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Abstract. Two Coulomb-exchange distorted-wave (CEDW) approximations are developed 
and applied to the electron impact excitation of the Is+ 2s and ls-  2p transitions in He' 
and H at low energies. In the first approximation, C E D w i ,  partial waves are distorted by 
various direct multipole potentials. In the second approximation, CEDW2, particular 
partial waves are additionally distorted by an exchange monopole potential. 

Results for cross sections presented here are compared with those of the three-state 
close-coupling and Coulomb-Born-Oppenheimer approximations, and with experiment. 
Despite the unfavourable degeneracy of the 2s and 2p states in hydrogenic atoms, the 
CEDW2 approximation gives satisfactory agreement with the three-state close-coupling 
approximation for the Is - 2s transition and fairly good agreement for the Is + 2p transition 
together with a significant reduction in computing time. Thus our distorted-wave approach 
can be useful at low energies for singly-ionised and neutral atoms and is sufficiently 
promising to justify further development for application to more complex systems, where 
we no longer have the degeneracy of states that we do with hydrogenic atoms. 

1. Introduction 

The excitation of positive ions by electron impact has been reviewed by Henry (1981) 
and, for the case of neutral atoms, by Bransden and McDowell (1977, 1978). Since 
then Chidichimo (1981) has shown that, by including the distortion of partial waves 
by multipole potentials, the distorted-wave approach to electron-ion collisions can 
give good results at low energies for a singly-ionised system, namely Ca+. Electron 
exchange between the incident and atomic electrons was neglected. In the distorted- 
wave approximation, the coupling between states is treated as a perturbation and the 
collision equations are uncoupled. This gives it a distinct advantage, in terms of 
computing resources, over the close-coupling approximation and provides the main 
motivation for this work. Thus at low energies it is important that the role of exchange 
be examined. 

In 0 2 we develop two Coulomb-exchange distorted-wave (CEDW) approximations 
for the electron impact excitation of hydrogenic atoms. In the first approximation, 
c m w i ,  partial waves are distorted by various direct multipole potentials. In the 
second approximation, CEDWZ, particular partial waves are additionally distorted by 
an exchange monopole potential. In both approximations, both the incident and 
scattered partial waves are distorted. In the CEDWZ approximation we also investigate 
the case of equivalent electrons in a bound-state problem. In 0 3 we apply these 
approximations to the l s+2s  and I s+  2p transitions in He+ and H. In 0 4 we present 
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our results and compare them with other theoretical results, in particular the three-state 
close-coupling approximation, and with experiment. 

There do of course exist more accurate and time-consuming theoretical results, 
especially between the n = 2 and n = 3 thresholds and these can predict the resonance 
structure that exists there. For Me’ see Ormonde et a1 (1967), Burke and Taylor 
(1969) and Morgan (1979). For H see e.g. Taylor and Burke (1967), Callaway et a1 
(1975), Morgan et a1 (1977), Callaway (1982) and also the experiment of Williams 
(1976). Our model cannot predict resonances so the results can only be regarded 
as an averaged-out value for the cross sections there. Typically these elaborate 
calculations are only carried out for the first few angular momenta and are supple- 
mented at higher L by results from simpler approximations. For positive ions more 
partial waves must be taken into account than for neutral atoms thus increasing further 
the computation time. We note also the polarised-orbital results of McDowell et a1 
(1977). 

All quantities are in atomic units except energies which are given in rydbergs. In 
the figures the cross sections are given in units of Tu:. 

2. Theory 

The partial-wave theory of electron-hydrogen-atom collisions was developed by 
Percival and Seaton (1957). Following their approach we take the total wavefunction 
of the electron-hydrogenic-atom system to satisfy the collisional Hartree-Fock 
equations and solve to get radial equations of the form, 

,.rA+l dr’ 
J r m  P(r’)F(r’) 

yA(P, Fir)  = h+l P(r’)F(r’)r’A dr’+rA 
r 6: 

and PnIa(r)  satisfies 

(2.4) 

(2.5) 

9:,”(r) is the radial function of the free electron, - for the case of parallel electron 
spins and + for the case of anti-parallel electron spins. Pnla(r) is the radial function 
of the atomic electron described by quantum numbers nl, and corresponds to a state 
with energy E,,. 

E = E , + k :  (2.6) 

is the total energy of the system, v = nlJL are quantum numbers describing the system 
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in a coupled angular momentum representation and the angular coefficients, f A  and 
gA, are defined by Percival and Seaton (1957). 2 is the nuclear charge of the target 
a n d z = Z - l .  

2.1. The solution of the CEDWZ radial equation 

We now consider the solution of the radial equation for the free electron in the CEDW 
approximations described in the introduction and defined later in 8 2.5. The c m w i  
radial equation is no more complicated to solve numerically than the CBO radial 
equation in Burgess et a1 (1970) and is a special case of the C E D W ~  radial equation. 
Thus we consider solutions of the C E D W ~  radial equation, 

with 

U:”* = v :~  * 6 A O w t v .  

Using (2.2)-(2.4) and (2.8) we may rewrite (2.7) as 

(2.7) 

x (c +: LIrPnla(r’)F: ( r ’ )  dr’-lorP-F: r ( r ‘ )  dr’)P,,la(r) 

where c is a constant given by 
m 

c =;(En - k ? )  jO Pnla(r)F: ( r )  dr + jOm ‘&F: ( r )  dr. r 

On substituting the following expansions 

and 

into (2.9) we obtain a recurrence relation of the form 

aipjpk8(n - 2 1 a - 3 , i + j + k + l )  
( n  - k - l ) (n  - k - 2) 

) = 0  
i ,  j ,  k = O  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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valid for n > 1 with a l  given by 

z a  0 

1 + 1 *  
a l  = - - 

a. determines the normalisation and 

(2.15) 

gs = 2gIJ(U 1J; L) .  (2.16) 

This gives us a power series solution for (2.9) with an infinite radius of convergence. 
However there is an effective radius of convergence, since we can only retain a finite 
number of terms in (2.11)-(2.13), so we seek a numerical extension of our analytic 
solution. Equation (2.9) is of the form 

Y"(x) = G(x, Y) (2.17) 

for which a power series solution may be extended using the summed Cowell-Numerov 
formula (see Froberg 1969), 

n 

(2.18) 

where Y, = Y(x,,) and x , + ~  =x,, +h. By the application of (2.17)-(2.18) to (2.9) we 
obtain 

h 2  h2  h2  h 2  
12 12 j = 1  12 12 

Yn+l = Y,, + - G,+1 - - G, + h2  Gj + Y1- Yo - - GI+- Go 

(1 - 12 h 2  Cn+l)F:+l 

h 2  r n + ~  PF" 
f - gs[ (-!- 5 r"fl PF' dr - lo - r dr)P,+l 

12 r,+l o 

(2.19) 
PF* - ($ IOr' PF" dr - lo 7 dr) P,,] 

+ h 2  j = l  f [q5,FF*gS,(1['iPF'dr- ri o jo -dr+c)] r 

+ i = O  (-I)~+'(F? - E [ q 5 p f * g s P i ( i  Ti J r i P P d r - l o  o 

' i  PF" 

1 h 2  l i  pF* 
-dr+c)]} r 

where P, now denotes P(rn)  and 

(2.20) 1(1+1) 22 
4 (r) = 7 - - - k2, + vtV (r). r r A 

We can approximate the term in F:+, on the RHS of (2.19) in two ways ( a )  and ( 6 )  
thus, ( a )  
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using a three-point Simpson rule on 5:;:; or, ( 6 )  

using a three-point (r,, .-l,  r,, r , + l )  Newton-Cotes integration formula (see Froberg 
1969) on 

In the cases of Hei and H it was found that the difference between approximations 
( a )  and ( 6 )  for the extension of the power series solution was less than the accuracy 
of the summed Cowell-Numerov method for a given step length. In ( a ) ,  using a 
three-point Simpson rule at each step, j 2 - I  depends only on alternate previous 
integrals. During computation jAm, m odd, drift apart from JAm, m even. In ( 6 )  J$ 
depends on all the previous values and the above effect does not arise. For this reason 
approximation ( 6 )  was preferred. 

Thus we have suceeded in, numerically, extending our power series solution. 

2.2. The collision equation 

We consider first, by setting v = nssS in (2.9), s-wave scattering off He' or H in an s 
state. In this case A = 0 is 'the only non-zero contribution to the sum over A. Using 
Percival's method, see Marriott (1958), we evaluate F: with two different arbitrary 
values of c and take a linear combination of the two solutions that satisfies (2.10). 
For the case of parallel electron spins whatever the value of c we choose we get a 
function F ;  that automatically satisfies (2.10) because if F ;  is a solution of (2.9) then 
F ;  +pPns is also a solution (p arbitrary). If we multiply (2.9) through by P,, and 
integrate over all r we can reduce the resulting equation to (2.10), for F; .  In this 
case we can impose F ;  orthogonal to Pns. 

For p-wave scattering off p states we do not include the W t ,  term of (2.3) in (2.7) 
and we can evaluate F: as we did previously for the case of F ; f .  

The appropriate asymptotic boundary conditions for a solution of (2.7) are 

F: ( r )  - 0 
r - 0  

(2.23) 

and 

with q5" and 
and evaluated according to Burgess (1963). 

given by (2.34)-(2.35) for k > 0 and by (2.36)-(2.37) for k = 0, z > 0 

2.3. Equivalent electrons 

To investigate further properties of the CEDWZ radial equation and as a check on the 
numerical methods and programs which solve it, we turn the He' +e- collision problem 
into one of evaluating the ground-state energy of He. The solution of this is already 
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well known in terms of the Hartree-Fock bound-state equation (see e.g. Froese Fischer 
1977). Thus we set v = nssS and Pnr, =F: in (2.9) and we impose the following 
asymptotic boundary conditions 

F: ( r )  - 0 
r+O 

and 

F:(r )  - 0 
1-00 

with the normalisation 
m 2 I ( F : ( r ) )  dr = 1. 
0 

(2.25) 

(2.26) 

Again A = 0 is the only term contributing to the sum over A. For equivalent electrons, 
with spins anti-parallel, the direct and exchange potentials reinforce. The resulting 
equation differs from the Hartree-Fock bound-state equation only by a numerical 
factor multiplying the integrals. Thus this problem provides a good test of the solution 
of the C E D W ~  collision equation since it is the integral terms which are the most 
difficult to deal with, see (2.14) and (2.19). 

The differences between the Hartree-Fock bound-state equation and that derived 
in the limit of the collision problem arise because the eigenvalue problem which leads 
to (2.1) and to (2.9) is equivalent to a variational problem in which one eigenfunction 
is set initially and the other determined when the variation of the expectation value 
of the Hamiltonian vanishes. However, for equivalent electrons both wavefunctions 
must be varied. This leads to (2.27) the radial equation for an eigenfunction of He 1s2, 
the Hartree-Fock bound-state equation, in agreement with Froese Fischer (1977). 

where 

(2.27) 

(2.28) 

and 

E = -(E +Fo) (2.29) 

where E is still the total energy of the system and 

(2.30) 

is the interaction energy. 

using 
For comparison with Froese Fischer (1977) we note that we have simplified (2.30) 

(2.3 1) 
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which is easily verified by integrating the LHS by parts with respect to rl. The equations 
obtained in the limit of the collision problem have factors of four instead of two on 
the RHS of (2.27) and (2.28) and Fo is replaced by 3F0 in (2.29). 

Equation (2.27) is non-linear in F: and to solve it we make a two-dimensional 
search varying ao, the normalisation coefficient, and q until we satisfy (2.26) and the 
boundary condition (2.25). For He and the H- ion the appropriate values for a. and 
q are 

ao(He) = 4.753 296 

v(He) = 5.210 477 

ao(H-) = 1.393 82 

7) (H-) = 1.463 79. 

The integrals in (2.28) and (2.30) can now be evaluated numerically to give the 
following values for E and Fo, 

&(He) = 3.671 818 

Fo(He) = 2.051 542 

E(H-) =0.1848 

Fo(H-) = 0.7910. 

E can then be evaluated from (2.29), 

€(He) = -5.723 360 E(H-) = -0.9758 

in agreement with Froese Fischer (1977). 
For collisional ionisation, di-electronic recombination or autoionisation similar 

changes need to be made to the collision equations in the case of equivalent electrons. 

2.4. The p matrix and cross sections 

Writing 

we impose the following asymptotic boundary conditions on solutions of (2.1), 

1T 2 

r-rm 2 k, 
4” - kur--+-ln(2k,r)+argr 

and 

with 

and 

Then (see Seaton 1962), 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 
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is related to the total cross section Q and total collision strength R as follows: 

Q(n1, + n’lh)  =:(a++ 3Q-) 
where 

and 

(2.39) 

(2.40) 

(2.41) 

where we may derive the following relationships (see Eissner and Seaton 1972), 

T’ (v, v )  = 1 + exp(2i~:)(T*(u, U )  - 1) (2.42) 

T*(v’, v )  = Y * ( u ’ ,  v )  exp(i.r: +iT:,) v f v l  (2.43) 
and 

(2.44) 

2.5. Approximations for p 

The second Coulomb-exchange distorted-wave (CEDW~) approximation for p is given . 
by 

( 2 . 4 5 ~ )  

(2.45b) 

5F:,,u(r) = F: ( r )  ( 2 . 4 5 ~ )  

where F: is given by (2.7), and 

U:: = v:v *s~,w:, VY, A. (2.45d) 

The first Coulomb-exchange distorted-wave (CEDWI) approximation for p is given by 
(2.45a)-(2.45c) and by 

U;: = v;u Vu,  A.  (2.46) 

The usual Coulomb-Born-Oppenheimer (CBO) approximation is given by ( 2 . 4 5 ~ ) -  
( 2 . 4 5 ~ )  and by 

U:: = 0 Vv, A .  (2.47) 

If the expression (2.44) is used, the S matrix is unitary and (2.44) is denoted 

g* --. -2ip’ (2.48) 
S is not unitary and (2.48) is denoted approximation I. Unless otherwise stated we 
use approximation I1 for the CEDW approximations and thus drop the 11. For neutral 
atoms we also drop the prefix Coulomb. 

In this case T* = 0 and the p matrix reduces to the usual R matrix. 

approximation 11. When coupling is weak we may write 
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3. Applications to He+ and H 

We use three-state CEDW approximations (ls-2s-2p) which, when 1, couples to I ,  give 
rise to a 5 x 5 matrix for p. The matrix elements may be classified as in Burgess et a1 
(1970). 

3.1. Long-range integrals 

The numerical evaluation of p-matrix elements (2.38) involving a 2p state are compli- 
cated by long-range, slowly convergent, integrals (see Burgess et a/  (1970). 

For k, ,#k, ,  we can use the amplitude-phase method of Burgess and Sheorey 
(1974). For hydrogenic atoms we must also deal with the case k, = kvf.  Considering 
the long-range part of the integral only, from (2.45), (2.24) and (2.38) and in the 
notation of Burgess and Sheorey (1974), we have to evaluate integrals of the form, 

I = I + - I -  (3.1) 
where 

I* = a* cos c$* d4* I (3.2) 

4* =42*41 (3.3) 
1/2  -1/2 15; 5 2  5;' 

2 T A + '  a+=-  

and 
5* = 5 2 * 5 1 .  

I +  can still be evaluated using the amplitude-phase method. For 

we make the substitution 

(3.4) 

(3.5) 

(3.6) 

where 1 = $(11 + 1 2 ) ,  to leave the integrand slowly varying over a finite range of integra- 
tion. For l # 0, writing 

a 2  = k:/l(l+ 1) b2 = 2z/ l ( l+ 1) c 2  = 1(1+1) (3.8) 
we have 

1/2  1 ( 2 b2  IA(r )=a8A1-  a +--7 - r rl> hrA-' 

with 
2r-' - b 2  

Io(r) = sin-' +sin-' 

(3.9) 

(3.10) 
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For 1 = 0, z # 0, writing 

(3.11) 

we have 

’” (-l)“d”n(h!)2(2A -2n) !  A dZAc1(h  !)’ 
(2h + I ) !  ’ 

I A ( r ) =  d +- 2 A-n -(-l) ( :) n = ~  (2h +l)![(h - n ) ! ]  r (3.12) 

3.2. Contributions to the collision strength from large values of  angular momentum 

For the dipole transitions, partial collision strengths, &,L, were evaluated up to 1 = lo 
in the particular approximation required and the sum from 1 = lo + 1 to 00 was evaluated 
using the analytic formula of Burgess (1974). In the case of the CB and CBO approxima- 
tions, using this more powerful approach to completing the sum as opposed to the 
geometric approach used by Burgess et a1 (1970) we were able to confirm their results 
for the l s + 2 p  total collision strength but not those of McDowell et a1 (1975, p 1059, 
table 1). 

The CBI, CBII, CBOI, CBOII, R matrix, partial and total collision strengths for Z = 2, 
03 in tables 1-10 of Burgess et a1 (1970) were confirmed. 

4. Results 

We are interested in comparing our CEDW results with the three-state close-coupling 
and CBOII calculations since they are the closest relations to the CEDW approximations 
and so provide the most insight into their behaviour. We also wish to compare our 
CEDW results with experiment. 

Thus we present graphs of total excitation cross sections plotted against the incident 
electron energy in Rydbergs and tables of scaled CEDW collision strengths. 

4.1. He+ 

Total scaled collision strengths for electron impact excitation of the 1s + 2s transition 
in Het, at selected energies, calculated in the CEDwi and CEDWZ approximations 
discussed earlier are given in table 1. + and - refer to singlet and triplet contributions 
respectively (2 = 2). 

In figure 1 we compare our CEDW cross sections for the 1s + 2s transition with the 
three-state (1s-2s-2p) close-coupling (3cc) calculations including exchange of Burke 
et a1 (1964), the CBOII approximation and the experiments of Dance et a1 (1966) and 
Dolder and Peart (1973). 

The CEDWZ cross section is more than 50% below the extrapolated 3cc value at 
threshold and in good agreement, presumably fortuitous, with both experiments. It 
is also nearly 50% below the results (not shown), at threshold, of Burke and Taylor 
(1969) and Morgan (1979). The CEDW curves merge at about 5 Ryd and tend to the 
Born approximation at high energies. Comparison of the CBOII and CEDW curves 
shows that treating the short-range direct potential term exactly results in a major 
reduction of the cross section at threshold while inclusion of the exchange potential 
in the same way produces a further, although smaller, reduction. Comparison of the 



Excitation of He' and H a t  low energies 3273 

Table 1. Total collision strengths for He' Is+ 2s. Approximation 11. 

CEDWl CEDW2 

k 2 / Z 2  aZ2fl' tz2n- Z2Cl :z2Cl+ 2Z2W z2n 

0.75 
0.80 
0.90 
1.00 
1.10 
1.25 
1.50 
2.00 
3.00 
4.00 

0.1645 
0.1494 
0.1891 
0.2034 
0.2084 
0.2092 
0.2043 
0.1904 
0.1692 
0.1563 

0.0598 
0.1109 
0.1440 
0.1620 
0.1755 
0.1917 
0.2124 
0.2405 
0.271 1 
0.2872 

0.2242 
0.2603 
0.3330 
0.3654 
0.3839 
0.4008 
0.4167 
0.4309 
0.4403 
0.4436 

0.1067 
0.1136 
0.1637 
0.1894 
0.2017 
0.2078 
0.2058 
0.1927 
0.1708 
0.1574 

0.0588 
0.1078 
0.1421 
0.1615 
0.1756 
0.1919 
0.2125 
0.2401 
0.2705 
0.2867 

0.1655 
0.2214 
0.3059 
0.3510 
0.3772 
0.3997 
0.4182 
0.4328 
0.4413 
0.4441 

k 2 [ R y d l  

Figure 1. Excitation cross section for the ls-+2s transition in He+. -, CEDWl and 
CEDWZ; ----,  CBOII; - - - - -, 3 c c  (Burke er ai 1964). +, experimental points from 
Dance er ai (1966); A, from Dolder and Peart (1973). 

relative singlet and triplet contributions to the total cross section in the CEDW and 
3cc approximations shows that they behave in the same manner in that the singlet 
dominates to about 1.5 Ryd and the triplet from there on. The CBOII behaviour is 
completely different in that the triplet dominates at all energies. Results for the 
1s + 2p transition are presented in table 2. 

In figure 2 we compare our CEDW cross sections for the l s + 2 p  transition with 
the three-state close-coupling (3cc) calculations of Burke et a1 (1964) and the CBOII 
approximation. 
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Table 2. Total collision strengths for He' Is-, 2p. Approximation 11. 

0.75 0.9490 
0.80 1.048 
0.90 1.045 
1.00 1.039 
1.10 1.029 
1.25 1.013 
1.50 0.9972 
2.00 1.001 
3.00 1.073 
4.00 1.161 

0.1391 
0.1704 
0.2473 
0.3492 
0.4607 
0.6318 
0.9083 
1.396 
2.136 
2.674 

1.088 
1.219 
1.293 
1.388 
1.489 
1.645 
1.906 
2.397 
3.209 
3.835 

0.5510 
0.8125 
1.007 
1.071 
1.076 
1.054 
1.020 
1.008 
1.073 
1.161 

0.1405 
0.1738 
0.2508 
0.3518 
0.4625 
0.6330 
0.9093 
1.397 
2.138 
2.675 

0.6915 
0.9863 
1.258 
1.423 
1.539 
1.687 
1.930 
2.405 
3.211 
3.836 

I - 
0 5 10 15  

k'(Ryd1 

Figure 2. Excitation cross section for the ls-+2p transition in He'. -, c m w i  and 
CEDWZ; - - - -, CBOII; - - - - -, 3cc (Burke el a1 1964). 

All theoretical results are in broad agreement with the only reported experimental 
results to date (Dashchenko et al 1975), which are subject to large errors. The C E D W ~  
curve agrees with the projected 3cc value at threshold. 

4.2. H 

Total collision strengths for the Is + 2s transition in H at selected energies are given 
in table 3. 

In figure 3 we compare our EDW cross sections for the Is + 2s transition with the 
three-state (1s-2s-2p) close-coupling (3cc) calculations of Burke et a1 (1963, 1967), 
the BOII approximation and the experiment of Kauppila et a1 (1970). 
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Table 3. Total collision strengths for H 1s + 2s.  Approximation 11. 

E D W l  EDW2 __ 
k 2  &+ an- n an+ in- n 
0.7 5 00 1 
0.80 
0.90 
1.00 
1.10 
1.25 
1.50 
2.00 
3.00 
4.00 

0.0005 
0.0854 
0.1924 
0.1362 
0.1271 
0.1427 
0.1669 
0.1841 
0.1807 
0.1707 

0.0006 
0.0153 
0.1175 
0.1607 
0.1783 
0.1977 
0.2250 
0.2649 
0.3052 
0.3231 

0.0010 
0.1007 
0.3098 
0.2969 
0.3055 
0.3404 
0.3919 
0.4489 
0.4858 
0.4937 

0.0003 
0.0274 
0.0637 
0.1172 
0.1574 
0.1665 
0.1660 
0.1829 
0.1826 
0.1725 

0.0006 
0.0150 
0.1136 
0.1542 
0.1744 
0.1988 
0.2282 
0.2672 
0.3056 
0.3229 

0.0008 
0.0424 
0.1774 
0.2713 
0.3318 
0.3653 
0.3943 
0.4500 
0.4882 
0.4954 

0.4 

- 
N O  

U e 
Q 
- 

0. i 

t 
I I I 
1 2 3 

k2(Rydi  

Figure 3. Excitation cross section for the Is+2s transition in H. -, E D W l  and E D w Z ;  
_ _ _ _  , BOII;  - - - - -, 3cc (Burke et nl 1963, 1967). f, experimental points from Kauppila 
er a1 (1970). 

The EDwi results are poor below 1 Ryd and illustrate the importance of treating 
the exchange distorting potential exactly. The EDW curves merge at about 1.5 Ryd 
and tend to the Born approximation at high energies. Comparison of the EDW curves 
with the BOII curve below 1.1 Ryd again shows the importance of including the direct 
distorting potential exactly. The behaviour of the relative singlet and triplet contribu- 
tions to the cross sections in the EDW and 3cc approximations is the same and differs 
from that of the BOII approximation. The results of Callaway et a1 (1975), not shown, 
are in good agreement with the experiment of Kauppila et a1 (1970) over the energy 
range 0.75 to 2.25 Ryd. 
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Results for the 1s + 2p transition are presented in table 4. 

Table 4. Total collision strengths for H 1s- 2p. Approximation 11. 

E D W l  EDWZ 
~ _ _ _  

k 2  an+ tn- n $n+ jn- n 

0.75001 0.0028 0.0021 0.0048 0.0012 0.0020 0.0032 
0.80 0.1566 0.0152 0.1718 0.1464 0.0153 0.1617 
0.90 0.4286 0.1590 0.5876 0.2025 0.1608 0.3634 
1 .oo 0.5884 0.2329 0.8213 0.3352 0.2369 0.5722 
1.10 0.6755 0.2883 0.9638 0.5022 0.2922 0.7944 
1.25 0.7467 0.4056 1.152 0.7175 0.4073 1.125 
1.50 0.7940 0.6411 1.435 0.8407 0.6415 1.482 
2.00 0.8473 1.105 1.953 0.8674 1.107 1.974 
3.00 0.9517 1.857 2.809 0.9529 1.860 2.813 
4.00 1.058 2.418 3.475 1.057 2.421 3.477 

In figure 4 we compare our EDW cross sections for the 1s -+ 2p transition with the 
three-state close-coupling (3cc) calculations of Burke et al (1963, 1967), the BOII 
approximation and the experiment of McGowan et a1 (1969). 

Again the behaviour of the triplet and singlet contributions to the cross section is 
the same in the EDW and 3cc approximations and differs from the BOII approximation. 
The results of Callaway et al (1975), not shown, are in good agreement with the 
experiment of McGowan et a1 (1969) over 0.75 to 2.25 Ryd. 

kZfRyd)  

Figure 4. Excitation cross section for the I s+  2p transition in 11. -, EDWl and EDWZ; 
_ _ _ _  , BOII;  - - - - -, 3cc (Burke et al 1963,1967). f, experimental points from McGowan 
e t  al (1969). 
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5. Conclusions 

Bearing in mind that the degeneracy of the 2s and 2p states in hydrogenic atoms is 
unfavourable to the distorted-wave approach and that the convergence of the close- 
coupling expansion is poor for H, we can draw the following conclusions. 

(i) Distortion of the free electron by direct and exchange potentials is important 
for all channels at low energies; 

(ii) The CEDW:! approximation, for He+ and H, gives satisfactory agreement with 
the three-state close-coupling approximation for the 1s + 2s transition and fairly good 
agreemeKt for the 1s + 2p transition together with a significant reduction in computing 
time; 

(iii) Future work on the inclusion into our trial wavefunctions of coupling to the 
2p state, directly, and other p states, indirectly (polarisation), is desirable. 

(iv) The simplicity of the C E D W ~  approximation as it stands and the results it gives 
are sufficiently promising to justify further development to investigate the excitation 
of complex systems, where we no longer have degeneracy of the nl and nl' states, 
and ionisation. 
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