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The radiation emitted by an ion collisionally excited by an electron beam is anisotropic. We dis-
cuss two schemes, one for use with LS-coupling cross sections and one for intermediate coupling,
whereby theoretical resonant-transfer-excitation cross sections can be modified to take account of
this anisotropy when making comparisons with experimental results deduced from observations of
radiation at a particular beam angle. We have carried out such calculations for a number of ions in-
itially in an S state, viz. F®*, Ca?" (¢ =16-19), and Nb?* (g =29-31). In all cases, neglecting
hyperfine structure, the allowance for anisotropic radiative emission at right angles to the beam axis
was found to result in only a small increase (10—15 %) in the cross section over results that assumed
isotropy. Allowance for hyperfine structure reduced even this anisotropy by 20% for '"F** (I=1)

and by 80% for ®Nb (I =) ions; results for “’Ca (=0) ions remain unchanged.

I. INTRODUCTION

The radiation emitted by an ion collisionally excited by
an anisotropic source will be anisotropic in general. This
has implications for the extraction of information on col-
lision dynamics from an experiment which only observes
the subsequent radiative emission at a particular angle
with respect to the beam axis, as in resonant-transfer-
excitation (RTE) experiments' or in an electron-beam
ion-trap? (EBIT) experiment. Using the impulse approxi-
mation, Brandt® showed that resonant-transfer-excitation
processes in atom-ion collisions could be calculated from
the equivalent free-electron—ion collision process. Con-
sequently, the whole theoretical apparatus for electron-
ion collisions could be applied to RTE. In particular, the
theory of differential electron scattering, which was for-
mulated by Blatt and Biedenharn* and by Percival and
Seaton,’ is the basis for recent calculations on resonant-
transfer excitation followed by Auger emission (RTEA)
by Badnell® and by Bhalla,” who also remarked on the
differential or anisotropic photon emission problem,
which is the subject of this paper.

The theory of polarized electric dipole radiation, which
is simply related to the anisotropy, was first developed by
Oppenheimer.® The first calculations were carried out by
Penney,” who showed that in general it was necessary to
take into account both fine structure and hyperfine struc-
ture. The theory was extended by Percival and Seaton'®
and by Fano and Macek.!! The theory of Percival and
Seaton,!® which was for collisional excitation in the LS-
coupling approximation, only requires a minor
modification for resonant-transfer excitation or dielect-
ronic recombination. The required theory for an
intermediate-coupling approximation can then be
developed in an analogous fashion. At this stage our
theoretical approach is equivalent to that of Inal and Du-
bau,!>13 except that we restrict ourselves to electric di-
pole radiation only. However, we also make allowance
for the hyperfine structure, unlike Inal and Dubau,!?!3
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and show that its effect is important for °F* (I =1)and
PNb (1 =2) ions. Isotopes with zero nuclear spin are of
course unaffected, e.g., “°Ca, *%Ni, and ***°Fe, iron be-
ing the example chosen by Inal and Dubau.!>!3

In Sec. II of this paper we develop the theory required
to calculate resonant-transfer excitation or dielectronic-
recombination cross sections with photon emission at a
particular angle. In Sec. III we discuss its application to
a number of experiments and in Sec. IV we present the
results of our calculations. We then conclude in Sec. V.

II. THEORY

When an initially unpolarized ion is collisionally excit-
ed by an unpolarized electron beam, the intensity I (6) of
the subsequent electric dipole radiative emission at an an-
gle 6 with respect to the beam axis, averaged over all po-
larizations, is given by'°

1(6)=1I[1+BP,(cos0)] , (1)

where the total intensity integrated over all angles is
47l /3 and

P,(cosf)=1(3cos’0—1) . (2)

The asymmetry parameter S is related to the polariza-
tion fraction P at 6=90° by

_2P(90")
B=po0)—3 3)
and
progy= =t 3T 4
“ L IeT (@)

where I and I, are the intensities of emission (at 6=90°)

with linear polarization vector respectively parallel and

perpendicular to the beam axis. Away from 6=90°,
oy : 2

P(O)= P (90°)sin 62 ‘ (5)
1—P(90°)cos“6
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From Egs. (3) and (4) we have

(6)

Percival and Seaton'® have derived expressions for the
intensities I, and I in the LS-coupling approximation
which allow for fine structure and hyperfine structure.
We are interested in similar expressions for use in the
intermediate-coupling approximation which also allow
for hyperfine structure. We present just the final results

in this section and a detailed derivation is given as an ap-
J

2
I

N. R. BADNELL

pendix to this paper.

Assuming that the excited states are populated directly
by collisions (i.e., no cascading) and depopulated by radi-
ative and maybe autoionizing transitions, then the col-
lisional excitation or resonant capture rate coefficient is
directly proportional to the radiation intensity. We con-
sider the intermediate-coupling case first. When the ion
is initially in a 'S, state we can take account of the
hyperfine structure through angular momentum recou-
pling (see the Appendix), viz., for nuclear spin I and
J —J' emission,

2 2

(27 +1) 3 (2F +1)2(2F +1) ] VRPN B IR PP P
’ ’ p— p— U
5 2 Fraouf, & M, My —Mp| My 0 —M; J
I QI+1) 3 o(JM,) 0

where o(JM,) is the collision cross section for populating
the JM, state from a 'S, initial state, () denotes a
Wigner 3j symbol, and { } a Wigner 6j symbol, see e.g.,
Ref. 14. We can also apply this to a %S, , initial state if
we neglect the hyperfine recoupling in the initial state.
The intermediate-coupling expression in the absence of
hyperfine structure is simpler (see the Appendix), viz., for
J —J' emission,

M,

I

where o(JM,) is the collision cross section for populating
the JM; state from a given initial state. We still require
expressions in the LS-coupling approximation for prob-
lems which are too big to consider in intermediate cou-
pling. Following Percival and Seaton,!” when the ion is
initially in an S-state fine structure and hyperfine struc-
ture can be taken into account through angular momen-
tum recoupling,'® and we can still work with LS-coupling
transition rates, viz., for nuclear spin I and SL —SL’

J 1 J emission, see Eq. (9) below.
22I+tD a0 —pm o(JM;) Here o (SLM M, ) is the collision cross section for popu-
I, M, / ’ 8) lating the SLM¢M; state from a given initial S state.
—I: - S o(IM,) ’ Again, the expression is a little simpler in the absence of
M, hyperfine structure, viz., for SL —SL’ emission,
J
2
, , L g Pl g )Pt gs
(2L +1) sz (2J'+1)(2J +1) Mg M, —M,| |M, o —M,| | L' 1 o(SLMM,; )
i: Mg,M; .M, (10)
I > o(SLM¢M,; )

Mg, M,

The above expressions (7)-(10) are applicable to both
above- and below-threshold excitation.

We now specifically consider resonant-transfer excita-
tion followed by x-ray stabilization (RTEX) in the isolat-
ed resonance approximation. This is the analogous pro-
cess in ion-atom collisions to dielectronic recombination
(DR) in electron-ion collisions. The theory applies equal-
ly to RTEX and DR, which only differ through the con-
volution of the energy-averaged DR cross sections. The
quantum numbers for the excited state now refer to the
whole recombining ion. We consider LS coupling first.
If the ion is initially in an S state and the beam axis is
coincident with the z axis then M; =0, M; =M, and the
asymmetry parameter f3 is purely algebraic. The same is
true for a 'S, initial state in intermediate coupling since
o(J$)=0(J —1). When the ion is initially in a 2S,,,

state we have M;=0,%1 and we can test out the sensi-
tivity of S to the capture cross sections by varying the ra-
tio o(J1) to 0(JO).

We end this section by recalling that Eq. (1) allows for
the anisotropy of emission averaged over the polariza-
tion, which is linear, since we have cylindrical symmetry.
We may obtain the anisotropy for a particular linear po-
larization by again considering the classical source of
Percival and Seaton.!” This results in an additional term
for the right-hand side of (1) of the form

—%TB sin%6 cos2¢ , (11)
where ¢ is the angle between the plane of the experiment,
as defined by the incident electron beam and the direction
of emission, and the desired linear polarization vector.
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Thus, I and I, are given by the modified form of (1) with
¢=0" and ¢ =90°, respectively (6=90°, still).

III. APPLICATION TO EXPERIMENT

The intensity of induced light emission in a collision
experiment is directly proportional to the collision cross
section. In RTEX, for an ion in an initial state i, recom-
bining into an intermediate state j and radiating to a final
state k, we have

4 4O5L33K)
T4q

Using the impulse approximation,’ the integrated partial
RTEX cross section o,(i;j;k) may be written in terms of
energy-averaged DR cross sections G 4(i;j;k); thus

AE, MIH 12

=0,(i;j;k)[ 14+ —k)P,y(cosd)] . (12)

o, (i;7;kK)=J(Q)T4(i;j;k)— (13)

J(Q) is the Compton profile of the target gas with Q
given by
172

MI
H , (14)

E

Em

E.+E —
M

=5, 21,,

E is the projectile-ion energy in the laboratory frame, E.
is the j —i Auger energy, and E, is the binding energy of
the target electron, both in the rest frame of the projec-
tile. M is the ionic mass, m is the electron mass, and Iy
is the ionization potential energy of hydrogen. The
energy-averaged DR cross section is given by

(2maoly)’ o(j)
EAE. 2w(i)
A(j—k)Y A, (j—>i,E])
]

o4lizj k)=

X , (15
> (4,(j—->h)+3 A, (j—>hE.]D (15
h !

where AE, is the energy bin width, o(j) is the statistical
weight of the (N +1)-electron doubly excited state, w(i)
is the statistical weight of the N-electron initial state, and
(2may)?1y=2.67411X 10732 cm?sec, where a, and 7,
denote, respectively, the Bohr radius and time. A4, and
A, denote autoionization rates and radiative rates, re-
spectively. The total RTEX cross section is obtained by
summing Eq. (12) over all possible states j and over all
final states k that are stable against autoionization.

The left-hand side of Eq. (12) is the form of the quanti-
ty determined by an RTEX experiment' and, in principle,
an EBIT experiment, although in this case the Compton
profile of Egs. (13) and (14) is replaced by the experimen-
tal electron-ion velocity distribution. However, the first
EBIT experiments, both excitation!> of Ba** and DR
(Ref. 2) of Ni?®* | measured in effect the collision-induced
radiation relative to radiative recombination (RR). The
anisotropy of dipole RR is again of the form of Eq. (1)
and this accounts for most, if not all, of the anisotropy in
the collision-induced radiation.>!> Equation (12) assumes
that the Si (Li) detector used in RTEX experiments is not
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polarization sensitive. An example where this is not true
is for the Ge crystal spectrometer used in the EBIT mea-
surement'® of relative excitation cross sections for Fe**.
However, as we saw with the example in Eq. (11), this
does not require the calculation of any new collision
quantities.

Finally, we note that if the primary interest of the ex-
periment is the determination of the collision quantity o
rather than radiative anisotropy, then observation at the
“magic angle” of #=cos ™~ 'V'1/3 or a measurement of the
polarization fraction at =90° obviates the need for a
theoretical calculation of 3.

IV. RESULTS

We now apply the theory of Sec. II to our previously
calculated RTEX cross sections for F°®', Ca?*
(g =16-19), and Nb?" (g =29-31) ions (Refs. 17, 18,
and 19, respectively) to compensate for the fact that the
experimental observations (Refs. 17, 20, and 1, respec-
tively) were made at 6=90° to the beam axis. Integrated
cross sections have also been computed for a number of
these ions by Hahn and co-workers.?"??

We first consider K-shell transitions in F®*. We use
Eq. (10) with our LS-coupling results!’ to take account of
fine-structure effects on the polarization, our intermediate
coupling results!” differing by less than 2% from LS cou-
pling. At 6=90° the peak RTEX cross section given by
Eq. (12) is increased by 15% over the integrated cross
section. Allowance for the hyperfine structure of '"F*
(I =1), Eq. (9), reduces this anisotropy by 20%, i.e., to a
12% increase.

Next we consider K-shell transitions in Ca?*
(g =16-19). It is now necessary to take account of fine
structure in the integrated RTEX cross section.'®23
Thus, we make use of Eq. (8), there being no hyperfine
structure for “Ca ions. At 8=90°, both our Ca'®" and
Ca'®* results'® are increased by about 15%, uniformly
with energy. For Ca'’* and Ca'®* we must additionally
consider the relative populations of the M =0 and *1
magnetic sublevels. Assuming that the M =0 population
is much larger than M ==+1, we obtain a uniform 10%
increase in the cross section'® for Ca!’™; this falls to
about 7% when o(JM =0)=0(JM ==1). The effect on
Ca" is larger and nonuniform with energy. For only
M =0 populated, the KLL peak of Ca'®* is increased by
18% and the KLn (n > L) by 12%. This falls to 9% and
6% when o(JM =0)=0(JM ==1). Even though there
is no hyperfine structure to reduce the anisotropy for
“0Ca ions, the observed effect may still be substantially re-
duced by the presence of any external electric fields in the
interaction region, which will then redistribute the popu-
lation of the magnetic sublevels of the autoionizing states.
We have already'® compared our integrated RTEX cross
sections for Ca?* with the experimental results of Tanis
et al.,”® which contain relative uncertainties of +10%
and an estimated absolute uncertainty of £30%. The
maximum calculated anisotropy for Ca?* (g =16-18) is
too small ( <15%) and uniform with energy to deduce
anything from comparison with experiment, while the
Ca'®" experiment was dominated by a large background
signal.?°
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We now turn to L-shell transitions in Nb?* (g
=29-31) ions. The RTEX cross sections for Nb*** and
Nb*™* were only calculated'® in LS coupling. Using Eq.
(10) to take account of fine structure only, the RTEX
cross section at 6=90° is increased by 12-14 % over the
integrated value. This is reduced substantially, by 80%,
to less than 3% on taking into account the hyperfine
structure in **Nb (I =2) ions via Eq. (9). In fact, the
same results are obtained with our intermediate-coupling
cross sections for Nb>' ™ on using Egs. (8) and (7). Again,
this anisotropy is too small to show up in comparisons
with the experimental results of Bernstein et al.!

V. CONCLUSION

We have shown how to modify both LS coupling and
intermediate-coupling integrated RTEX cross sections to
allow for anisotropic radiative emission, including the
effect of hyperfine structure. We found that, for ions ini-
tially in an S state, the allowance for the anisotropy of ra-
diation emitted at right angles to the beam axis results in
no more than a 15% increase, in general. Even this can
be substantially reduced by hyperfine structure.
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APPENDIX

Here we give details of the derivation of the
intermediate-coupling intensity ratios presented in Sec.
I1, allowing for hyperfine structure. We equate the col-
lisional rate of population of the state JIFM from an ini-
tial state i with the rate of depopulation due to radiative
and maybe autoionizing transitions; thus

NeNiUI-U"(JIFMF)
=N(JIFMy) 3, A(JIFMp—J'IF'Mg) ,
.
(A1)

where N,, N;, and N (JIFM[) are the relevant population
densities; v,0;(JIFMy) is then the collisional rate
coefficient i —JIFM;. From Edmonds, ' Eq. (3.5.6) we
have

> AUIFMp—J'IF'Mp)= A(JIF) , (A2)

g

[

F,
M

-

i.e., the total rate of depopulation of JIFM is indepen-
dent of M.
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The rate of JIF —J'IF' emission of photons with elec-
tric dipole vector parallel to the z axis is given by!014

N,N,K,(JIF—J'IF")
FF1 F )

= 3 NUIFMpQF+D |y o _pp

Mg M.

X A,(JIF—J'IF') (A3)

which defines the rate coefficient K, for this process. The
rate of JIF —J'IF’ emission of all photons is given by'%!*

v; A, (JIF —J'IF")

K.(JIF—J'IF")= (2F +1)
ey =S
and

K JIF — g )= 2 A I IE =TT (JIFM )

MF' O —'MF
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N,N,K(JIF—J'IF")
FF1 F |
= 3 NUIFMpQF+D) [y 0 ap
Mo M.
u
X A (JIF —J'IF")
= N(JIFM;) A,(JIF —>J'IF") (A4)

Mg

which defines the rate coefficient K for this process. Sub-
stituting for the population N (JIFMg) from (Al) into
(A3) and (A4) we have

2

’

(AS5)

(A6)

The intensities of emission /| and T are directly proportional'® to the rate coefficients K, and K. Thus the anisotropy
and polarization parameters may be evaluated from (AS5) and (A6) for JIF —J'IF' emission. We are interested in J —J’
emission for a given nuclear spin I. We thus make use of'®!*

A (JIF—J'IF')=(2J +1)(2F'+1) ;, J 1] A= (A7)
and, for an ion initially in an i = 1So state,
i Jg 1 F |
U'(JIFMF):mM§M1(2F+I) M, M, —M, o,(JM;) (A8)
to sum over F and F’ in (A3) and (A4). We then obtain for K,
2
K(J—»J’)=ME(2J+1)(2F+1)2(2F’+1) , F !
g AU +1) g% FJ 1
g 1 F J[F 1 F )
XMJ,MI,MF M, M, —My| |M; 0 —M, o,(UM,;), (A9)
and for K,
K(J—»J')=M201(JMJ) (A10)

A0 i

the ratio of which gives equation (7) as required. When there is no hyperfine structure present the intensity ratios may
be obtained from (AS) and (A6) on dropping the JI labels and then replacing F with J, in agreement with Eq. (8).
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