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Abstract. A fast reliable method is described for the calculation of the total di-electronic 
recombination rate coefficient q J i ;  tot) of a ground-state He-like ion i. The equivalent- 
electron frozen-core approximation of Badnell is used to describe the three-electron 
problem. Electron exchange in the radial function of the spectator electron is allowed for 
by using the CEDW radial equations of Badnell. A very accurate result for the total 
di-electronic recombination rate coefficient for a highly charged ion can be obtained from 
a single-configuration LS-coupling calculation if A,<< A, and A,<< A,, where U:  A, +A,, 
since this implies that ad( i ;  tot) remains almost unchanged under the unitary transformation 
U to configuration mixing and intermediate coupling. 

For Fez4+, di-electronic recombination via intermediate states of the form lsn,l,nl has 
been calculated directly for 2 s  n c s  n s 5 and V l c ,  1. Tables of a small set of reuslts that 
depend only on n, and n are presented. The contribution from higher states ( n  > 5 , 2  s n, s 
5) is estimated by downward extrapolation of the excitation partial collision strengths of 
Badnell and also by upward extrapolation using the f 3  asymptotic dependence of A,. 
The results obtained for n, = 2 with 2 s  n s 4 are in excellent agreement (5% and better) 
with those derived from the configuration-mixing intermediate-coupling satellite intensities 
of Bely-Dubau et al. It is shown that the estimate of Bely-Dubau et al, which is only for 
satellites to the n , = 2  resonance line, forms only approximately 75% of the total di- 
electronic recombination rate coefficient and not 90% as they claimed. Results are presented 
for the total di-electronic recombination rate coefficient of the ground-state Fez4+ ion; the 
results of the general formula of Burgess are approximately 30% higher. 

1. Introduction 

The process of resonant capture 

followed by radiative stabilisation 

di-electronic recombination (see Massey and Bates 1942-3), was invoked by Burgess 
(1964) to help resolve the discrepancy between the temperatures of the solar corona 
as deduced from observed linewidths and from ionisation balance calculations (see 
Burgess and Seaton 1964). The dominant contribution to the above process comes 
from large values of nl for the coronal ions used in those calculations (see Burgess 
1965a, 1966), allowing the simple technique of extrapolation of excitation partial 
collision strengths to be used in the calculation of the di-electronic recombination rate 
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coefficient a d (  i ;  tot). This approach can be unreliable when ad( i; tot) is dominated 
by capture to low n states, for example, in the case of He-like and H-like ions (see 0 2.1). 

The n = 2 Li-like lines (1.2 with k = ls2 and j = lsn,l,) were first observed as satellites 
to the He-like resonance line by EdlCn and TyrCn (1939). Later observations in 
laboratory and astrophysical plasmas stimulated their classification (by Gabriel and 
Jordan 1969) and their theoretical description (see Gabriel and Paget 1972, Gabriel 
1972, Bhalla et a1 1975). The use of satellite-to-resonance intensity ratios as a plasma 
diagnostic (see Gabriel and Jordan 1972) has led to much work being done on the 
calculation of He-like satellite intensities (see Dubau and VolontC (1980) for a general 
review). 

The total di-electronic recombination rate, just being equal to the sum of all the 
satellite intensities of all the resonance lines, provides (in theory) another approach 
to the calculation of ad(!;  tot). Bely-Dubau et a1 (1979a, b) have calculated directly 
the intensities of the n = 2,3 and 4 satellites to the n, = 2 resonance line for Fez4+ with 
configuration mixing and intermediate coupling, and have extrapolated these results 
upwards to estimate the contribution from higher satellites. Similar satellite intensities 
have been calculated for Ca"+ and Tizo+ by Bely-Dubau et a1 (1982a, b) and for Mg'O+ 
by Steenman-Clark et a1 (1980). As 2 decreases a larger number of levels start to 
contribute to a d (  i; tot) making reliable calculations more difficult. However, Bely- 
Dubau et a1 (1981) have calculated the intensity of satellites to the n, = 2 resonance 
line of 06+ for n = 2 to 5 and provide an estimate for n = 6. 

A similar approach can be used to provide an experimental estimate of a d (  i; tot), 
namely by summing over the observed satellite-to-resonance intensity ratios and multi- 
plying by the excitation rate coefficient for the resonance transition. Observations have 
been made (for ne= 2 and n = 2 and 3 only) for Ca18+ and Ti2'+ by Chichkov et a1 
(1981), for Fez4+ by Bitter et a1 (1979, 1981, see also Bely-Dubau et a1 1983) and for 
Mgl0+ to K"+ by Boiko et a1 (1978). 

The main interest in satellite intensities has been as a plasma diagnostic and 
consequently great accuracy is required of each individual satellite which is not 
necessarily relevant to the calculation of the total di-electronic recombination rate 
coefficient. Estimates of the di-electronic recombination rate coefficient from satellite 
intensities have only included the contribution from the n, = 2 resonance line, which 
is the dominant contribution (about 75% of the total). However, in this paper we also 
investigate the contribution from n,> 2 resonance lines. 

We note that Nasser and Hahn (1983) have calculated di-electronic recombination 
rates for 06+, Fez4+ and Mo4'+ using an angular-momentum-averaged scheme. 
This simplified procedure is used to calculate the contribution from all possible 
intermediate states, from which a dominant subset is then selected and recalculated 
in single-configuration LS coupling. Their final result is obtained after scaling the 
LS-coupling results so as to take account of the states not included in the LS-coupling 
subset. 

We now draw together the threads of a recent series of papers to provide a fast 
reliable method for the calculation of total di-electronic recombination rate coefficients 
for He-like ions. We use the equivalent-electron frozen-core approximation of Badnell 
(1984, hereafter referred to as 111) to describe the three-electron problem. We allow 
for electron exchange in the radial function of the nl spectator electron by using the 
CEDW approximations of Badnell (1983a, b, hereafter referred to as I and I1 respec- 
tively). We calculate a d (  1s'; lsn,l,nl) directly for 2 S n , S  n S 5 and Vl,, 1 as described 
in 0 2. The contribution from higher satellites ( n  > 5,2 n, 6 5) is estimated in two 
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ways: firstly by extrapolation downwards from the continuum of the excitation partial 
collision strengths of Badnell (1985, hereafter referred to as IV) and secondly by 
upward extrapolation using the asymptotic n-3 dependence of A,. In 8 3 we compare 
our results for Fe24t with those obtained from the general formula (GF) of Burgess 
(1965b) and, where possible, with the experimental and theoretical results that were 
obtained by other workers by summing satellite intensities. 

2. Theory 

The theory of di-electronic recombination and the calculation of di-electronic recombi- 
nation rates have been reviewed by Seaton and Storey (1976). Since then Bell and 
Seaton (1985) have developed an ab initio theory for di-electronic recombination 
making use of quantum defect theory (see Seaton 1983), and the generalised radiation- 
damping theory of Davies and Seaton (1969) to allow for overlapping resonances and 
their interaction with the radiation field. However, they find that for plasma conditions 
their results for total di-electronic recombination rates differ little from those obtained 
using the intuitive approach of Burgess (1964, 1966). 

2.1. The di-electronic recombination rate coeflcient 

Following Burgess (1965a, 1966) and in his notation, using detailed balance arguments 
and the Saha equation for thermodymamic equilibrium, the di-electronic recombination 
rate coefficient for a given initial state i and an intermediate state ( j ,  nl) is given by 

X- w(jy n l )  b ( j ,  nl) exp(-E/k,T) 
2w( i )  

where E is the energy (in Rydbergs) of the continuum electron, which is fixed by the 
position of the resonances, and 

Z I ,  A,( j ,  nl + i, El’) 
Zk [ A , ( j ,  nl+ k, nl) + A , ( j (  nclc), nl+ k, nclc) + 2,. A,( j ,  nl+ k, El’)] b ( j ,  nl) = (2.2) 

= 4.1414 x cm’. 

We note that we have allowed for the possibility of the spectator electron radiating in 
(2.1) and (2.2). The total di-electronic recombination rate coefficient for a given initial 
state i is given by 

ad( i ;  tot) = C ad( i ;  j ,  nl) .  
j,nl 

(2.3) 

The approach of Burgess (1964, 1965b) to the calculation of ad( i ;  j ,  nl) is to evaluate 
b ( j ,  nl) in the Coulomb-Bethe approximation and then to multiply the A, by a 
correction factor, this factor being the ratio of the best available excitation partial 
collision strengths (eg CEDWZ or C E D W ~ )  to those of the Coulomb-Bethe approximation, 
extrapolated from just above to below threshold. ad( i ;  j ,  nl) is then evaluated from 
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(2 .1)  with A,( j (  ncZc), nl+ k, ncZc) = 0 and A,( j ,  nZ+ k, nl)  = A,( j + k), using the best 
available value for A,( j + k). We introduce additionally a correction factor for A,( j + k )  
in b ( j ,  nZ), this factor being the ratio of the A,G+ k )  used in ( 2 . 1 )  to that of the 
Coulomb-Bethe approximation. 

This approach works well in general for An, = 0 core transitions since the dominant 
contribution to E,,, b ( j ,  n l )  comes from large values of n (see, for example, Burgess 
1965a, 1966 figure 1 )  where A, >> A, and so a d  is relatively insensitive to errors in A,. 
However, for He-like ions ( A n C S  1 )  I;,,l b ( j ,  n l )  is dominated by capture to low n states 
(see figure 2 of Burgess and Tworkowski (1976)  which is for the similar case of H-like 
ions) and exchange effects can be expected to be important here. In this case A, scales 
as Z4 and A, is independent of 2, to first order, and so for Z large enough A,<< A,Vn 
and ad is sensitive to errors in A,. In particular, the operation of the Pauli exclusion 
principle means that the extrapolation method is unreliable for n, = n. Thus we solve 
directly for the n, = n (and higher) levels as described in the following sections. 

In (2 .1)  and (2 .2)  n +  1 radiative transitions dominate X k A , ( j +  k )  due to their 
large energy difference and so setting k = i can be expected to have a negligible effect 
on ad( i ;  tot). In (2 .2)  ZkAa( j + k )  contains rates for transitions back into the continuum 
of the ground configuration ( k  = i )  as well as into the continuum of excited configur- 
ations (k # i ) .  The Anc= 0 core transitions A,(lsn, l ,nl+ lsn,Z’,El’) can be expected 
to dominate the An, # 0 transitions A,( lsn,Z,nl+ ls2EZ’) and thus suppress di-electronic 
recombination via Anc # 0 core transitions. Thus we impose an upper limit no on the 
sum over n in (2 .3)  determined by the lowest value of n for which the Anc= 0 Auger 
transition is energetically possible. However, for a highly charged ion any error due 
to this cut-off has little effect on ad(i;  tot); for Fez4+, less than 1% of ad( i ;  tot) could 
come from n >  no ( n o =  15 using A E ( 2 l P - 2 l S )  of Fuhr et al 1981). A An,#O core 
transition A,( lsn,l,nl+ lsn61hEl’) into the continuum of an excited configuration is 
energetically possible for a much lower vaue of n, in fact V n  > n, for n, = 3 and 4 for 
Fe24+. However, XkA,( j + k) << A,( j + i ) V n  > n, still and so negligible error will arise 
on setting k = i, particularly as for Fez4+ at most 5% of ad(i;  tot) is affected by this 
process. In other words, for a highly charged ion, after a An, # 0 radiationless capture 
has taken place the system radiatively stabilises before it has time to auto-ionise (via 
An, # 0) either back into the original continuum or into a new one. 

We conclude that for a highly charged He-like ion it is a good approximation to 
consider only k = i in the evaluation of ad( i ;  tot). 

2.2. Autoionisation transition rates 

The autoionisation transition probability rate A, is given in first-order perturbation 
theory by (see, for example, Cowan 1981) 

where w (  t )  = w (  t ’ ) ,  I , / h  = 2.06707 x 1OI6  s-’ and t = CSLp, where C denotes a 
configuration and p the parity-which is conserved. The Hamiltonian H is given by 
equation ( 2 . 1 )  of I11 and the normalisation of the continuum radial function is given 
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by lom FklFk,f d r  = d( k2 - k"). 

ls2('S)kl'2L' e Isn,lc("L,)nl 'L' 
For a He-like ion plus electron we consider (for nl # nclc) 

where k2 = E {the energy of the continuum electron) and w = 2sc+ 1 denotes the spin 
multiplicity of the parent. Using the equivalent-electron frozen-core approximation 
and the three-electron wavefunction of 111, we obtain for (tlHIt') 
( lsn,lc( "L,) nl 'L' I H I  IS'( 'S)kl '  'L ' )  

r 
- w N - 1 / 2  - 1 b whc(Ol', lC1; l')R'c(ls, kl'; nclc, nl)+ hwgf(Ol', lcl; 1') 

where the Slater integral R A  is given by 

R A ( l s ,  kl'; nclc, nl) = YA(pls, pncf)Fkl'Fn/ dr. lom 
The normalisation coefficient "N is given by 

" N =  l-'(-l)"cS 2 (2.9) 

and 

b 1 -  -21/2 h 1 -  - -2-1/2 b3 = 0 h3 = (3/2)'". (2.10) 

We note that the notation used here suppresses the explicit dependence of F on P. P 
satisfies equation (2.15) of I11 which results from a Hartree frozen-core approximation. 
F satisfies one of the CEDW radial equations of I or 111. The C E D W ~  radial equation 
includes the lowest multipole exchange potential exactly and is thus the same as the 
equation obtained in an LS-determined Hartree-Fock frozen-core approximation when 
the multipole expansion contains a single term. 

For the case of equivalent electrons (nl = nclc) we consider 

Is2('S)kl' 'L' e ls(2S)nP(wL')2L' 

where "L' = 'S, 'D, . . . and we note that "L' = 3P, 3F, . . . is forbidden by parity conserva- 
tion. In this case of equivalent electrons we can no longer freeze one orbital and vary 
the other (i.e. equations (2.15) and ( A l )  of I11 are no longer valid) but must vary both, 
as discussed in I, to obtain (in the notation of 111) the following LS-determined 
Hartree-Fock equation for the n12 orbital: 

where 

(2.11) 

(2.12) 

is the total energy of the three-electron system and ZAFkI is the nlz interaction energy 
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(2.13) 

We note that (2.13) averaged over LS gives the average Coulomb energy of an 
(equivalent) electron pair, in agreement with Cowan (1981 table 6-1). Equation (2.1 1) 
is non-linear and we solve it by iteration using an unperturbed nl orbital to start off 
with. (tlHlt’) is then given by 
(ls(’S)nZ’( w ~ ’ ) 2 ~ ’ I  H I  ls’(’S)kl’ 2 ~ ’ )  

= f i ( O l ’ ,  11; l’)R’(ls, kZ’; nZ, nl) 

(2.14) 

A, may also be evaluated by extrapolating the excitation partial collision strengths 
R, and using correspondence principle arguments (see Burgess 1965a, 1966). We may 
then identify Rk (of 2.5) with (24‘2/~v3)RL, where v = n - p is the effective principal 
quantum number of the nl state and 5 = 2 - 2. However, in the collision problem we 
also have the unitarised collision strength RF which satisfies conservation of flux and 
also allows (to a certain extent) for coupling to neighbouring states and so could be 
expected to lead to a more complete description of the autoionisation process than 
Of or equivalently the A,  given by (2.5). Thus, the correction factors that we use for 
A, are those obtained from the (extrapolated) ratios of the five-state unitarised CEDWZ 

or C E D W ~  partial collision strengths to those of the non-unitarised Coulomb-Bethe 
approximation. 

2.3. Radiative transition rates 

The dipole radiative transition probability rate A,  is given by (see, for example, Cowan 
1981) 

64n4ezag Y (  t ,  t ‘ )  
3hA3 w ( t ’ )  

A,( t’+ t )  = 

Y ( f ,  t ’ )  ST’ = 2.6775 x lo9 - 
w ( t  1 

(2.15) 

(2.16) 

where the emitted photon has a wavelength A and an energy AE (Rydbergs). The 
states t ‘ =  C’SL’p‘ and t = CSLp are of opposite parity and have IL- L’I c 1. The line 
strength 9’ may be written in terms of the dipole operator P ( l )  as follows 

where 
3 

= C rn. 
?l=l 

(2.17) 

(2.18) 

Using equation (5.4.1) of Edmonds (1957), Y may be written in terms of a reduced 
matrix element; thus 

(2.19) Y ( f ,  t‘) = ( 2 S S  1)Gss,l(tJIP(1)llf‘)12. 
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For Li-like ions we consider (for nl Z nclc) 

( a )  

and 

(b)  

Again using the equivalent-electron frozen-core approximation arid the three-electron 
wavefunction of 111, we obtain for ( t  IIP(')II t') 

lsn,p("P)nl* 2 ~ ' - +  1s2('S)nl ' L +  hv, 

~sn,Z,("L,)np 'L'+ Is2('S)n,l, 2 ~ , +  hvb. 

( a )  ( 1 s2( I S) nl2L ( 1  P(')  11 1 s n,p( " P) nl* 2L') 

= w N ~ " 2 ( 1 0 L ~ ~ c ~ ' ' ~ / l l L ' ) (  b, lom Fn,F$ d r  lom PncprPls d r  

(2.20) 

(2.21) 

For equivalent electrons ( n l =  n,p) we consider 

ls(2S)np2(wL')2L'+ 1s2('S)np 2 ~ +  hv 

where "L'= IS, 'D or 3P. However, the 3P case cannot autoionise to ls2kl. ( t ~ ~ P ( ' ) ~ ~ t ' )  
is then given by 

( ls2( 'S)np 2PllP'''I( ls(2s)  np2( "L')%') 

=21'2(101~~c~' '~~l lL')h,  (2.22) 

Using equation (7.1.8) of Edmonds (1957) we obtain 

(ZlrL'll c(k)ll ll,L) 

(2.23) 

and using equation (5.4.6) of Edmonds (1957) we have that 

( / ; ~ p l / l , )  = (-1)5[(2z;+ 1)(21,+ 1 ) p 2  (? ; ;). (2.24) 

Thenfor k = l  and lL=lc*l 
(2.25) 

where 1, = max(l,, l;). Expressions for the square of (2.23) have been given by Burgess 
and Seaton (1960) who also tabulate the most likely cases. However, for s-p transitions 

(l:11 c(')II I,) = * 12' 
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(2.23) is readily simplified to give 

~(ll;L'~~c(1)~~zzcL)~2 = f ( 2 L ' +  1 )  

where 

for p +  s, i.e. 1; = 1 
for s + p, i.e. I ,  = 1. 

L"= l* 1 = 

3. Results for FeU+ 

We define F(n,, n )  by 

F (  n,, n )  = 1 b( j ,  nl)  A,( j ,  nl+ i, n l )  + A,( j (  n,l,), n l+  i, nclc) 
11, o(z) 
WL 

(2.26) 

(3.1) 

where i = ls2 ' S  and j ,  nl = lsn,l,("L,)nl 'L.  This is a useful quantity for comparison 
of results since it depends only on n, and n and we expect these to be good quantum 
numbers, provided that there is little mixing between configurations belonging to 
different complexes. We note that if the energy factor in the exponential in ad(i; tot) 
(see equations (2.1) and (2.3)) were independent of the resonances then E;,,,, F(n,, n )  
would be directly proportional to ( Y d ( i ;  tot). 

We have calculated F(n,, n )  directly for 2 s  n c s  n S 5 in LS coupling with no 
configuration mixing, using both the c m w i  and C E D W ~  radial equations for the ( n l )  
spectator electron. The nuclear charge dominates the structure of the radial functions 
for Fe24+ and the inclusion of exchange-distorting potentials ( C E D W ~ )  gives results for 
F(n,, n )  that differ by less than 1 %  from those presented in tables 1 and 2, which 
were calculated with non-exchange radial functions (CEDWI). Parentage is not a good 
quantum number for intermediate states of the form lsns("S)np and so we have also 
calculated A, and A, allowing for parental mixing, using the mixing coefficients of 
SUPERSTRUCTURE (see Eissner et a1 1974), care being taken to ensure phase consistency. 

In table 1 we compare our results for F ( 2 ,  n )  with those that we have derived from 
the configuration-mixing intermediate-coupling results of Bely-Dubau et a1 (1979a 
tables 2 and 3,  1979b table 1) .  Bely-Dubau et al (1979b § 4) state that the lowest terms 
missing from their estimate of the total di-electronic recombination rate coefficient are 
of the form 1~3131'. However, their graph (Bely-Dubau et al1979b figure 6 )  is consistent 

Table 1. Results for F(2, n )  in units of s-'. 

n 

2 3 4 5 

No mixing 1.5624(15)1 9.567 (14) 4.209 (14) 2.194 (14) 
Parental mixing 1.328 (15)  

1.368 (15)  9.99 (14) 4.24 (14) 

This paper 

Derived from 
Bely-Dubau et al 
(1979a, b) 

7 1.5624 (15) means 1 .5624~  10''. 
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with their results for F 2 ( n )  (table 2 of Bely-Dubau et al 1979b p 808) which are for 
satellites to the nc=  2 resonance line, which corresponds to the first A,  term in (3.1). 
They do not include the contribution from n, = 2 satellites to the n = 3,4, etc resonance 
lines (which arise from intermediate states of the form ls2l3l’, ls2/41’, etc) which 
corresponds to the second A, term in (3.1). This is clear from summing the individual 
line factors in table 3 of Bely-Dubau et al (1979a p 410) and table 1 of Bely-Dubau 
et al (1979b p 804) and comparing them with the values of F2(3) and F2(4) given in 
table 2 of Bely-Dubau et al (1979b p808). In other words, while they include n + 1 
core stabilisations in the branching ratio [A , / (A ,+ZA, ) ]  they do not include them in 
the numerator of F2( n )  for n 3 3; their F2(2) is of course directly comparable with our 
F(2,2).  For n = 3 and 4 we have added to their value for F2(n)  the contribution from 
the n, = 2 satellites to the n = 3 and 4 resonance lines, using their results for ZA,, to 
obtain a value comparable with F (  n,, n ) ,  assuming that ZA, is dominated by n + 1 
transitions. There still remains of course the contribution from the n, = 2 satellites to 
the n > 4 resonance lines. 

The reason that a significant contribution to F(2,  n), for n > 2, arises from allowing 
the spectator electron to radiate lies mainly in the spin coupling. The 2p core electron 
radiation via the singlet parent channels dominates that due to the np spectator electron. 
The same is not true for the triplet parent channel which is almost forbidden to the 
2p electron but not the np. However, both parent terms are free to auto-ionise (see 
equation (2.7)). Of course, in the case of the 2s core electron, the radiation due to the 
np spectator electron dominates both parental channels. 

We note that if A,<< A,  then a,(i; tot) =constant x CwA, and that if we make a 
unitary transformation U :  A,+ A, (and A,+ A,) such that A,<< A, then & ( i ;  tot) = 
constant X %A,. Since U is unitary ZwA, = %Aa and it follows that f fd  = Ed.  This is 
the underlying reason for the close agreement in table 1 between our results and those 
of Bely-Dubau et a1 (1979a, b). Of course 3 cases such that A, = 0, A,  # 0 with A, # 0 
(and A,#O), our results imply that these are unimportant. A , s A ,  for the ls212p 
configurations and so parental mixing (for 1 = 0) is important for F(2,2).  However, 
A,<< A, for lsnlnp ( n  > 2) and although parental mixing is still strong for l # 1 it has 
little affect on F(n, n )  as can be seen from table 2 where we present our results for 
F(n,, n)  for 3 s  n , s  n s 5. 

To get the contribution to ad(i;  tot) from n > 5, n , ~  2 we evaluate F(n,, n) by 
extrapolation. We can extrapolate F(2, n )  upwards using the n V 3  asymptotic depen- 
dence of A,; F(2,5)  extrapolated thus from F(2,4)  differs by 2% from the value 

Table 2. Results for F(n,, n )  in units of s-’. 

n 

n e  3 4 5 

No mixing 1.596 (14) 1.210(14) 6.121 (13) 
Parental mixing 1.507 (14) 
No mixing 2.788 (13) 2.583 (13) 
Parental mixing 2.722 (13) 

7.173 (12) 
i 

5 No mixing 
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calculated directly. We can also extrapolate downwards the collision results of IV, as 
described in 0 2, to obtain the contribution to F(2,  n )  from the singlet parents. The 
extrapolated result for F(2,4)  differs by less than 2% from that of the direct calculation 
and this is a maximum bound on the error of F(2, n )  for n 2 4 .  For this reason we 
use the downward extrapolation results for the singlet parents of F(2,  n )  for n > 5 and 
extrapolate upwards still for the triplet parents. We could extrapolate downwards to 
get F(n, ,  n )  for n > 5, n c a  3 using the same ratios of collision strengths as for F(2, n ) .  
However, the extrapolated value for F(3,5)  differs by about 20% from the value 
calculated directly, while the value extrapolated upwards from F(3,4)  differs by only 
1%. Thus we extrapolate upwards to evaluate F(n, ,  n )  for n > 5, n c 2  3. 

We present our results for ad( i; tot) for Fe24+ in figure 1. We have used our parental 
mixing results where available and also allow for the full n,l,nl dependence of E for 
2 s  n c s  n S 5 while for n > 5, n c 2  2 we take E to be dependent only on n, and n. We 
find that di-electronic recombination via intermediate states of the form ls21,nl (i.e. a 
1 + 2 core excitation) contributes 90% of the total rate and that via ls31,nl ( n  3 3) 
contributes 7%. Table 1 indicates that the results of our calculation for ad(i;  tot) 
would be accurate to approximately 5% when compared with a full multiconfiguration 
intermediate-coupling calculation. We have also reproduced the curve of Bely-Dubau 
et a1 (1979b) in figure 1 and we see that their results, which are only for satellites to 
the n, = 2 resonance line and not for the 1 + 2 core excitation as stated in their paper, 
represent only 77% of the total di-electronic recombination rate coefficient and not 
900/0 as they claimed (Bely-Dubau et a1 1979b); at T = 4 x lo7 K- adBD = 4.80 x 

cm3 s-' compared with aFRB = 6.20 x cm3 s-'. The good agreement at 
low temperatures between our results and those of Bely-Dubau et a1 (1979b) arises 
because of the presence of the exponential factor in (2.1) which causes ad(i; tot) to 
be dominated by the contribution from the n = 2 satellites to the n, = 2 resonance line. 
The results of Nasser and Hahn (1983) (not shown) which include contributions from 
states of configurations of the form ls21,nl and 1~31~31, agree to about 10% with our 
results and indicate that their simplified procedure is quite reliable here. 

The results of the general formula of Burgess (1965b) are also shown in figure 1 
and they lie 33% above our results at T = 4 x lo7 K ( cm3 s-l). We = 8.21 x 

10-121 , 1 _ - - _  t 

1 0' 10' 
T i K )  

Figure 1. Di-electronic recombination rate coefficients for Fe24+. -, total (this paper); 
- - _. , total (GF Burgess 1965b); - . - . -, from sum of satellites to th: n, = 2 resonance line 
(Bely-Dubau et a1 1979b). 
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note that the results of the Burgess GF for the 2+  1 core stabilisation are incorrectly 
represented in the paper by Bely-Dubau et al (1979b, see Bely-Dubau et a1 1983). The 
formula of Merts et a1 (1976), which is a modification of the Burgess GF for An,# 0, 
gives poor results (not shown, see Bely-Dubau et al 1983 figure 2). The Merts formula 
is based in part on the results of Shore (1969), which have been shown to be in error 
by Burgess and Tworkowski (1976) and so the validity must be questioned. 

Bitter et al( 1979,1981) have observed the n = 2 and 3 satellites to the n, = 2 resonance 
line and they are in good agreement with the results of Bely-Dubau et a1 (1979a, b, 
see Bely-Dubau et a1 1983). However, these experimental results (not shown) only 
contribute about 50% towards the total di-electronic recombination rate. 

4. Conclusion 

We have shown that, due to the high nuclear charge, very accurate results ( 5 % )  for 
the total di-electronic recombination rate coefficient of Fez4+ can be obtained from a 
single-configuration LS-coupling calculation (supplemented by parental mixing of the 
ls2s2p configuration). As Z decreases we no longer have A,<< A,; thus the neglect of 
configuration mixing and intermedrate coupling will have to be re-assessed as will the 
neglect of autoionisation into the continuum of excited configurations. The first two 
effects redistribute the existing flux (for A,  and A, separately) between the intermediate 
states rather than generate new flux. Thus, on summing over all intermediate states, 
the differences in estimates of nd(i;  tot) arise from differences in the competition 
between A,  and A, and the need for configuration mixing and intermediate coupling 
will depend on how systematic these differences are. Distortion effects also become 
more important in the evaluation of the radial functions as 2 decreases and so we 
need to pursue the use of exchange-distorted wavefunctions both in simple calculations 
of the type considered here and as the input to configuration-mixing and intermediate- 
coupling calculations. 
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