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Abstract II. Theory 

Lowest-order QED theory using distorted wave 
states provides a convenient description for 
many electron scattering processes involving 
highly charged atomic ions. We apply QED 
theory to calculate ionization, excitation, 
and dielectronic recombination cross sections 
for electron scattering from highly charged 
uranium ions. For ionization and dielectronic 
recombination we compare theory with recent 
heavy ion accelerator measurements. We also 
apply lowest-order electroweak gauge theory 
using distorted wave states to examine the Z- 
scaling of parity-violating neutral current 
contributions to the KLL Auger decay of atomic 
ions. 

I. Introduction 

Electron scattering processes involving highly 
charged ions provide information on the quantum 
mechanical dynamics of few-body relativistic 
systems under a known force law. Dynamical 
information so gleaned may then prove useful in 
studies of other relativistic systems, like 
quarks inside hadrons(1), for which the force 
laws are more complicated. Lowest-order QED 
theory (2) provides a convenient description for 
many electron-ion scattering processes. For 
near threshold ionization and excitation cross 
sections, as well as dieleotronic recombination 
cross sections, the use of plane wave states in 
QED is no longer valid. In this paper we first 
review the application of distorted wave theory 
to the calculation of the lowest-order Feynman 
diagrams for electron-ion scattering (3) . We then 
apply QED theory using distorted-wave states to 
calculate ionization, excitation, and 
dielectronic recombination cross sections for 
electron scattering from highly charged uranium 
ions. For ionization and dielectronic 
recombination we compare theory with recent 
heavy ion accelerator measurements(4),(5). As a 
challenge to future heavy ion accelerator and 
storage ring experiments, we apply electroweak 
gauge theory (6) using distorted wave states to 
calculate parity-violating neutral current 
contributions to the KLL Auger decay of uranium 
ions. 

The electron-impact ionization cross section 
may be derived starting with the two Feynman 
diagrams shown in Fig. i. The direct 
scattering amplitude (in atomic units) is given 
by(2) 

Sd = ij d4 J d4y; d% ! 
(2=) 4 

e-iq(x-y) -- 
~f(X)Yu~i(x) ~ + i= ~e(y)yuqJb(y) , (i) 

while the exchange scattering amplitude is 
given by 

Se =-il d4xl d4yi d% i 
(2=) 4 

e-iq (x-y) -- 
~e(X)Tu~i(x) ~ + i~ ~f(y)yu~b(y) , (2) 

where the 7u are 4x4 matrices, q is the 4 
momentum transfer, and the Lorentz gauge has 
been chosen for the photon propagator. The 

Fig. 1 Lowest-order Feynman diagrams for elec- 
tron scattering with a bound state electron 
(double line). 
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Dirac bispinor wavefunctions, ~(x), are labeled 
as to the target bound state and the incident, 
final, and ejected scattering states. The 12 
dimensional integrals found in Eqs. (i) and (2) 
may be reduced to 2 dimensional radial integrals 
through the introduction of partial wave expan- 
sions for the incident, final, and ejected wave- 
functions, as well as the photon propagator. 

For an electron ionization process of the form: 

e- + (nb£bJb)w ~ (nb£bJb)w-I + 2e- , (3) 

where w is the occupation number of the relati- 
vistic subconfiguration (n£j), the subconfigura- 
tion-average ionization cross section is given 
by(3) 

~i = [E/2 d~ e 16w 
~O pSpePfi Z Z Z 

£iJi £fJf £eJe 

[ji, Je,jf]IVl~vg , (4) 

where E is the total energy of the electron 
minus its rest energy, E = Se + Sf, the linear 
momentum p = (2C + ~2/c2) I/2,-c is the speed of 
light, and the notation [j] = 2j + 1 is used. 

The average of the square of the interaction 
matrix element found in Eq° (4) is given by (3) 

IV1~vg = ~ (-I) l+l' [ji, jf, je, Jb ]-I 
~,~',L 

x [ F(~L)F*(k'~LI+G(~rL)G*(~'~L) 

[L] 

+ 2 Z { jf ji L 
L' Je Jb L' - Real F(I,L)G*(k',L') ,] (5) 

where the standard notation is used for the 6j 
symbol and the "natural" phase approximation 
has been chosen. The direct multipole function 
is given by (3) 

F(~,L)=R~(fe;ib)~,L<KflIC(~)II~i><KelIC(~) jI~b> 

+ ~ g(afaiaea b) S~ faiaeab (fe;ib) 

{afaiaeab} 

~(lIL)<afKfI1v(L)J]aiKi><aeKelIV(L))lab~b>, (6) 

where the set {afaiaeab } is summed over (+-+-), 
(+--+), (-++-), (-+-+), and g = -i,+i,+i,-I for 
each of the 4 cases respectively. In Eq. (6), 
<~l]iC(1)]f~2 > and <alKIlIV(L) l[a2K2> are 
previously defined (3) reduced matrix elements 
of tensor operators and ~ = -2(j-£) (j + 1/2). 
After the interchange f e~ e, the exchange 
multipole function, G(k,L), has the same form 
as F(I,L). The 2d retarded static integral is 
given by 

R~(fe;ib) = ~o dr ~o dr'(2A+l)~j~(~r<)h~(~r>) 

x (Pf(r)Pi(r) + Qf(r)Qi(r)) 

(Pe(r')Pb(r') + Qe(r')Qb(r')), (7) 

and the 2d retarded magnetic integral is given 
by 

s~faiaeab(fe;ib)=~odr~o dr' (2~+l)~j~ (~r<)h~l~r>) 

Faf (r) Fai (r) Fee (r') Feb (r') , (8) 

where jk(x) and h~(x) are spherical Bessel func- 
tions, ~ = (Sf - £i)/c, Fai(r) = Pi(r) if a i = +, 
and Fa.(r) = Qi(r) if a i = -. The continuum 
radial lorbitals found in the 2d integrals of 
Eqs. (7) and (8) are solutions to the single- 
channel Dirac equation 

[~r- ~ QEE(r)_ !c [Vn(r)-~+VDF] pEK(r)=0 , (9) 

where Vn(r) is the nuclear potential, the 
distorting potential operator VDF is constructed 
from previously calculated Dirac-Fock target 
orbitals, and the continuum normalization is 
(I + ~/2c2) I/2 times a sine function. 

For an electron excitation process of the form: 

e- + (nl£!jl)Wl(n2~2J2)w2 

(nl£1Jl)W!-l(n2£2J2)w2+l + e- , (10) 

the subconfiguration-average excitation cross 
section is given by 

8~ Wl(2j2 + 1 - w 2) 
~x = p~pf[ Z Z 

£i, Ji £f,Jf 

[Ji, Jf] ]VJ2 (ii) avg ' 

where the substitutions b~l and e~2 are made in 
the evaluation of IV[~vg from Eq. (5). 

By the principle of detailed balancing, the 
dielectronic capture cross section is related 
to the corresponding autoionization rate. For 
an autoionization process of the form: 

(nl~lJl)Wl(n2£2J2)w2 

(nl~lJl)Wl+l(n2£2J2)w2-2 + e- , (12) 

the subconfiguration-average Auger rate is 
given by (3) 

4 (2Jl+l-wl)w2(w2-1) (2j2 +I) 
A a = ~p--[ 

4J2 

[Jf]{V]~vg , 
£f, Jf 

(13) 

where the substitutions iw2, ~2, and e~l are 
made in the evaluation of fVlavg from Eq. (5). 
For an autoionization process of the form: 

(nl~lJl)~l(n2£2J2)w2 (n3~3J3)w3 
(14) 

(nl£1Jl)wl+l(n2£2j2 )w2-1(n3£3j3 )w3-1 + e- , 



the subconfiguration-average Auger rate is 
given by 

4 
Aa= ~ f  (2Jl+l-wl)w 2 w 3 Z [ j f ] lVl~vg , (15) 

~fJf 

where the substitutions i~3, b~2, and e~l are 
made in the evaluation of IVI~vg from Eq. (5). 
The dielectronic recombination cross section is 
obtained by multiplying the dielectronic 
capture cross section by the branching ratio 
for radiative stabilization. 

Beyond the subconfiguration-average approxima- 
tion, more detailed level specific cross 
sections including electron correlation effects 
may be calculated using the multiconfiguration 
Dirac-Fock (MCDF) approximation for atomic 
structures (7) . In the last few years the MCDF 
method has been successively applied to the 
calculation of dielectronic recombination 
cross sections and rate coefficients for many 
atomic ions (8-I0) . In particular Chen has 
extended the MCDF method to include the Breit 
interaction and has found significant effects on 
Auger transitions of highly charged ions (II) . 
The MCDF method has also been applied to the 
calculation of electron-impact excitation (12-17) 
and ionization(18) cross sections for atomic 
ions. 

Electron-impact scattering cross sections may 
also be derived starting with the two Feynman 
diagrams of Fig. 1 where the wavy line repre- 
sents the exchange of the heavy Z O bosch 
instead of the photon (6) . The direct scattering 
amplitude is given by 

4sin20 (2=) 4 

-iq (x-y) 
~f (x) 7u (cV-CAY 5) Vi (x) 

~-M2c 2 

~e(y)TU(cv-CA 75)~b(y) , (16) 

while the exchange scattering amplitude is 
given by 

= f d'x f I 1 
4sin20 (2=) 4 

-iq (x-y) 
~e (x) ~u (CV_CA~5) ~i (x) e 

q2-M2c2 

~f(y)7U(cV-c A y5)~b(y) , (17) 

where c V = -1/2 + 2sin28, C A = -1/2, M is the 
Z O mass, and 8 is the Weinberg angle. For 
energies relevant in atomic collisions (q2 << 
M2c2), the Z O bosch propagator can be approxi- 
mated as a 4 dimensional delta function. The 
12 dimensional integrals found in Eqs. (16) and 
(17) may be reduced to a 1 dimensional radial 
integral through the introduction of partial 
wave expansions for the incident, final, and 
ejected wavefunctions, as well as the delta 
function. 
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Parity violating neutral current contributions 
to electron-ion scattering processes may be 
cast in almost the same form for the 
s ubcon figurat ion-average cross sections as 
derived in the preceeding paragraphs for the 
electromagnetic interaction. The average of 
the square of the interaction matrix element of 
Eq. (5) is now given by 

2 > [ ovo, 
avg PV avg EM ' 

where the I/M 4 factor guarantees small cross 
sections. The forms of the multipole functions 
found in Eq. (5) are also different. The 
direct multipole function is now given by 

F(~,L) = ~ g(afaiaea b) T~ faiaeab (feib) 

{ afaiaeab} 

x (8~,L<afKfl tC (1) [ laiKi><aeKet IC (1) I lab~b > 
(19) 

+ ~ (l~L)<afKfl IV (L) I IaiKi><aeK e] Iv(L) [labKb> ) , 

where the set {afaiaeab} is suntmed over (+++-), 
(++-+), (--+-), (---+), (+-++), (+---), (-+++), 

(-+--) and g = +I,-I,+i,-i,+I,+i,-I,-i for each 
of the 8 cases respectively. After the inter- 
change f e-9 e, the exchange multipole function, 
G(~,L), has the same form as F(k,L). The odd 
number of like sign a's in any set for Eq. (19) 
guarantees an opposite parity selection rule 
from the even number of like sign a's found in 
Eq. (6). The Id radial integral is given by 

afaiaeab dr 
(feib) =~o 7 (2~+ 1) T l 

Faf (r) Fai (r) Fae (r) Fab (r) (20) 

III. Uranium Ion Results 

TO illustrate the application of lowest order 
QED theory using distorted wave states, we 
calculate various cross sections for electron 
scattering from highly charged uranium ions 
using the expressions found in the previous 
section. The near threshold electron-impact 
ionization cross section for U 91+ is shown in 
Fig. 2.(3) The subconfiguration-average cross 
section calculation (solid curve) is obtained 
using the a i cross section expression of Eq. 
(4) and the direct term only of [Vlavg from Eq. 
(5). As such the calculation contains contri- 
butions from the electrostatic, electromagnetic, 
and retardation parts of the full covariant two- 
body interaction. For comparison electrostatic 
only results are presented using both relativis- 
tic (dashed curve) and non-relativistic (dotted 
curve) wavefunctions. The QED distorted wave 
results (solid curve) agree to 10% with the QED 
plane-wave calculations of Scofield (!9) (dot- 
dashed curve) at the higher energies. The plane- 
wave results for U 91+ continue a steady rise with 
incident energy to a value of 11.6 barns at 1 
GeV. This steady rise in the K shell ionization 
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Fig. 2 Electron-impact ionization cross section 
for U 91+. Solid curve, QED theory; dashed curve, 

Dirac theory; dotted curve, Coulomb theory; dot- 
dashed curve, plane-wave theory of Scofield 

(Ref. 19). 

cross section has been confirmed experimentally 

using high-energy electron beams on fixed atomic 
targets (20) . In the threshold region at 222 keV, 
recent heavy-ion channeling experiments (4) 
report a cross section value of 3.9 barns for 
U 91+, with an uncertainty in the measurement 

giving a range of values from 1.9 barns to 7.8 
barns. The QED distorted wave calculation shown 
in Fig. i gives a value of I.I barns at 222 keV. 
Recently we have repeated our QED distorted wave 
calculations for the electron-impact ionization 

91+ • " of U includlng the d~rect, exchange, and 
interference terms of IVi~vg from Eq. (5) and 
have obtained a value of 1.6 barns at 222 keV. 

The near threshold electron-impact excitation 
cross section for the Is@2s transition in U 91+ 
is shown in Fig. 3. The subconfiguration- 
average cross section calculation (solid curve) 
is obtained using the G x cross section expres- 
sio~ of Eq. (II) and the full expression for 

IVl- v from Eq (5) For comparison electro- a g • " 
static only results (dashed curve) are 
presented using relativistic wavefunctions. We 
thus observe a 60% increase in the threshold 
excitation cross section due to the electro- 
magnetic and retardation parts of the full 
covariant two-body interaction. We have also 
calculated excitation cross sections for the 
Is~2p(j = I/2) and i3~2p(j = 3/2) transitions 
in U 91+ and have found increases of 22% and 12% 
respectively at threshold. 

Auger rates for the decay of the lowest 
autoionizing subconfigurations of U 89+ are 
given in Table I- The subconfiguration-average 
(SCA) results are obtained using the A a 
autoionizing rate expressions of Eqs. ~!3) and 
(15) and the full expression for IVl~vg from 
Eq. (5). The multiconfiguration Dirac Fcck- 
Breit (DFB) results are obtained using methods 
previously developed (I0) . The DFB results are 
level specific and based on configuration 
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Fig. 3 Electron-impact excitation cross 
section for the is~2s transition in U 91+ . 
Solid curve, QED theory; dashed curve, Dirac 

theory. 

mixing within the even parity subconfigurations 
(is22s + is2s 2 + is2~ 2 + Is2p2p + Is2p 2) and 

within the odd parity subconfigurations (is22p + 
is22p + is2s2p + is2s2p). For those 

subconfigurations with more than one level, the 
DFB result is the (2J+l) weighted average over 
the allowed levels. The SCA results are 
obtained using exactly the same DFB orbitals, 
but of course configuration mixing is ignored. 
The difference in the rates found in Table I 
between the two methods can be largely 
attributed to correlation effects; for example 
the Is2s 2 and is2p 2 mix strongly due to their 
relatively small energy separation. 

Table I: U 89+ Autoionizing Rates 

Subconfig- Energy SCA Rate DFB Rate 
uration (Ry) (Hz) (Hz) 

Is2s 2 4635 5.64(14) 6.26(14) 
is2s2~ 4644 2.66(14) 2.75(14) 
is2~ 2 4663 3.85(13) 2.25(12) 

Is2s2p 4962 5.12(13) 5.28(13) 
ls2~2p 4975 8.47(13) 7.73(13) 

is2p 2 5294 4.74(13) 4.47(13) 

The dielectronic recombination cross section 
for U 90+ in the energy range encompassing the 

lowest autoionizing levels of U 89+ is shown in 
Fig. 4 (10) . Since the radiative rate for highly 

charged ions is much greater than the auto- 
ionizing rate for most doubly excited levels, 
the dielectronic recombination cross section 
approximately equals the dielectronic capture 
cross section which in turn is directly 
proportional to the various Auger rates. The 
dielectronic recombination cross section shown 
in Fig. 4 has been folded with the Compton 
profile for H 2 and thus represents the resonant 
transfer excitation (RTEX) cross section for 
U 90+ + H 2 collisions in the rest frame of the 
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projectile. The multiconfiguration Dirac-Fock 
Breit (DFB) results differ substantially from 
the multiconfiguration Dirac-Fock (DF) results 
only for the lowest energy peak involving the 
Auger decay of the Is2s 2, Is2s2p, and Is2~ 2 
subconfigurations. Recent heavy-ion accelera- 
tor measurements (5) have confirmed both the 
three peak nature of the U 90+ cross section and 
the enhancement of the lower energy peak due to 
the Breit interaction. 

Parity conserving and parity violating Auger 
rates for the decay of the 2s 2 (j = 0) state of 
U 90+ are given in Table II. Both subconfigura- 
tion-average (SCA) results are obtained using 
the A a autoionizing rate expre~ion of Eq. (13) 
and the full expression for IVI~vg from Eq. (5); 

Table II: U 90+ Autoionizing Kates 

Parity Parity 
Subcon- Energy Conserving Violating 
figuration (keV) SCA Rate SCA Rate 

(Hz) (Hz) 

2s 2 64.035 1.18(15) 3.04(-9) 

except that the parity violating rate has the 
substitutions found in Eqs. (18) and (19). The 
parity conserving rate involves the even parity 
iscs (j = 0) continuum, while the parity 
violating rate takes place through the odd 
parity Is£p (j = 0) continuum. Based on other 
similar calculations, the parity violating Auger 
rate to fill a K shell hole in a singly charged 
ion scales roughly as Z 8, where Z is the atomic 
number. Work is in progress to find suitable 
candidates for analysis by high resolution 
angle dependent Auger spectroscopy. 

IV. Sur~ary 

In conclusion lowest order QED theory employing 
distorted wave states may be applied to a wide 
range of electron-ion scattering processes. 

S 27 

Electromagnetic and retardation corrections to 
the electrostatic two-body Coulomb interaction 
are found to be quite significant for highly 
charged ions. With further development of 
electron scattering experiments involving heavy- 
ion accelerators and storage rings it may be 
possible to not only provide accurate checks on 
QED theory for strong fields, but on other 
gauge theory forces as well. 

Acknowledgments 

This work was supported in part by the Office of 
Fusion Energy, U.S. Department of Energy, under 
Contract No. DE-FG05-86-ER53217 with Auburn 
University and in part by Lawrence Livermore 
National Laboratory under subcontract No. 
8063670 with Auburn University. 

References 

i. F.E. Close, Proceedings of the 1989 
Computational Atomic and Nuclear Physics 
Summer School (World Scientific, NY, 1990). 

2. J.D. Bjorken and S.D. Drell, Relativistic 
Quantum Mechanics (McGraw-Hill, New York, 
1964). 

3. M.S. Pindzola, D.L. Moores, and D.C. 
Griffin, Phys. Rev. A40, 4941 (1989). 

4. N. Claytor, B. Feinberg, H. Gould, C.E. 
Bemis, Jr., J. Gomez del Campo, C.A. 
Ludemann, and C.R. Vane, Phys. Rev. Lett. 
61, 2081 (1988). 

5. W.G. Graham, K.H. Berkner, E.M. Bernstein, 
M.W. Clark, B. Feinberg, M.A. McMahan, T.J. 
Morgan, W. Rathbun, A.S. Schlachter, and 
J.A. Tanis, Phys. Rev. Left, submitted 1990. 

6. C. Quigg, Gauge Theories of the Strong r 
Weak e and Electromagnetic Interactions, 
(Benjamin/Cummings, Reading, Mass., 1983). 

7. I.P. Grant, Advan. Phys. 19, 747 (1970). 
8. S. Dalhed, J. Nilsen, and P. Hagelstein, 

Phys. Rev. A333, 264 (1986). 
9. M.H. Chen, Phys. Rev. A33, 994 

(1986) . 

i0. M.S. Pindzola and N.R. Badnell, Phys. Rev. 
A, submitted 1990. 

Ii. M.H. Chen, Nucl. Instr. Methods in Phys. 
Res. B43, 366 (1989). 

12. G.D. Carse and D.W. Walker, J. Phys. B6, 
2529 (1973). 

13. P.H. Norrington and I.P. Grant, J. Phys. 
B14, L261 (1981) and J. Phys. B20, 4869 
(1987). 

14. P.L. Hagelstein and R.K. Jung, At. Data and 
Nuc. Data Tables 37, 121 (1987). 

15. K.J. Reed, M.H. Chen, and A.U. Hazi, Phys. 
Rev. A36, 3117 (1987). 

16. W.J. Qian, Y.K. Kim, and J.P. Desclaux, 
Phys. Rev. A39, 4509 (1989). 

17. H.L. Zhang, D.H. Sampson, and A.K. Mohanty, 
Phys. Rev. A40, 616 (1989). 

18. D.L. Moores and M.S. Pindzola, Phys. Rev. 
A, submitted 1990. 

19. J.H. Scofield, Phys. Rev. AI8, 963 (1978). 
20. B.L. Moiseiwitsch, Adv. At. and Mol. Phys. 

16, 281 (1980). 


