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Abstract. A new approximation is developed for electron collisions with two-electron atoms 
and is applied to the excitation of He. The core orbital is taken to be that given by 
equivalent frozen Is2 orbitals and the valence wavefunction is taken to be that given by a 
Hartree or Hartree-Fock frozen-core approximation. The resulting orthogonality of the 
core and valance wavefunctions enables the exact three-electron collision equations to be 
simplified to a form similar to that for a two-electron problem. The explicit dependence 
on the core wavefunction being removed, the effect of choosing a non-equivalent core is 
investigated within the Hartree frozen-core approximation. The collision equations are 
solved using a number of five-state exchange distoited-wave ( EDW) approximations which 
include various multipole exchange distorting potentials exactly. 

We calculate total collision strengths for all transitions between the l'S, 23S, 2'S, 23P 
and 2'P states of He for incident electron energies from just above threshold up to 15.0 Ryd. 
Using a screened hydrogenic Hartree frozen core, adjusted to lead to the exact 1 ' S  + 2'P 
line strength, and the EDWZ approximation, which includes the dominant monopole 
exchange distorting potential exactly, this rather simple, but physically motivated, approach 
gives good results in general and is much faster to apply than the more elaborate R-matrix 
approximation. It should prove useful for the calculation of reaction rates for He-like ions 
in the future. 

1. Introduction 

The knowledge of reaction rates for electron collisions with He and He-like ions is of 
particular importance in the study of laboratory and astrophysical plasmas. The 
close-coupling approximation including the first five atomic states (1 IS, 23S, 2'S, 23P, 
2'P) could in theory provide much information; however, in practice it has proved 
difficult to apply widely. The first calculations for He, carried out over a narrow energy 
range (see Burke et a1 1969, Oberoi and Nesbet 1973, Berrington et a1 1975), were 
somewhat unreliable (see Fon et a1 (1981) for a detailed discussion). Fon et a1 (1979, 
1980, 1981) have carried out a five-state close-coupling calculation for He using the 
R-matrix method, but the bound-bound terms in their eigenfunction expansion gave 
rise to pseudo-resonances and they were unable to give results over a wide range of 
energies. Bhadra et a1 (1979) carried out a standard five-state close-coupling (5cc) 
calculation, i.e. without bound-bound terms, and gave results for transitions from the 
ground state, those for the spin-allowed transitions being poor. Willis and McDowell 
(1981) have investigated a number of close-coupling approximations for the 1 's  -+ 2's  
and 1 'S -+ 2'P transitions using both physical states and pseudo-states. The large amount 
of computing resources required by the close-coupling approximation for the three- 
electron system makes it unsuitable for the widespread calculation of reaction rates. 
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The application to He of the distorted-wave approximation, and variants thereof, 
has mainly been confined to spin-allowed transitions (see e.g. Scott and McDowell 
1975, 1976, Flannery and McCann 1975) since the treatment of exchange as a perturba- 
tion gives poor results for spin-forbidden transitions (see however Tully (1978) and 
Baluja and McDowell (1979) for the l’S+23S transition) since these can only take 
place through electron exchange, on neglecting spin-orbit interaction. For a compre- 
hensive review of the excitation of He at intermediate energies, both theoretical and 
experimental, see Bransden and McDowell (1978). 

In this paper we develop an approximation for electron collisions with two-electron 
atoms and compare our results for the excitation of He with other theoretical results 
and with experiment, for transitions from the ground state. We also provide results 
for transitions between the n = 2 states, there being few others in the literature. Our 
approach is based on two approximations, both of which are made on physical grounds. 
The first is that the use of equivalent electron orbitals provides a good description of 
ihe ground state and that the excited valence wavefunctions are relatively insensitive 
to the core used. This enables us to reduce the exact three-electron collision equations 
to a form similar to those for a two-electron problem. The second is that spin-forbidden 
transitions can be calculated using the distorted-wave approximation if we include the 
exchange distorting potentials exactly. This reduces the collision equations to a set of 
uncoupled integro-diff erential equations. 

This work is part of a programme to calculate excitation rates and di-electronic 
recombination rates for a wide range of ions of astrophysical interest. To do this we 
first require a fast approximation for the collision problem which is reliable at low 
energies. In an earlier paper (see Badnell 1983a, hereafter referred to as I) we developed 
two forms of exchange distorted-wave (EDW) approximation and tested them on the 
excitation of Het and H. A third variant was also investigated (see Badnell 1983b, 
hereafter referred to as 11). For non-hydrogenic atoms we must also approximate the 
atomic structure-which can lead to appreciable errors. This paper provides a simple 
approach for He-like ions. 

In Q 2 we develop the required mathematical theory for our approach and in 0 3 
we discuss possible choices for the bound-state wavefunctions. In Q 4 we deal with 
an arbitrariness that arises in some of our free wavefunctions within this formulation. 
In Q 5 we present our results and compare them with those of other theoretical models, 
in particular the close-coupling approximation, and with experiment where possible. 
We use atomic units throughout except for energies which are in Rydbergs. 

2. Theory 

We take the Hamiltonian H for the electron-He atom system to be of the form 

where z is the nuclear charge. We take the wavefunction 9 ; s  for this system to be of 
the form 

LS - 1 
W ;s( 1 , 2 , 3  ) = --= 1 [Y ;;,(E, 3) + W $( 3, 1 ) + W 3 1,2)] J3 ’ 
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(see e.g. Burke et a1 1969) which is an expansion in terms of unperturbed atomic 
wavefunctions and also of partial waves for the free electron. U” denotes the initial 
state of the system and LS are the total orbital and spin angular momenta both 
separately conserved. U = nlasal where nlasa are quantum numbers describing the atom 
and 1 is the orbital angular momentum of the free electron with spin 4. 1 , 2 , 3  represent 
the space and/or spin coordinates of the three electrons (ri, ci), i = 1, 2, 3. 

We may write 9$ in terms of its space and spin components thus, 

(2.3) 

where d$ is given by 

4i”% 3) = C CL~mlML+>om~o(rl, r 2 ) R 5 ( r 3 )  y1ml(;3)/r3 (2.4) 
mi,ml 

where +>am,o is the spatial part of the atomic wavefunction and 

!@(rl, r2) = (-1)V?(r2, rl) (2.5) 

where q = d a m l a .  Si.”, is the radial function of the free electron and CLtmjML is a 
vector-coupling coefficient. The spin component xta72 is given by 

(2.6) 

where 

and 

x Z ; ~ ( ~ )  = 8 m 1 / p 3 ,  m 1 / 2 =  *1/2. (2.8) 

For each final state of the system described by v’ we impose 

F +u8u, , (12,3)x~L72 LSt  - (E,3)(H-1E)TbS(1,2,3)  dr ,  dr2dF3=0 (2.9) 5.l 
where ’ 4  may be written in terms of 4 thus, 

&&(E, 3) = “+::.syl,(i2, 3)Sk$(r3)/r3 (2.10) 

and E is the total energy of the system. On substituting (2.2)-(2.8) into (2.9) we may 
perform the sum over the spin coordinates to get 

where 

dfAsa = 2[(2sa + 1)(2sb + l)]”’ {; 3 I,} (2.12) 

and { } is the Wigner 6- j  symbol which is obtained on summing the vector-coupling 
coefficients using equation (6.1.5) of Edmonds (1957). Explicitly 

- d3I2 = -2 d;i2 = -1 d;(’ = J3 = d ti2 di (2= 1 1 1  
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We may approximate $2 in terms of one-electron wavefunctions thus, 

(2.13) 

and we assume that Pc is frozen, i.e. independent,of Pfll,, thus $2 satisfies the usual 
orthogonality condition. We take Pc, the radial function for the core electron, to satisfy 

(d2/dr2 + 2 Z / r  - U (  r) - sC)PC( r)  = 0 (2.14) 

where sC is the diagonal (or orbital) energy parameter of the core electron and U (  r) 
is to be defined below. We take Pfll0, the radial function for the valence electron, to satisfy 

+- - FC V( r) - E,,/, 
d2 Za(la+l) 2 2  

r 

where FCV is given by 

FC V(r )=?  r {: P:(r’) d r ’+2  l r m T d r ’ .  

(2.15) 

(2.16) 

We now assume Pc to be equivalent to PI,, i.e. cU=FCV, thus Pc is orthogonal to 
P2s, and N = 1 +a,,. It is not necessary that the excited valence radial function (2.15) 
be given by a non-exchange approximation, however it is the form we consider in 
detail later. 

Using (2.13)-(2.16) the collision equations (2.1 1) now reduce straightforwardly to 

+-- V(r) + k t ,  .9t:’,,,(r) = (bvfYVhyf;(r) +/I:,,, Whyk)3;;,(r) (2.17) 
Y A  

d2 l’(l’+l) 22 FC 

where z = Z - 1 ,  

h:,,=i(l +IS,,, -8,,11)1’2(1 +S,I S,,l)d&, (2.18a) 

and 

bVfY = (1 +)6,,1 - Sn1))1’2 asas;. (2.18b) 

Also the VA and WA are as in paper I except that E,,, of (12.3) is replaced by 
energy of the free electron k t  is now related to E by 

E = k,,-EC-E,,l,-FO 2 

where Fo is given by 

Fo= [omCU(r)P?.(r) d r  

(2.19) 

(2.20) 

and sC + F o  is the sum of the kinetic and potential energies of the core electron. No 
further approximations are required to reduce the direct term in (2.11) to the form 
given in (2.17), the same being true for the exchange term when q and q’ both describe 
the ground state. However, when q and/or q’ describe an excited state we approximate 
the exchange term 

r 
LS’ - LS - J ‘ ~ Y , Y , . ( 1 2 , 3 ) ( H - 1 E ) ~ Y . , , ( 3 2 ,  l)dfAso dr ,  d r2d& 

Y 

(2.21) 
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in (2.11) by 

2 1  
$ V : + - + $ - - & ~ : + E ~ ~ ~ : , + E ~ + F ~ )  l)d:Asa dr,  dr,d&. 

r2 r13 

(2.22) 

The two forms are identical (generally) only when 4, is a solution of the two-electron 
Schrodinger equation and this approximation is similar to the approximation for the 
exchange term made by Burke et al (1969), and the main effect can be expected to be 
on the 2S partial wave; we discuss this further in § 4. For transitions between excited 
states, we have also neglected terms which represent exchange between the core and 
free electrons. We note that, due to the orthogonality of the one-electron atomic radial 
functions, this only affects the 23L+ 23L, 2lL transitions. These assumptions enable 
us to retain the important properties of the three-electron problem while reducing the 
collision equations to the same form as those for a two-electron problem, which were 
dealt with in paper I. Such a simplification has considerable advantages in terms of 
computing resources. The equations (2.17) may be solved in the E D W I , ~  approxima- 
tions, as defined in I, using the methods described in that paper. The solution in the 
E D W ~  approximation of I1 is similar and details are given in an appendix to the present 
paper. 

In the m w i  approximation the free electron is subject to all the direct distorting 
potentials, see (12.46) with 

In the EDWZ approximation the free electron is additionally distorted by a non-local 
monopole exchange potential, see (12.454 where 

In the E D W ~  approximation the free electron is distorted by the lowest multipole 
exchange potential, as well as by all the direct terms, see (12.45d) and the appendix 
of the present paper with 

v 6 ~ 0  + vt; + 6 A A , h E y  wt: (2.25) uALS = FC 
Y Y  

where A, = (I, - I1 and we restrict A, to A m <  3. 

paper I, is related to the total collision strength fl by 
The T matrix, which may be obtained in these approximations as discussed in 

f l (n’~hsh,  nZ,s,) =$ C ( 2 ~ + 1 ) ( 2 ~ + 1 ) J T ( v ’ ,  v ) ~ S ) ~ .  (2.26) 
I’ILS 

The total cross section Q is given by 

Q(nl,s, + n’lbsh) = (r/k?)fl(n’Zbsb, nZasa)/(2Za + 1)(2s, + 1). (2.27) 

We note that the definition (2.26) differs slightly from that used in I which, as is 
common practice for one-electron atoms, included the initial spin degeneracy of the 
atom in the denominator on the RHS. 
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3. Bound-state wavefunctions 

Elaborate configuration-interaction atomic wavefunctions have been developed for use 
in the collision problem (see Berrington et a1 1975). However, as discussed in 9 1, we 
are interested in a fast approximation and thus look for simple wavefunctions that 
have direct physical interpretation. 

3.1. The Hartree frozen-core approximation 

Since equations (2.14) and (2.15) describe a frozen form of the Hartree self-consistent 
field approximation, as first solved by Wilson and Lindsay (1935), we denote their use 
as the Hartree frozen-core (HFC) approximation. As noted previously we may use a 
non-exchange (Hartree) or exchange (Hartree-Fock) frozen-core approximation for 
the valence electron. However, the Hartree frozen core is faster to use since the free 
wavefunctions corresponding to singlet and triplet atomic states are, in this case, the 
same for most partial waves. Also it is easier to use with different cores compared with 
the Hartree-Fock frozen-core approximation. So, in this paper, we investigate the 
results of our method with the Hartree frozen-core approximation. 

The explicit dependence on the core radial function being removed, it is no longer 
necessary to take Pc= PI,. Our choice of core and thus valence wavefunctions is 
determined by our choice of ' U  in (2.14). We consider two cases (a) and (b). 

(a) We take ' U  = F C V ;  then Pc= P I ,  is the (restricted) Hartree-Fock radial func- 
tion for He 1s' and, using (2.20), F o  is given by 

(3.1) 

which is the interaction energy between the two ground-state electrons, in agreement 
with (12.30). This is the form that we assumed for Pc and P,,, in our reduction of the 
collision equations. 

(b) We take 

U (  r )  = 2 ( 2  - l ) / r  
then 

Pc(r) = 253/2r e-{' 

is a screened hydrogenic (SH) radial function and Fo is given by 

FO = 2( 2 - l)l (3.4) 

which is an approximation for the ground-state interaction energy. We may treat l as 
a variable parameter and adjust it, for example, to give the exact value for the quantity 
c2( 1's + 2IP), which is related to the oscillator strength (see § 3.2), the appropriate 
value being 5 = 1.4289. 

The Hartree-Fock frozen-core approximation for He is often used in the collision 
problem (see e.g. Flannery and McCann 1975, Tully 1978); the ground-state electrons 
are not restricted to be equivalent and the core is taken to be that of He+ 1s. This 
means that the resulting radial equations are the same as those obtained by considering 
the Het +e- collision problem, in the E D W ~  approximation, as a bound-state problem; 
compare those of Cohen and Kelly (1966) and the appendix of this paper. On 
comparing radial functions for He in the approximations described above we find that 
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the diagonal energy parameter is a good guide to their quality. In table 1 we compare 
the diagonal energy parameters for the valence radial functions in the approximations 
described above, as well as those from the multiconfiguration Hartree-Fock (MCHF) 
approximation of Froese Fischer (1977) which can be regarded as ‘exact’ for our 
purposes. 

Table 1. Diagonal energy parameters for the valence radial functions of He. 

HFC 

MCHF 
(Froese 
Fischer 1977) 

SH (case (b)) 

(He* 1s) (case (a)) 5=1.4289 [ = 2 . 0  
HFFC HF He I S z  

lsls’ IS 1.9181 
3S 0.3504 

ls2s 
IS 0.2919 
’P 0.2665 

‘P 0.2476 
ls2p 

1.7450 1.835 91 1.985 35 1.6414 
0.3485 

0.31667 0.324 14 0.3061 
0.2871 
0.2626 

0.2449 
0.254 86 0.260 5 1 0.2523 

In the frozen-core approximations the excitation energies are given by the difference 
between the diagonal energy parameters for the relevant states. From table 1 we see 
that, in the Hartree frozen-core approximation, the use of a non-hydrogenic core has 
little effect on the excited states compared with the He+ core but greatly improves the 
ground-state wavefunction. We note that for the screened hydrogenic core (6  = I .4289) 

= 1.985 35 and the two radial functions are approximately 
‘equivalent’. The use of a non-hydrogenic core for the excited states means that the 
core radial function itself is poor but the point of our approximation for the collision 
problem is that the only dependence of the collision equations on the core orbital is 
via FC V which is precisely where there is little difference between the use of a He+ or 
non-hydrogenic core for Pnlo ; and we expect the same to be true for the free wavefunc- 
tions. 

= 6’ = 2.0417 is close to 

3.2. Oscillator strengths and optically allowed transitions 

For optically allowed transitions, nl,s, + n’lhsb where 1’ = 1 f 1, 

R/ln k; - 4w,f/Ak$ 
kf-m 

(3.5) 

where mi is the statistical weight of the initial atomic state Ak; = k: - k j  and f is the 
oscillator strength (see Burgess and Tully 1978). We may write f as 

4wf/Ak$ = $S (3.6) 
where S is the line strength given by 
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which can be written in terms of an algebraic coefficient d and a radial part u2 thus, 

s = oidu2 (3.8) 

d = 1,(21h + 1) (3.9) 

where 

I ,  = max( la, l h )  
(see e.g. Goldberg 1936). To obtain the U relevant to our treatment of the collision 
problem we must assume equivafent ground-state electrons and use the resulting 
orthogonality of the one-electron orbitals, as in the reduction of the collision equations, 
U can then be written as 

(3.10) 

We use 

u2 = 3f/dAk$ (3.1 1 )  

to convert other author’s oscillator strengths to U’, using their excitation energies. By 
(3.5) this is the quantity that we wish to compare in different approximations to measure 
differences in the collision strengths for optically allowed transitions. 

In table 2 we compare the values for u2, in the Hartree frozen-core approximations, 
with the ‘exact’ results of Schiff and Pekeris (1964) as well as those of other authors 
with which we shall compare our collision results in 8 5. The values given for the 
Hartree-Fock frozen core were evaluated from (3.7) assuming a non-equivalent 
(Het 1s) core, that being the form used by Flannery and McCann (1975). 

Table 2. a2. 

HFC 

Schiff and Berrington Willis and Bhadra 
Pekeris et al HFFC SH McDowell er a1 
(1964) (1975) He+ Is HF He Isz [ =  1.4289 (1981) (1979) 

1’s-2’P 0.1771 0.183 68 0.186 0.2097 0.1771 0.1894 0.216 
2IS-2’P 8.504 8.008 8.820 

23s-23~ 6.408 7.295 6.597 
7.547 7.302 

4. Free wavefunctions 

For the two-electron problem, we recall in paper I the arbitrariness of the solution of 
the free wavefunction in the EDWZ approximation for s-wave scattering off an s-state 
with parallel electron spins (see also Seaton 1953). A similar arbitrariness can arise 
for the three-electron problem but now the resulting p matrix is not automatically 
unique. 

To illustrate, consider without loss of generality (2.1 1 )  and (2.12) with v, v’= lsOs, 
2sls and denote them by O =  lsOs and 1 = 2sls. Since we have assumed the same 
angular dependence we suppress the spherical harmonics. We write 

+o(r,, r2) = pls(rl)Pls(r2) (4.1) 
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and 

+%(TI, r2) = (1/4(P,s(rI)P2Ar2) - Pls(rZ)P2s(rl)) (4.2) 

and we are still considering the exact exchange problem. Then for {Fa, F,} a solution 
of the resulting pair of coupled integro-diff erential equations, {Fa +PPI,, F,} is also a 
solution. This follows on inspecting the two equations thus. For Y' = 0, the term 
involving Fo is (using (2.1 1) and (2.12)) 

rClo(r~, r*)(H-fE)($~(r l ,  r2)FO(r3) - (CIO(r3, r2)F0(r1)) d r ~  dr2. (4.3) 

This vanishes identically when Fa= PI, (use 4.2). For I/'= 1, the term involving Fa is 

(4.4) 

Setting Fa= PI, we obtain 

(4.5) 

which vanishes identically due to the symmetry in rI and r2. This is true in general 
for PI, and P2,, in JI1, replaced by Pflr, and Pfl,fA respectively, so long as the ground- 
state electrons are taken to be equivalent, i.e. of the form given by (4.1); the core need 
not be frozen. It follows that, in the exact exchange problem, the distorted-wave 
approximation for the p matrix is unique. However, our approximation (2.22) for the 
exchange term in the collision equations means that, when using the E D W ~ , ~  approxima- 
tions, the 2S p-matrix elements are not unique in general. For example, the 1's *S free 
wavefunction Fa may be written as 

FOP = F ;  +PPIs (4.6) 

where p is arbitrary, and the 2S 1 IS + 23S p-matrix element is just given by 

(4.7) 

Since in the exact exchange problem using the distorted-wave approximation, the only 
non-zero contribution to the p matrix comes from F;, we argue that /3 = 0 is a consistent 
choice for the collision problem where we have approximated the exchange term. This 
should minimise the error introduced. We note that for 4S scattering off the 23S state 
there is no arbitrariness in the free wavefunction in the exact exchange problem but 
that the approximation for the exchange term introduces it, cf the two-electron problem, 
and also that it cancels out, as in the two-electron problem, between the direct and 
exchange contributions to p .  Thus again we expect the error introduced, by the 
approximation for the exchange term, to be minimised. 

5. Results 

We have calculated total collision strengths for all transitions between the l'S, z3S, 
2IS, 23P and 2'P states of He, for incident electron energies from just above threshold 
up to 15.0 Ryd, using a number of five-state unitarised EDW approximations for the 
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free wavefunctions with screened hydrogenic (5 = 1.4289) and Hartree-Fock He 1 s2 
cores in the approximation for the valence electron. We present our results in the 
form of collision strengths in tables 3 and 4 and compare them with other theoretical 
results and with experiment, where possible, in figures 1-10. In these figures we plot 
the scaled collision strength Y against the (dimensionless) scaled energy X where 
X = l / ln ( k f /  c, + e )  and Y = R/ln ( k f / c 2  + c 3 )  for optically allowed transitions, X = 
l / (kf /c l  + I )  and Y = R for spin-allowed transitions, and X = l / (kf /c ,  + 1)  and Y = 
R ( k f / c , + ~ , ) ~  for spin-forbidden transitions. k f  is the energy of the free electron 
scattered off the final state. The values used for the constants ci are given in the captions. 

5.1. Transitions from the ground state 

We set c1 = AEo = c2, where AEo is the observed excitation energy taken from Moore 
(1949) and take c3 = e for the optically allowed transition and c3 = 1 otherwise. 

In table 3 we present our results for the total collision strengths obtained using the 
~ ~ w z a p p r o x i m a t i o n  for the free wavefunctions and a screened hydrogenic (5 = 1.4289) 
Hartree frozen-core approximation for the valence electron. 

Table 3. Total collision strengths for transitions from the ground state of He in the E D W ~  
approximation with the SH ( I =  1.4289) HFC. 

1 1 s + 2 ~ s  l’S+2’S 

8.879 -21  
1.388-2 
1.888 - 1 
2.388 - 1 
2.888 - 1 
3.388 - 1 
4.388 - 1 
5.388 - 1 
6.888 - 1 
8.388 - 1 
1.339 
1.839 
2.339 
3.339 
4.339 
6.339 
8.339 
1.334 + 1 

3.29-2 
4.42 - 2 
6.50 - 2 
8.29 - 2 
7.66 - 2 
6.76 - 2 
6.96 - 2 
5.93 - 2 
4.39 - 2 
3.48 - 2 
2.36 - 2 
2.00 - 2 
1.80-2 
1.49-2 
1.24-2 
8.59 - 3 
6.19-3 
3.18-3 

3.32 - 2 
2.59 - 2 
6.08 - 2 
8.56 - 2 
1 .05 - 1 
1.17- 1 
1.24- 1 
1.31 - 1 
1.38-1 
1.45-1 
1.68-1 
1.84- I 
1.95- 1 
2.09 - 1 
2.17- I 
2.25 - 1 
2.29 - 1 
2.32 - 1 

k: 

2.129 -2 
7.129 - 2 
1.213- 1 
1.713 - 1 
2.213- 1 
2.713 - 1 
3.713- 1 
5.713- I 
6.213- 1 
7.713 - 1 
1.27 1 
1.771 
2.27 1 
3.271 
4.271 
6.27 1 
8.27 1 
1.327+1 

i l s +  2 3 ~  

1.39-2 
1.97-2 
2.36-2 
3.55 -2 
5.32-2 
7.05 - 2 
1.06- 1 
1.40- 1 
1.71 - 1 
1.76- 1 
1.38-1 
1.01 - 1 
7.57 - 2 
4.55 - 2 
2.97 - 2 
1.50-2 
8.89-3 
3.49-3 

l l S +  2‘P 

6.44 - 3 
1.93-2 
4.67 - 2 
7.96 - 2 
1 .oo - 1 
1.14- 1 
1.36- 1 
1.50- 1 
1.73 - 1 
2.00 - 1 
3.02 - 1 
3.99 - 1 
4.87 - 1 
6.40 - 1 
7.67 - 1 
9.72 - 1 
1.13 
1.43 

t 8.879 - 2 means 8.879 x 

In figure 1 we compare the EDW scaled collision strengths, for the 1 IS + 2’P transition 
in He, with those of the five-state R-matrix calculation of Fon et a1 (1981), the five-state 
close-coupling (5cc) calculation of Bhadra et a1 (1979) and a =LE calculation by 
Willis and McDowell (1981) as well as with the experimental points from Westerveld 
et a1 (1979). We also include the ‘exact’ value for Y at X = 0, obtained using the 
fvalue from Schiff and Pekeris (1964) as described in 0 3.2. =LE denotes a seven-state 
close-coupling calculation, with local exchange operator approximation, using the five 
lowest states of He as well as two pseudo-states. We see a great improvement in the 
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1.or 1 I I I I 

0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 1. Scaled collision strengths for the 1'S+ 2IP transition in He. -, EDW2,3, curve 
a, H F H ~  Is2 HFC, curve b, S H ( ~ =  1.4289) HFC; -.-, 5cc (Bhadra et al 1979); ---, R 
matrix (Fon et al 1981); . . . ., 'ICCLE (Willis and McDowell 1981); *, 'exact' limit point 
(Schiff and Pekeris 1964); 0, experimental points from Westerveld et a1 (1979). c I =  
1.5603 Ryd = c2, c j  = e. 

EDWZ results on using the SH (1 = 1.4289) core as opposed to the HF He 1s' core. The 
SH core chosen so as to reproduce the 'exact' value for Y in the infinite energy limit 
( X  = 0) gives good results when compared with experiment down to quite low energies. 
The effect of including higher exchange multipoles ( A  > 0) exactly ( E D W ~ )  is small. 
This illustrates that for an optically allowed transition the accuracy of the collision 
strengths is dominated at all energies b.y the accuracy of the line strength. What is 
essentially a five-state close-coupling calculation by Fon et a1 (1981) differs from the 
SCC calculation of Bhadra et a1 (1979) due to the inclusion of bound-bound terms in 
the eigenfunction expansion of the former to allow for three-electron correlation effects 
(see Fon et a1 1979) as well as the use of more accurate atomic wavefunctions. Their 
inclusion of the bound-bound terms also gives rise to pseudo-resonances over the 
energy range k:, = 2.2-7.4 Ryd for all transitions. 

From figure 2 we see that the main source of error for the 11S+2'S transition is 
due to the neglect of an infinity of states on using a truncated eigenfunction expansion. 
Willis and McDowell (1981) allow for this approximately by including two pseudo- 
states, one chosen so as to give the experimental value for the static dipole polarisability 
of the ground state, and obtained good agreement with the experimental points from 
de Heer and Jansen (1977). The bound-bound terms in the eigenfunction expansion 
used by the R-matrix method (Fon et a1 1979) also make some allowance for the 
neglected states. For this transition the use of the SH core does not give particularly 
good results compared with experiment, although there is some improvement over 
those obtained using the HF core. But we note that the SH results do exhibit good 
agreement with the 5cc results of Bhadra et a1 (1979) at high energies. As with the 
1's + 2'P transition, our results are sensitive to the core used but not to the collision 
approximation. 

In figures 3 and 4 we compare our scaled EDW collision strengths for the 1 ' s  + 23S 
and 1 ' s  + 23P transitions in He with those of the R-matrix calculation of Fon et a1 
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Figure 2. Scaled collision strengths for the 1 'S + 2's transition in He. -, EDW2,3, curve 
a, HF He 1s' HFC, curve b, SH([= 1.4289) HFC; - .  -, 5cc (Bhadra et a1 1979); ---, R 
matrix (Fon et a2 1981), . . . . . ., 'ICCLE (Willis and McDowell 1981); 0, experimental 
points from de Heer and Jansen (1977). c, = 1.6584 Ryd = c2, c3 = 1. 
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Figure 3. Scaled collision strengths for the l l S +  23S transition in He. -, E D W Z , ~ ,  curve 
a, H F H ~  Is2 HFC, curve b, SH([= 1.4289) HFC; -.-, 5cc (Bhadra et a1 1979); ---, R 
matrix (Fon et a1 1981); 0,  experimental points from Hall et a2 (1973); A,  from Trajmar 
(1973); 0, from Yagishita (1978, unpublished); 0, from Crooks et a1 (1972). c, = 
I .4574 Ryd = c2, c, = 1. 

(1981) and the 5cc calculation of Bhadra et a1 (1979) as well as with the experiments 
of Hall et a1 (1973), Trajmar (1973), Yagishita (1978) and Crooks et al (1972) for 
1's + 23S and Jobe and St John (1967, with cascade correction due to de Heer and 
Jansen 1977) for l'S-,23P. For these two spin-forbidden transitions there is little 
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Figure 4. Scaled collision strengths for the 1 's  +. z3P transition in He. -, E D W ~ , ~ ,  curve 
a, H F  He 1s' HFC, curve b, SH( l=  1.4289) HFC; -.  -, 5cc (Bhadra et al 1979); ---, R 
matrix (Fon et a! 1981); U, experimental points from Hall et a1 (1973); A, from Trajmar 
(1973); 0, from Yagishita (1978, unpublished); 0, from Jobe and St John (1967, with 
cascade correction due to de Heer and Jansen 1977). cl = 1.5316 Ryd = c2, cg = 1. 

difference in the EDWZ collision strengths for the two different cores used. Although 
results for the E D W ~  approximation only differ slightly from those of the EDWZ approxi- 
mation the EDWI results (not shown) are poor as expected since exchange is treated 
as a perturbation (see also paper I). The monopole exchange potential is thus the 
dominant term, which is the basis of the EDWZ approximation. 

For the 1 's  + Z3S transition, the EDW results are in quite good agreement with 
experiment. However, there is some disagreement at high energies between the EDW 

results and those of the R-matrix approximation of Fon et al(1981) and the unpublished 
experimental results of Yagishita (1978). From figure 3 we see that the trend from 
intermediate energies of the experimental results (including those of Yagishita ( 1978)) 
and of the scc results (Bhadra et al 1979), is towards the high energy EDW results 
rather than those of the R matrix (Fon et a1 1981). Vriens et a1 (1968) obtained 
experimental results (not shown) that are a factor of four smaller than those of Yagishita 
(1978) at high energies. But Baluja and McDowell (1979) have pointed out that the 
form assumed by Vriens et al (1968) for the dependence of their differential cross 
sections on the momentum transfer was incorrect and hence that their total (integrated) 
cross sections are invalid. However, Baluja and McDowell (1979) suggested that the 
corrected results should be a factor of two larger at 200 eV ( X  - O.l), i.e. a factor of 
two smaller than those of Yagishita (1978) and more in line with the EDW results. 
More experimental evidence is required at high energies to help resolve this discepancy 
for the 11S+23S transition. We note that figure 1 of Fon et a1 (1979, p 1864) is 
misleading in its comparison of the original results of Vriens et al (1968) with those 
of Yagishita (1978). Fon et al (1979) plot the l 'S+23S cross section in units of U ;  

but the results of Vriens et a1 (1968, p 13 table VII) are in units of ~ a t l O - ~  and Fon 
et al (1979) appear to have plotted the results of Vriens et a1 (1968) without first 
multiplying by T. 
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From figure 4 we see that there is little agreement in general between theory and 
experiment for the 1 s  + 23P transition, although the EDW results are in good agreement 
with those of the R-matrix method (Fon et a1 1981) at low energies and with those of 
the 5cc calculation (Bhadra et a1 1979) at intermediate energies. Again the high energy 
behaviour of the results of the R-matrix approximation of Fon et a1 (1981) is at 
variance with that of the EDW and 5cc (Bhadra et a1 1979) approximations. 

5.2. Transitions between the n = 2 states 

For transitions between the n = 2 states, the initial and final states are more strongly 
coupled than for transitions from the ground state and so we do not expect the EDW 

results to be particularly good at low energies. Consequently we hope to match up 
with the R-matrix results of Fon et a1 (1981) at energies just below those at which 
they encountered pseudo-resonances and to provide reliable results from there on. In 
the figures the ci are chosen so as to emphasise this energy region and the particular 
values used are given in each caption. For spin-forbidden transitions we only compare 
EDW results obtained using the SH core since those obtained using the HF core differ 
by no more than a few per cent. 

In table 4 we present our results for the total collision strengths at selected energies 
for transitions between the n = 2 states of He in the EDWZ approximation using the SH 

(5 = 1.4289) Hartree frozen-core approximation for the valence electron. 

Table 4. Total collision strengths for transitions between the n = 2 states of He in the EDW2 
approximation with the SH ( c =  1.4289) HFC. 

k: 2 ' s + 2 l P  23S+23P 23S+21P 21S+23P 23P+21P k f  23s -3 2 ' s  

1.713-1 
2.213-1 
2.713-1 
3.713 - 1 
4.713 - 1 
6.213 - 1 
7.713 - 1 
1.27 1 
1.77 1 
2.27 1 
3.271 
4.271 
6.271 
8.27 1 
1.327 + 1 

3.46 + 1 
4.22 + 1 
4.89 + 1 
6.10+1 
7.11+1 
8.34 + 1 
9.31 + 1 
1.15+2 
1.28 + 2  
1.37+2 
1.51 + 2  
1.60+2 
1.73 + 2  
1.82 +2  
1.97 + 2  

1.07+2 
1.31 + 2  
1.53+2 
1.88 +2  
2.18 + 2  
2.53 + 2  
2.81 + 2  
3.45 + 2  
3.84+2 
4.13 +2  
4.53 + 2  
4.82 + 2  
5.20 1.2 
5.47 + 2  
5.93 + 2  

2.53 
2.73 
2.43 
1.98 
1.56 
1.04 
7.31 - 1 
2.98 - 1 
1.57- 1 
9.61 -2  
4.65 - 2 
2.73 - 2 
1.28-2 
7.38 - 3 
2.89 - 3 

1.67 
1.79 
1.69 
1.71 
1.46 
1.03 
7.27 - I 
2.96 - 1 
1.56- 1 
9.58 - 2 
4.64 - 2 
2.73 - 2 
1.28-2 
7.37 -3 
2.89 - 3 

6.34 
6.17 
6.20 
5.96 
5.10 
3.70 
2.66 
1.08 
5.72 - 1 
3.51 - 1 
1.70- 1 
9.99 - 2 
4.62 - 2 
2.64 - 2 
1.02-2 

2.388- 1 
2.888 - 1 
3.388 - I 
4.388 - 1 
5.388 - 1 
6.888 - 1 
8.388 - 1 
1.339 
1.839 
2.339 
3.339 
4.339 
6.339 
8.339 
1.334+1 

2.3 1 
1.68 
1.49 
1.23 
9.41 - I  
6.37 - 1 
4.42 - 1 
1.73 - 1 
9.32 - 2 
5.88 - 2 
2.99 - 2 
1.81 -2  
8.71 -3 
5.10-3 
2.02 - 3 

In figures 5 and 6 we compare our scaled EDWZ, SH and H F  He ls2 Hartree frozen-core 
collision strengths for the 23S + 23P and 2 ' s  + 2'P transitions with those of the R-matrix 
calculation of Fon et a1 (1981) and a multichannel eikonal calculation by Flannery 
and McCann (1975). Again we have included the 'exact' value for Y at X = 0, using 
the results of Schiff and Pekeris (1964) as described in 5 3.2. Apart from the spin 



Excitation of He 4027 

120 
1 I I 1 

a 

40i 
I I I I 

0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 5. Scaled collision strengths for the 2,S+ 2,P 
transition in He. - , EDWZ, curve a, 
H F  He 1s’ HFC, curve b, S H ( l =  1.4289) HFC; 
. . . . .  ., eikonal (Flannery and McCann 1975);---, 
R matrix (Fon et a/ 1981); *, ‘exact’ limit point 
(Schiff and Pekeris 1964). c ,  = I.ORyd, c2=  
0.04 Ryd, cj = 1. 
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Figure 6. Scaled collisiori strengths for the 2lS+ 2’P 
transition in He. - , EDWZ, curve a, 
H F H ~  IS’HFC, curve b, S H ( ~ =  1.4289) HFC; 
. . . . .  ., eikonal (Flannery and McCann 1975) ; - - -, 
R matrix (Fon et a/ 1981); *, ‘exact’ limit point 
(Schiff and Pekeris 1964‘~. ci  = l.ORyd, c2= 
0.02 Ryd, c, = 1. 

weights, results in the EDW approximation for these two transitions are virtually identical 
except at low energies since, using the Hartree frozen-core approximation for the 
valence electron, only the first few partial waves are distinct and e x k m g e  scattering 
makes little contribution to the total collision strength. The differences between the 
results shown in figures 5 and 6 are probably solely due to the approximation used 
for the atomic wavefunctions rather than subsequent approximation to the solution of 
the collision equations. 

In figures 7 and 8 we compare our scaled EDWZ and E D W ~  collision strengths for 
the 23S+ 2’P and 2’S+ 23P transitions with those of the R-matrix calculation of Fon 
et al (1981). Their results, which they only give at energies below those at which 
pseudo-resonances occurred, appear to be the only ones available in the literature. 
Again, apart from the spin weights, there is little difference between results for these 
transitions in the EDW approximation using the Hartree frozen-core approximation for 
the valence electron. 

In figures 9 and 10 we compare our scaled EDWZ and E D W ~  collision strengths for 
the 23S+ 2’s  and 23P+ 2’P transitions with those of the R-matrix calculation of Fon 
et al (1981). Although the excitation energy for these two transitions is zero, using 
the Hartree frozen-core approximation for the valence electron, the EDW collision 
strengths fall off correctly like (kf)-’. The same is not true for the R-matrix results 
of Fon et al (1981); as stated in their paper, their best fit was for (k? ) - ’ .  

We suggest that the R-matrix results of Fon et al (1981) are generally unreliable 
for spin-forbidden transitions at energies above those at which pseudo-resonances 
occurred and, hence, so is the interpolation formula that is based on them (see Fon 
et al 1981, p 2932 equation (2) and p 2933 table 5 ) .  
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Figure 7. Scaled collision strengths for the 23S + 2IP 
transition in He. -, E D W ~ , ~  SH((= 1.4289) HFC; 
--- , R matrix (Fon et a1 1981). c1 = 2.0 Ryd = c2, 
c,=O.125. 
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Figure 8. Scaled collision strengths for the 2's + 23P 
transition in He. -, E D W Z , ~  S H ( ~ =  1.4289) HFC; 

--- , R matrix (Fon et a1 1981). cI = 2.0 Ryd = c g ,  
C3 = 0.125. 
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Figure 9. Scaled collision strengths for the 23S+ 2's 
transition in He. -, E D W ~ , ~  SH((  = 1.4289) HFC; 
--- , R matrix (Fon et a1 1981). c1 = 2.0 Ryd = c,, 
c, = 0.5. 
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Figure 10. Scaled collision strengths for the z3P+ 2'P 
transition in He. -, E D W ~ , ~  S H ( ~  = 1.4289) HFC; 
--- , R matrix Fon et a1 (1981). c, = 2.0 Ryd = c,, 
c3 = 0.5. 

6. Conclusions 

We have developed a new approximation for electron collisions with two-electron 
atoms, based on the orthogonality of one-electron bound-state wavefunctions, and 
have applied it to the excitation of He. We have presented results for total collision 
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strengths for all inelastic transitions between the l'S, 23S, 2lS, 23P and 2lP states over 
a wide range of energies. 

We have seen that, for spin-forbidden transitions, our results are good and that 
they are relatively insensitive to the valence wavefunctions used. Thus for spin- 
forbidden transitions, also bearing in mind table 1, we estimate that the effect on our 
results if we were to use a form of the Hartree-Fock frozen-core approximation (not 
necessarily with a He' Is core) within our formulation of the collision problem, would 
be less than about 10%. For the 11S+2'S transition the main source of error is due 
to the infinity of states neglected in the truncated eigenfunction expansion, so although 
our results are sensitive to the form of the valence wavefunctions used we would not 
necessarily gain any improvement on using a Hartree-Fock frozen-core approximation. 
For the 1 ' S  + 2'P transition we have seen that good results can be obtained by choosing 
a core that leads to valence wavefunctions that give the exact value for the quantity 
U'. The 23S + 2'P and 2's  + 2'P transitions are the two transitions for which including 
exchange explicitly, in the approximation for the valence wavefunction, could be 
expected to give improved results, simply because the singlet and triplet 21 orbitals 
would then be non-degenerate (see also table 2). 

Thus using a screened hydrogenic core, adjusted to lead to the exact value of 
a'( 1 ' S  +2lP), and the EDWZ approximation, which includes the dominant monopole 
exchange distorting potential exactly, this rather simple, but physically motivated, 
approach gives good results in general and is much faster to apply than the more 
elaborate R-matrix approximation. It should prove useful for calculating excitation 
rates and di-electronic recombination rates for He-like ions in the future. 
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Appendix 

In paper I we discussed the solution of the EDWZ radial equation; we now consider 
the solution of 

+-+kZ,-C U^,,"" 
A 

1(1+1) 22 

where 

This contains 

U ,̂:" = 6Ao FC V + V^,: + h:v W$. ('4.2) 
the E D W Z , ~  radial equations as a special case, see (2.24) and (2.25). We 

write (A.l) and (A.2), in the notation of paper I, as 
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+ g t s ( &  Ji Pflfo(r’)F~s(r’)r’A dr’ 

For the three-electron problem, throughout paper I we replace V;ru by SAo Su,uFCV+ 
bupuV;\ and i W”,,, by h f r V  Wtk. We determine a power series solution as in I, the 
recurrence relation being of the form 

n ( n + l + 2 1 ) a n -  Z I - ~ U ~ ~ ( ~ ,  i + j + l ) + a , _ , k :  
00 

i j = O  

(2A + l)aiP,Pk 6( n - 21, - 3, i + j  + k + 1) 
( n  - k- 1 - e ) ( n  - k - 2 -  d )  -; g l s (  CAPn-d-2- c 

= O  
i j , k  

= O  

where 

d = A  +l , - l  and e = 1, - 1 - A  

which is valid V n  3 0 if we define 

a . z O  Pi = 0 vj-l= 0 V i < O .  

The numerical extension of the power series solution of (A.3), using the summed 
Cowell-Numerov method as in paper I, is 

(1 -z4n+l)F;:l h2 
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where 

Let 

k 2 , + F C ~ ( i ) + C  Vtf(r) .  
1(1+1) 22 +(r )  =---- 

r2 r A 

then approximations (a) and (b) (see I) for the term Ff;:, on the RHS of (A.7) are given 
by 

(a) 

For k Z a O ,  a solution of (A.3) that satisfies (A.5) may be found as in paper I using 
Percival's method (see Marriott 1958). 

For k 2  < 0 distinct values of c give rise, in general, to distinct eigenvalues E (  = - k2)  
and we must now search for the values of c and E which lead to a solution F, that 
satisfies (A.5) and the following asymptotic boundary conditions, 

F, - 0. 
r+m 

F, - uor'+' and 
r-90 

(A.12) 

To test programs afritten for the E D W ~  approximation we set 
b,, = 1 hO,, = 1 hl YY = - I  

and FCV=O in (A.3) to recover the two-electron problem. We take P to be frozen as 
a He+ 1s core and F to be a freely varied bound-state radial function. (A.3) are now 
the prior form of the Hartree-Fock frozen-core equations for He whilst those of Cohen 
and Kelly (1966) are the post form, there being no post-prior discrepancy. In table 
A1 we give the values of c and a, that generate the required solution, which has been 
normalised to unity. 

Table A l .  Parameters c and a, for the HFFC approximation for He. 

1's 23s  2's 2 3 ~  2'P 
~ ~~~ 

c 0.50622 0.232 59 0.107 70 0.270 57 0.165 68 
a, 3.539 81 1.047 88 0.795 66 0.393 87 0.201 41 
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The diagonal energy parameters have already been given in table 1, in agreement with 
Cohen and Kelly (1966), and U’ in table 2 ,  in agreement with Cameron et al (1970). 
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