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Abstract

Lowest—order QED theory using distorted wave
states provides a convenient description for
many electron scattering processes involving
highly charged atomic ions. We apply QED
theory to calculate ionization, excitation,
and dielectronic recombination c¢ross sections
for electron scattering from highly charged
uranium ions. For ionization and dielectronic
recombination we compare theory with recent
heavy ion accelerator measurements. We also
apply lowest-order electroweak gauge theory
using distorted wave states to examine the 2z-
scaling of parity-viclating neutral current
contributions to the KLL Auger decay of atomic
ions.

I. Introduction

Electron scattering processes involving highly
charged ions provide information on the quantum
mechanical dynamics of few-body relativistic
systems under a known force law. Dynamical
information so gleaned may then prove useful in
studies of other relativistic systems, like
quarks inside hadrons(17, for which the force
laws are more complicated. Lowest~order QED
theory(z’ provides a convenient description for
many electron-ion scattering processes. For
near threshold ionization and excitation cross
sections, as well as dielectronic recombination
cross sections, the use of plane wave states in
QED is no longer valid. In this paper we first
review the application of distorted wave theory
to the calculation of the lowest-order Feynman
diagrams for electron-ion scattering(3). We then
apply QED theory using distorted-wave states to
calculate ionization, excitation, and
dielectronic recombination cross sections for
electron scattering from highly charged uranium
ions. For ionization and dielectronic
recombination we compare theory with recent
heavy ion accelerator measurements{4):(3)_  as a
challenge to future heavy ion accelerator and
storage ring experiments, we apply electroweak
gauge theory(G) using distorted wave states to
calculate parity-violating neutral current
contributions te the KLL Auger decay of uranium
ions.

IX. Theory

The electron-impact ionization cross section
may be derived starting with the two Feynman
diagrams shown in Fig. 1. The direct
sc?ttering amplitude (in atomic units) is given
by
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while the exchange scattering amplitude is
given by

1
(2m)4

Se = -if a%x [ a%y | a4q

e—ig(x-y)

Ve (X)¥u¥; (x) 2 Ve TN (¥) ,  (2)

+ ia

where the Y, are 4x4 matrices, q is the 4
momentum transfer, and the Lorentz gauge has
been chosen for the photon propagator. The

Fig. 1 Lowest-order Feynman diagrams for elec-—
tron scattering with a bound state electron
{double line).
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Dirac bispinor wavefunctions, Y(x), are labeled
as to the target bound state and the incident,
final, and ejected scattering states. The 12
dimensional integrals found in Egs. (1) and (2)
may be reduced to 2 dimensional radial integrals
through the introduction of partial wave expan—-
sions for the incident, final, and ejected wave-
functions, as well as the photon propagator.

For an electron ionization process of the form:
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e + (mpfpip) " < (aplpip) "+ 267 (3

where w is the occupation number of the relati-
vistic subconfiguration (nfj), the subconfigura-
tion-average ionization cross section is given
by (3)
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where & 1is the total energy of the electron
minus its rest energy, E = £, + €4, the linear
momentum p = (2¢ + £2/¢2)1/2,7 ¢ is the speed of
light, and the notation [j] = 23j + 1 is used.

The average of the square of the interaction
matrix element found in Eg. (4) is given by(3)
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where the standard notation is used for the 63
symbol and the "natural" phase approximation
has been chosen. The direct multipole function
is given by(3)
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where the set {agajacap} is summed over (+-+-},
(4~-+), {=+4=), (-+-+), and g = -1,+1,+1,-1 for
each of the 4 cases respectively. 1In Egq. (6),
<116 J1x>  and  <agxp VD) [layk,>  are
previocusly defined(3) reduced matrix elements
of tensor operators and ¥ = -2(j~0)(j + 1/2).
After the interchange £ ¢ e, the exchange
multipole function, G{A,L), has the same form
as F(A,L). The 24 retarded static integral is
given by

R (fe;ib) = f: dr j: dr' (2A+1) &3y, (Bro by (Er5)
x (Pe(r)Pi(x) + Qe(r}Qi(xr))

(Pe(x")Pp(r®) + Qa(x")Qpiz™)), ()

and the 2d retarded magnetic integral is given
by
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where 33 (%) and h{(x) are spherical Bessel func-
tions, § = (eg - €3) /¢, Fy,(r) = Pj(x) if a5 = +,
and Fy,(r) = Qi(r) if ay = -. The continuum
radial “orbitals found in the 2d integrals of
Egs. (7) and (8) are solutions to the single-
channel Dirac equation
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where Vn(r) is the nuclear potential, the
distorting potential operator Vpp is constructed
from previocusly calculated Dirac-Fock target
orbitals, and the c¢ontinuum normalization is
(1 + e/2c2)1/2 times a sine function.

For an electron excitation process of the form:
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the subconfiguration-average excitation cross
section is given by
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where the substitutions b=l and e-2 are made in
the evaluation of lVlgvg from Eq. (5).

By the principle of detailed balancing, the
dielectronic capture cross section is related
to the corresponding autoionization rate. For
an autoionization process of the form:
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the subconfiguration—-average Auger rate is
given by(3)

4 (233 +1-wy)wy (wp=1) {(235+1)

Pg 432
Topenviz (13)
Lerdg g
where the substitutions i-2, 2, and e31 are

made in the evaluation of Vi yq from Eg. (5).
For an autoionization process of the form:
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the subconfiguration-average Auger rate is
given by
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where the substitutions 143, b92, and el are
made in the evaluation of 1Vl§vg from Eq. (5).
The dielectronic recombination cross section is
obtained by multiplying the  dielectronic
capture c¢ross section by the branching ratio
for radiative stabilization.

Beyond the subconfiguration-average approxima-
tion, more detailed level specific cross
sections including electron correlation effects
may be calculated using the multiconfiguration
Dirac-Fock (MCDF} approximation for atomic
structures{?) . In the last few years the MCDF
method has been successively applied to the
calculation of dielectronic recombination
cross sections and rate coefficients for many
atomic ions{8-10) In particular Chen has
extended the MCDF method to include the Breit
interaction and has found significant effects on
BAuger transitions of highly charged ions(1l),
The MCDF method has also been applied to the
calculation of electron-impact excitation(12-17)
and ionization{l®) cross sections for atomic
ions.

Electron—~impact scattering cross sections may
also be derived starting with the two Feynman
diagrams of Fig. 1 where the wavy line repre-
sents the exchange of the heavy 2Z, boson
instead of the photon(s). The direct scattering
amplitude is given by
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while the exchange scattering amplitude is
given by
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where cy = -1/2 + 2sin?@, Cp = -1/2, M is the
Z, mass, and 6 is the Weinberg angle. For
energies relevant in atomic collisions (qz <<
Mzcz), the 2, boson propagator can be approxi-
mated as a 4 dimensional delta function. The
12 dimensional integrals found in Egs. (16) and
(17) may be reduced to a 1 dimensional radial
integral through the introduction of partial
wave expansions for the incident, £inal, and
ejected wavefunctions, as well as the delta
function.
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Parity violating neutral current contributions
to electron~ion scattering processes may be
cast in almost the same form for the
subconfiguration—average c¢ross sections as
derived in the preceeding paragraphs for the
electromagnetic interaction. The average of
the square of the interaction matrix element of
BEg. (3) is now given by
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where the 1/M? factor guarantees small cross
sections. The forms of the multipole functions

found in Eg. (5) are also different. The
direct multipole function is now given by
afajaga
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where the set {agajacap} is summed over (+++-),
(=t} ,  (==t=}, (===t), (+=t+), (+===), (~++3),
{(~4+~-~} and g = +1,~-1,+1,-1,41,+1,-1,-1 for each
of the 8 cases respectively. After the inter-
change £ ¢ e, the exchange multipole function,
G(A,L), has the same form as F(A,L). The odd
number of like sign a's in any set for Eqg. (19)
guarantees an opposite parity selection rule
from the even number of like sign a's found in
Bg. (6). The 1ld radial integral is given by
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III. Uranium Ion Results

To illustrate the application of lowest order
QED theory using distorted wave states, we
calculate various cross sections for electron
scattering from highly charged uranium ions
using the expressions found in the previous
section. The near threshold electron-impact
ionization cross section for U9t is shown in
Fig. 2.(3) The subconfiguration-average cross
section calculation (solid curve} is obtained
using the ©; cross section expresiion~ of Eg.
(4) and the direct term only of IViyyg from Eq.
(5). As such the calculation contains contri-
butions from the electrostatic, electromagnetic,
and retardation parts of the full covariant two-~
body interaction. For comparison electrostatic
only results are presented using both relativis-
tic (dashed curve) and non-~relativistic (dotted
curve) wavefunctions. The QED distorted wave
results (solid curve) agree to 10% with the QED
plane-wave calculations of Scofield(1®) (got-
dashed curve) at the higher energies. The plane~
wave results for U9t continue a steady rise with
incident energy to a value of 11.6 barns at 1
GeV. This steady rise in the K shell ionization
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Fig. 2 Electron-impact ionization cross section
for Udl+, solid curve, QED theory; dashed curve,
Dirac theory; dotted curve, Coulomb theory; dot-
dashed curve, plane-wave theory of Scofield
{Ref. 19).

cross section has been confirmed experimentally
using high-energy electron beams on fixed atomic
targets(ZO) In the threshold region at 222 keV,
recent  heavy-ion channeling experiments(4)
report a cross section value of 3.9 barns for
uy9l+*, with an uncertainty in the measurement
giving a range of values from 1.9 barns to 7.8
barns. The QED distorted wave calculation shown
in Fig. 1 gives a value of 1.1 barns at 222 keV.
Recently we have repeated our QED distorted wave
calculations for the electron-impact icnization
of U%* including the djrect, exchange, and
interference terms of |V|,,, from Eq. {5) and
have obtained a value of 1.6 barns at 222 keV.

The near threshold electron-impact excitation
cross section for the 1s42s transition in U931t
is shown in Fig. 3. The subconfiguration—
average cross section calculation (solid curve)
is obtained using the Oy cross section expres-
siog of Eg. (1l1) and the full expression for
IVigyg from Eq. (5). For comparison electro-
static only  results {(dashed curve) are
presented using relativistic wavefunctions. We
thus observe a 60% increase in the threshold
excitation cross section due to the electro-
magnetic and retardation parts of the full
covariant two-body interaction. We have also
calculated excitation cross sections for the
1842B(j = 1/2) and 1s-2p(j = 3/2) transitions
in U%1* and have found increases of 22% and 12%
respectively at threshold.

Auger rates for the decay of the lowest
autoionizing subconfigurations of u8%t  are
given in Table I. The subconfiguration-average
(SCA}) results are obtained using the 3&,
autoionizing rate expressions of Egs. (13} and
(15) and the full expression for lVlavg from
Eq. (5). The multiconfiguration Dirac Fock-
Breit (DFB) results are obtained using methods
previously developed(m). The DFB results are
level specific and based on configuration
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Fig. 3 Electron-impact excitation cross
section for the 1s+2s transition in yol+,
solid curve, QED theory; dashed curve, Dirac
theory.

mixing within the even parity subconfigurations
(18228 + 15282 + 1s2p2 + 1s2P2p + 1s2p?) and
within the odd parity subconfigurations (15228 +
1322p + 1s282p + 1s2s2p). For those
subconfigurations with more than one level, the
DFB result is the (2J+1) weighted average over
the allowed levels. The SCA results are
obtained using exactly the same DFB orbitals,
but of course configuration mixing is ignored.
The difference in the rates found in Table I
between the two methods <can be largely
attributed to correlation effects; for example
the 1s2s2 and 1s2p2 mix strongly due to their
relatively small energy separation.

Table I: UB%* Autoionizing Rates

Subconfig- Energy SCA Rate DFB Rate
uration (Ry) (Hz) {Hz)
1s2s2 4635 5.64(14) 6.26(14)
15232 4644  2.66{14) 2.75(14)
15252 4663  3.85(13) 2.25(12)
1s2s2p 4962 5.12(13) 5.28(13)
1s82B2p 4975  8.47(13) 7.73(13)
1s2p2 5284  4.74(13) 4.47(13)

The dielectronic recombination cross section
for U90+ in the energy range encompassing the
lowest autoionizing levels of U33F is shown in
Fig. 4(10) | gsince the radiative rate for highly
charged ions is wmuch greater than the auto-
ionizing rate for most doubly excited levels,
the dielectronic recombination cross section
approximately equals the dielectronic capture
cross section which in turn is directly
proportional to the various Auger rates. The
dielectronic recombination cross section shown
in Fig. 4 has been folded with the Compton
profile for Hy and thus represents the resonant
transfer excitation (RTEX) c¢ross section for
U%0+ + H, collisions in the rest frame of the
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Fig. 4 RTEX Cross Section for U%0% collisions
with Hp as a function of projectile energy
times m/M. Solid curve: Dirac~Fock method
with Breit interaction corrections; dashed
curve: Dirac-Fock method.

projectile. The multiconfiguration Dirac-Fock
Breit (DFB) results differ substantially from
the multiconfiguration Dirac-Fock (DF) results
only for the lowest energy peak involving the
Auger decay of the 1s2s2, 1s2s2p, and ls2§2
subconfigurations. Recent heavy-ion accelera-
tor measurements(3) have confirmed both the
three peak nature of the U0t cross section and
the enhancement of the lower energy peak due to
the Breit interaction.

Parity conserving and parity violating Auger
rates for the decay of the 292 {j = 0) state of
U%0* are given in Table II. Both subconfigura-
tion-average (SCA) results are obtained using
the A, autoionizing rate expreifion of Eg. (13)
and the full expression for [Vigyg from Eq. (5);

Table II: UY0% Autoionizing Rates

Parity Parity
Subcon~ Energy Conserving Violating
figuration {(keV) SCA Rate SCA Rate
(Hz) (Hz)
252 64.035 1.18(15%) 3.04(-9)

except that the parity violating rate has the
substitutions found in Egs. (18) and (18). The
parity conserving rate involves the even parity
1ses (3 = 0) continuum, while the parity
viclating rate takes place through the odd
parity 1sep (j = 0) continuum. Based on other
similar calculations, the parity violating Auger
rate to £ill a K shell hole in a singly charged
ion scales roughly as 28, where 2z is the atomic
number. Work is in progress to find suitable
candidates for analysis by high resolution
angle dependent Auger spectroscopy.

IV. Summary
In conclusion lowest order QED theory employing

distorted wave states may be applied to a wide
range of electron-ion scattering processes.
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Electromagnetic and retardation corrections to
the electrostatic two-body Coulomb interaction
are found to be quite significant for highly
charged ions. With further development of
electron scattering experiments involving heavy-
ion accelerators and storage rings it may be
possible to not only provide accurate checks on
QED theory for strong f£fields, but on other
gauge theory forces as well.
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