AN ...

ing as a function of resonance separation and found, even
at a separation of several times the mean resonance
width, that direct configuration mixing caused a
significant enhancement of the resonance cross section
[10]. Continuing their study of the resonances at 29 eV,
we find that direct configuration interaction also accounts
for the discrepancies between the IPIRDW and CCR re-
sults for the 2F° and 2G symmetries. However, two pairs
of resonances of the %I symmetry, namely 3s3d(*D)7g
plus 3s3d(*D)7i and 3s3p('P)14h plus 3s3p('P)14k, are
overlapping, and destructive interference due to continu-
um coupling between the two pairs reduces the contribu-
tion from this symmetry by a factor of 3; there is little in-
teraction within each pair. Our perturbative results for
these resonances, both with and without continuum cou-
pling but including direct configuration interaction, are
compared with our four-state CCR results in Fig. 11;
note that the resonances are completely overlapping and
are not distinguishable even when energy resolved by
their natural widths. Despite the sensitivity of the con-
tinuum coupling to the resonance separation, we see that
our perturbative approach and our treatment of energy
corrections gives results in very good agreement with
those of the nonperturbative R-matrix method.

Finally in Fig. 12 we can now compare our eight-state
R-matrix results for the total 35S —3s3p 3P cross sec-
tion in Fe'** with our perturbative results that include
direct configuration mixing (but continuum coupling only
for the case just described) between the resonances lying
at about 29, 39, and 42.5 eV only; the enhancement of the
latter peak is due to mixing between 3s3d D8/ and
3p2 1p10l’, for several SL7 symmetries. We see that we
have now removed the major discrepancies between the
IPIRDW and R-matrix results that we noted previously
[9]. Before tackling the remaining ions, or indeed the
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FIG. 11. The 3s3d(*D)7g plus 353d(>D)7i and 3s3p('P)14h
plus 3s3p('P)14k resonances of the 2I symmetry in the
352'S—3s3p P excitation cross section of Fe!**. , per-
turbative results excluding coupling through the continuum;
----, perturbative results including coupling through the contin-
uum (both include direct configuration mixing). — — —, CCR
results. All this work.
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FIG. 12. Eight-state electron-impact excitation cross sections
for the 3s21S—3s3p 3P transition in Fe'**, convoluted with a
0.5-eV FWHM Gaussian function. ----, CCR results; R
perturbation theory results partially allowing for direct
configuration mixing and continuum coupling (see text for de-
tails); both this work.

small discrepancies that remain for Fe'**, we plan to de-

velop a more automatic and ab initio computational ap-
proach to direct configuration mixing and, where neces-
sary, continuum coupling. This would involve a prelimi-
nary pass through the list of resonant states to identify
those of a given SL#, or J7 in intermediate coupling
[15], that lie sufficiently close in energy to warrant subse-
quent direct configuration interaction and possibly con-
tinuum coupling. Thus far, our studies have only necessi-
tated the interaction of pairs of resonances from different
complexes (but the computer code is set up for an arbi-
trary number). Even with more complex ions it is likely
that only a few states will need to be interacted, i.e., we
do not need to diagonalize the entire Rydberg series and
so the problem should remain tractable.

The interacting resonance effects studied in this paper
are expected to be of less importance for dielectronic
recombination than for electron-impact excitation, and
indeed the many comparisons between theory and experi-
ment do not show widespread differences. First, dielect-
ronic recombination cross sections are inherently insensi-
tive to the autoionization rates and they are most fre-
quently proportional to the radiative rates which are
dominated by core transitions and for which full
configuration mixing is always included. Secondly, direct
configuration mixing can affect resonant excitation either
via the entrance-channel or exit-channel autoionization
rates (as in Table I) while for dielectronic recombination
it must affect the entrance channel to be important; alter-
native autoionization exit channels generally suppress
dielectronic recombination cross sections to such an ex-
tent that there is no significant contribution when they
are present.

Although we have demonstrated the importance of al-
lowing for interacting resonances and identified direct
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configuration mixing as the predominant mechanism
rather than coupling through a common continuum, as
yet, we do not know the accuracy of our description of
them. For example, we have noted the sensitivity of the
interacting resonance effects to the resonance separation.
Although the perturbative and nonperturbative ap-
proaches of adjusting the target energies before diagonali-
zation of the (N +1)-electron Hamiltonian give reso-
nance positions in good agreement with each other, we
do not know their absolute accuracy and hence the un-
certainty in the resulting cross section to this approach.
Also, the results presented here are for the nonrelativistic
LS-coupling problem. Although the term energies were
adjusted to the weighted mean of the observed levels, fu-
ture studies require similar calculations to be carried out
in intermediate coupling using the Breit-Pauli Hamiltoni-
an. This may well change the quantitative nature of the
results but the qualitative effects of interacting reso-
nances will remain. In light of this, it would be highly
desirable to have some experimental results so as to be
able to benchmark theory. We note that the electron
energy-loss spectroscopy experiment at Oak Ridge Na-
tional Laboratory has recently made measurements for
the electron-impact excitation of Ar’" at low energies
[21]. Similar measurements for Ar®* would enable us to
benchmark the nonrelativistic theory.

IV. CONCLUSION

We have presented IPIRDW and CCR results for the
electron-impact excitation of the 3s2'S—3s3p *P transi-
tion in the Mg-like ions Ar®*, Ti'®"  Fe!*t, and Se?**.
We have demonstrated the widespread effect of interact-
ing resonances and identified direct configuration mixing
rather than coupling through the continuum as the
predominant effect. We have demonstrated that the per-
turbative interacting resonance approach within the
IPDW approximation gives very good agreement with
the nonperturbative approach wusing the R-matrix
method. We have noted the sensitivity of the interacting
resonance effects to the resonance separations and hence
(relative) positions. Except for the simplest of systems,
we expect direct configuration interacting resonance
effects to be of importance for all transitions that have
large resonance contributions (i.e., nondipole transitions).
Their effect on total rate coefficients will be of most im-
portance at low temperatures where a few resonances can
dominate the rate coefficient. Less frequently, it will be
necessary to allow for interactions through a common
continuum, e.g., to examine discrepancies between theory
and high-energy resolution experiments, since the reso-
nances need to be physically overlapping before such in-
teractions are significant. Electron-impact excitation
cross sections are more sensitive to interacting resonance
effects than dielectronic recombination cross sections. A
more automatic procedure for including direct
configuration mixing and coupling through the continu-
um is needed in order to treat those cases for which radi-
ation damping is important, since the effect of the radia-
tive operators is not included in the present formulation
of the close-coupling approximation.
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APPENDIX

As noted in Sec. II, the R-matrix method provides a
solution of the close-coupling equations inside the inner
region r <r,. In the outer region (r Zr,), defined to be
the region where the short-range atomic potentials can be
neglected, the close-coupling equations reduce to
differential equations coupled by long-range multipole
potentials. The approach of Seaton and co-workers
[17,22], as implemented in the computer program STGF of
the Opacity Project R-matrix codes [17], is to retain only
the dipole and quadrupole potentials and to treat them as
perturbations. The differential equations to be solved in
the outer region are then just those for the Coulomb
functions y(¢,/;r), viz.,

2
d> 10+ 2

+ =0,
dr? r? r eV

(A1)

where, following Seaton and co-workers [17,22], the z
dependence need not be considered explicitly. Solutions
of Eq. (A1) are required for numerical integration of the
long-range multipole integrals over the range [r,,r,],
where r, is the point at which the asymptotic methods of
Sil, Crees, and Seaton [23] can be used to complete the in-
tegration over the range (r,, o). Closed-channel solu-
tions O(g,l;r), i.e., s=‘—v"2, where v is the effective
quantum number, and 6 (where the overdot denotes the
differential with respect to €) are integrated numerically
from their outer-turning point r,, where their exponential
asymptotic form is known, inwards to the R-matrix
boundary at r,. For €/(/ +1)> —1, the outer-turning
point is given by

ro=—{[1+el(I+1)]"?+1}e7 ", (A2)

o

and so r,~2v* for el(l+1)<<1 and thus r,— o as
e—0". At some energy below every threshold, using a
finite radial mesh, r, exceeds the mesh available
(r, > ro.) and it is not possible to evaluate 6,6,0',0" at r,
to start off the inward numerical integration and hence
obtain solutions for @ and 6 over the range [7,,7,] (since
ry2r,); here the prime denotes the differential with
respect to r. When the solution is unobtainable for one
closed channel, STGF switches off the perturbative solu-
tion completely until that channel becomes open.

For the case of r, (and hence r,) >r,,, we evaluate 6
and 6’ at r, from

6= —cos(mv)s +sin(7v)c (A3)
and

0'= —cos(mv)s'+sin(mv)e' , (A4)
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where s and ¢ are the Coulomb functions s(g,/;7) and
c(g,l;r); we use the definitions and notation of Seaton
and co-workers [17,22] whenever possible. Also, from
Eq. (A3) we have that

3
0= v?['n- sin(7v)s —cos(7v)§ +m cos(mv)c

+sin(mv)é], (AS)

but s and ¢ vary slowly with energy (at r =r,) and so we
set ¢ =0=5 and thus obtain
3 3
0=V7[1rsin(1w)s +1rcos(7rv)c]=ﬂ—;—§ , (A6)
where 6 and & are two linearly independent solutions of

Eq. (A1); see Ref. [22]. Finally, ultilization of the Wron-
skian at r =r,,
00'—0'6=1, (A7)
enables us to complete the evaluation of 6, 9, 0’,9" at
r =r,. This is sufficient to enable us to integrate 6 and
outwards from r, to r_,, and since r,>r_, we do not
encounter any numerical problems due to the exponen-
tially increasing closed-channel solution. We note that
the power-series expansion for the Coulomb functions
(and hence ) cannot be applied at large r due to cancella-
tion error, further necessitating the above approach. Fi-
nally, we then neglect the contribution to the long-range
multipole integrals from r over the range (7,,,,, ), only
for those integrals involving closed channels 8 with
7, > rmax- In all of the cases examined so far, with a suit-
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ably large r,,,, we observe no discontinuity in our cross
sections as we pass from small negative energies through
to small positive energies.

We note that a similar problem can occur in the evalu-
ation of the open-channel long-range integrals for the
case of small positive energies, coupled with large angular
momentum. Here, the inner turning point r; can move
out beyond r,. The Coulomb function s is then unstable
to inwards integration and so must be integrated out-
wards from r,. The worst case is encountered for € =0;
then the inner turning point is given by

r=4+1). (A8)

But from Eq. (A8), we see that we can again encounter
the situation of r, >r_.. (since r, >r;), this time for large
I; when this happens STGF again switches off the pertur-
bative solution in the outer region for all channels. The
situation is not as bad, in principle, as for the closed-
channel case discussed above since we are always dealing
with finite / and hence require a finite r_,,. But in prac-
tice, r ., becomes excessively large for the high [ (e.g.,
1~60) encountered in the solution of the close-coupling
equations using the nonexchange R-matrix code [24].
Our solution is to proceed as in the existing case of
Pmax >72 SO as to obtain a solution over the range
[7s:7max ] and then again to neglect the contribution to
the long-range multipole integrals from r over the range
(7 max» © ), only for the integrals involving the affected
open channel.
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